首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The development of cerebellar cortex is strongly impaired by thyroid hormone (T3) deficiency, leading to altered migration, differentiation, synaptogenesis, and survival of neurons. To determine whether alteration in the expression of neurotrophins and/or their receptors may contribute to these impairments, we first analyzed their expression using a sensitive RNAse protection assay and in situ hybridization; second, we administered the deficient neurotrophins to hypothyroid animals. We found that early hypothyroidism disrupted the developmental pattern of expression of the four neurotrophins, leading to relatively higher levels of NGF and neurotrophin 4/5 mRNAs and to a severe deficit in NT-3 and brain-derived neurotrophic factor (BDNF) mRNA expression, without alteration in the levels of the full-length tyrosine kinase (trk) B and trkC receptor mRNAs. Grafting of P3 hypothyroid rats with cell lines expressing high levels of neurotrophin 3 (NT-3) or BDNF prevented hypothyroidism-induced cell death in neurons of the internal granule cell layer at P15. In addition, we found that NT-3, but not BDNF, induced the differentiation and/or migration of neurons in the external granule cell layer, stimulated the elaboration of the dendritic tree by Purkinje cells, and promoted the formation of the mature pattern of synaptic afferents to Purkinje cell somas. Thus, our results indicate that both granule and Purkinje neurons require appropriate levels of NT-3 for normal development in vivo and suggest that T3 may regulate the levels of neurotrophins to promote the development of cerebellum.  相似文献   

2.
Neural stem cells proliferate in vitro and form neurospheres in the presence of epidermal growth factor (EGF), and are capable of differentiating into both neurons and glia when exposed to a substrate. We hypothesize that specific neurotrophic factors induce differentiation of stem cells from different central nervous system (CNS) regions into particular fates. We investigated differentiation of stem cells from the postnatal mouse hippocampus in culture using the following trophic factors (20 ng/mL): brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and glial-derived neurotrophic factor (GDNF). Without trophic factors, 32% of stem cells differentiated into neurons by 4 days in vitro (DIV), decreasing to 10% by 14 DIV. Addition of BDNF (starting at either day 0 or day 3) significantly increased neuron survival (31–43% by 14 DIV) and differentiation. Morphologically, many well-differentiated neurons resembled hippocampal pyramidal neurons. 5′-Bromodeoxyuridine labeling demonstrated that the pyramidal-like neurons originated from stem cells which had proliferated in EGF-containing cultures. However, similar application of NT-3 and GDNF did not exert such a differentiating effect. Addition of BDNF to stem cells from the postnatal cerebellum, midbrain, and striatum did not induce these neuronal phenotypes, though similar application to cortical stem cells yielded pyramidal-like neurons. Thus, BDNF supports survival of hippocampal stem cell-derived neurons and also can induce differentiation of these cells into pyramidal-like neurons. The presence of pyramidal neurons in BDNF-treated hippocampal and cortical stem cell cultures, but not in striatal, cerebellar, and midbrain stem cell cultures, suggests that stem cells from different CNS regions differentiate into region-specific phenotypic neurons when stimulated with an appropriate neurotrophic factor. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 395–425, 1998  相似文献   

3.
Brain-derived neurotrophic factor (BDNF) is expressed by endothelial cells. We investigated the characteristics of BDNF expression by brain-derived endothelial cells and tested the hypothesis that BDNF serves paracrine and autocrine functions affecting the vasculature of the central nervous system. In addition to expressing TrkB and p75NTR and BDNF under normoxic conditions, these cells increased their expression of BDNF under hypoxia. While the expression of TrkB is unaffected by hypoxia, TrkB exhibits a base-line phosphorylation under normoxic conditions and an increased phosphorylation when BDNF is added. TrkB phosphorylation is decreased when endogenous BDNF is sequestered by soluble TrkB. Exogenous BDNF elicits robust angiogenesis and survival in three-dimensional cultures of these endothelial cells, while sequestration of endogenous BDNF caused significant apoptosis. The effects of BDNF engagement of TrkB appears to be mediated via the phosphatidylinositol (PI) 3-kinase-Akt pathway. Modulation of BDNF levels directly correlate with Akt phosphorylation and inhibitors of PI 3-kinase abrogate the BDNF responses. BDNF-mediated effects on endothelial cell survival/apoptosis correlated directly with activation of caspase 3. These endothelial cells also express p75NTR and respond to its preferred ligand, pro-nerve growth factor (pro-NGF), by undergoing apoptosis. These data support a role for neurotrophins signaling in the dynamic maintenance/differentiation of central nervous system endothelia.  相似文献   

4.
5.
D Collazo  H Takahashi  R D McKay 《Neuron》1992,9(4):643-656
The expression of the neurotrophins and trk receptors in the hippocampus has directed attention toward their roles in the development and maintenance of this region. We have examined the effects of the neurotrophins NT-3, BDNF, and NGF in cultures of developing rat hippocampal cells by two criteria: rapid induction of c-fos and neurotrophic responses. The selective induction of c-fos mRNA suggests the presence of functional receptors for NT-3 and BDNF, but not NGF, in embryonic hippocampal cultures. The NT-3-responsive cells were localized in pyramidal neurons of areas CA1 through CA3 and dentate granular and hilar cells of postnatal organotypic slices, as detected by c-Fos immunocytochemistry. In addition to immediate early responses, NT-3 caused a 10-fold increase in the number of cells expressing the neuronal antigen calbindin-D28k. This increase was dose dependent, with maximal stimulation at 10 ng/ml. In contrast, BDNF elicited small but significant calbindin responses. These results indicate biological responses to NT-3 in the CNS and suggest roles for for this neurotrophin during hippocampal neurogenesis.  相似文献   

6.
Brain-derived neurotrophic factor (BDNF), a major neuronal growth factor, is also known to exert an antiapoptotic effect in myeloma cells. Whereas BDNF secretion was described in B lymphocytes, the ability of B cells to produce sortilin, its transport protein, was not previously reported. We studied BDNF production and the expression of its receptors, tyrosine protein kinase receptor B and p75 neurotrophin receptor in the human pre-B, mature, and plasmacytic malignant B cell lines under normal and stress culture conditions (serum deprivation, Fas activation, or their combination). BDNF secretion was enhanced by serum deprivation and exerted an antiapoptotic effect, as demonstrated by neutralization experiments with antagonistic Ab. The precursor form, pro-BDNF, also secreted by B cells, decreases under stress conditions in contrast to BDNF production. Stress conditions induced the membranous expression of p75 neurotrophin receptor and tyrosine protein kinase receptor B, maximal in mature B cells, contrasting with the sequestration of both receptors in normal culture. By blocking Ab and small interfering RNA, we evidenced that BDNF production and its survival function are depending on sortilin, a protein regulating neurotrophin transport in neurons, which was not previously described in B cells. Therefore, in mature B cell lines, an autocrine BDNF production is up-regulated by stress culture conditions and exerts a modulation of apoptosis through the sortilin pathway. This could be of importance to elucidate certain drug resistances of malignant B cells. In addition, primary B lymphocytes contained sortilin and produced BDNF after mitogenic activation, which suggests that sortilin and BDNF might be implicated in the survival and activation of normal B cells also.  相似文献   

7.
Recent studies have indicated that the choice of lineage of neural progenitor cells is determined, at least in part, by environmental factors, such as neurotrophic factors. Despite extensive studies using exogenous neurotrophic factors, the effect of endogenous neurotrophic factors on the differentiation of progenitor cells remains obscure. Here we show that embryonic spinal cord derived-progenitor cells express both ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) mRNA before differentiation. BDNF gene expression significantly decreases with their differentiation into the specific lineage, whereas CNTF gene expression significantly increases. The temporal pattern of neurotrophic factor gene expression in progenitor cells is similar to that of the spinal cord during postnatal development. Approximately 50% of spinal progenitor cells differentiated into astrocytes. To determine the effect of endogenous CNTF on their differentiation, we neutralized endogenous CNTF by administration of its polyclonal antibody. Neutralization of endogenous CNTF inhibited the differentiation of progenitor cells into astrocytes, but did not affect the numbers of neurons or oligodendrocytes. Furthermore, to mimic the profile of neurotrophic factors in the spinal cord during embryonic development, we applied BDNF or neurotrophin (NT)-3 exogenously in combination with the anti-CNTF antibody. The exogenous application of BDNF or NT-3 promoted the differentiation of these cells into neurons or oligodendrocytes, respectively. These findings suggest that endogenous CNTF and exogenous BDNF and NT-3 play roles in the differentiation of embryonic spinal cord derived progenitor cells into astrocytes, neurons and oligodendrocytes, respectively.  相似文献   

8.
Brain-derived neurotrophic factor (BDNF) is an abundant neurotrophin in brain and peripheral nerves, where it affects neural development, survival and repair after injury. BDNF has been detected in rat and human blood, but the source of circulating BDNF is not established. BDNF messenger and peptide were detected in cultured cells and in the culture medium of human umbilical vein endothelial cells. The expression of BDNF was up-regulated by elevation of intracellular cAMP and down-regulated by Ca(2+) ionophore, bovine brain extract and laminar fluid shear stress. These results suggest that vascular endothelial cells may contribute to circulating BDNF.  相似文献   

9.
The rodent retina undergoes considerable postnatal neurogenesis and phenotypic differentiation, and it is likely that diffusible neurotrophic factors contribute to this development and to the subsequent formation of functional retinal circuitry. Accordingly, perturbation of specific neurotrophin ligand-receptor interactions has provided valuable information as to the fundamental processes underlying this development. In the present studies we have built upon our previous observation that suppression of expression of trk(B), the high-affinity receptor for brain-derived neurotrophic factor (BDNF), in the postnatal rat retina results in the alteration of a specific interneuron in the rod pathway-the parvalbumin (PV)-immunoreactive AII amacrine cell. Here, we isolated retinas from newborn rats and maintained them in organotypic culture for up to 14 days (approximating the time of eye opening, in vivo) in the presence of individual neurotrophins [BDNF or nerve growth factor (NGF)]. We then examined histological sections of cultures for PV immunoreactivity. In control cultures, only sparse PV-immunostained cells were observed. In cultures supplemented with NGF, numerous lightly immunostained somata were present in the inner nuclear layer (INL) at the border of the inner plexiform layer (IPL). Many of these cells had rudimentary dendritic arborizations in the IPL. Cultures supplemented with BDNF displayed numerous well-immunostained somata at the INL/IPL border that gave rise to elaborate dendritic arborizations that approximated the morphology of mature AII amacrine cells in vivo. These observations indicate that neurotrophins have specific effects upon the neurochemical and, perhaps, morphological differentiation of an important interneuron in a specific functional retinal circuit.  相似文献   

10.
11.
To investigate the role of brain-derived neurotrophic factor (BDNF) in differentiation of cranial sensory neurons in vivo, we analyzed development of nodose (NG), petrosal (PG), and vestibular (VG) ganglion cells in genetically engineered mice carrying null mutations in the genes encoding BDNF and the proapoptotic Bcl-2 homolog Bax. In bax(-/-) mutants, ganglion cell numbers were increased significantly compared to wild-type animals, indicating that naturally occurring cell death in these ganglia is regulated by Bax signaling. Analysis of bdnf(-/-)bax(-/-) mutants revealed that, although the Bax null mutation completely rescued cell loss in the absence of BDNF, it did not rescue the lethality of the BDNF null phenotype. Moreover, despite rescue of BDNF-dependent neurons by the bax null mutation, sensory target innervation was abnormal in double null mutants. Vagal sensory innervation to baroreceptor regions of the cardiac outflow tract was completely absent, and the density of vestibular sensory innervation to the cristae organs was markedly decreased, compared to wild-type controls. Moreover, vestibular afferents failed to selectively innervate their hair cell targets within the cristae organs in the double mutants. These innervation failures occurred despite successful navigation of sensory fibers to the peripheral field, demonstrating that BDNF is required locally for afferent ingrowth into target tissues. In addition, the bax null mutation failed to rescue expression of the dopaminergic phenotype in a subset of NG and PG neurons. These data demonstrate that BDNF signaling is required not only to support survival of cranial sensory neurons, but also to regulate local growth of afferent fibers into target tissues and, in some cells, transmitter phenotypic expression is required.  相似文献   

12.
The extracellular factors that are responsible for inducing myelination in the central nervous system (CNS) remain elusive. We investigated whether brain-derived neurotrophic factor (BDNF) is implicated, by first confirming that BDNF heterozygous mice exhibit delayed CNS myelination during early postnatal development. We next established that the influence of BDNF upon myelination was direct, by acting on oligodendrocytes, using co-cultures of dorsal root ganglia neurons and oligodendrocyte precursor cells. Importantly, we found that BDNF retains its capacity to enhance myelination of neurons or by oligodendrocytes derived from p75NTR knockout mice, indicating the expression of p75NTR is not necessary for BDNF-induced myelination. Conversely, we observed that phosphorylation of TrkB correlated with myelination, and that inhibiting TrkB signalling also inhibited the promyelinating effect of BDNF, suggesting that BDNF enhances CNS myelination via activating oligodendroglial TrkB-FL receptors. Together, our data reveal a previously unknown role for BDNF in potentiating the normal development of CNS myelination, via signalling within oligodendrocytes.  相似文献   

13.
Endoglin (ENG) is essential for cardiovascular development and is expressed in the heart from its earliest developmental stages. ENG expression has been reported in the cardiac crescent, endocardium, valve mesenchyme and coronary vascular endothelial cells. However, its expression in these cell types is non-uniform and the dynamic changes in ENG expression during heart development have not been systematically studied.Using immunofluorescent staining we tracked ENG protein expression in mouse embryonic hearts aged from 11.5 to 17.5 days, and in postnatal and adult hearts. ENG is expressed in the endocardium and in venous endothelial cells throughout these developmental stages. ENG protein is down-regulated by approximately two-fold as a subset of early coronary veins reprogram to form arteries within the developing myocardium from E13.5. This two-fold higher ratio of ENG protein in veins versus arteries is maintained throughout cardiac development and in the adult heart.ENG is also down-regulated two-fold following mesenchymal transition of endocardial cells to form cardiac valve mesenchyme, whilst expression of the pan-endothelial marker CD31 is completely lost. A subset of epicardial cells (which do not express ENG protein) delaminate and undergo a similar mesenchymal transition to form epicardially derived cells (EPDCs). This transient intra-myocardial mesenchymal cell population expresses low levels of ENG protein, similar to valve mesenchyme.In conclusion, ENG shows dynamic changes of expression in vascular endothelial cells, endocardial cells and mesenchymal cells in the developing heart that vary according to cardiovascular cell type.  相似文献   

14.
Epidermal growth factor (EGF)-responsive stem cells from both developing and adult central nervous system (CNS) can be expanded and induced to differentiate into neurons and glia in vitro. Because of their self-renewal and multipotent properties, these cells can potentially provide an unlimited tissue source for neural grafting in neurodegenerative disorders. However, the capability of neurons derived from these stem cells to project axons to distant targets following grafting, thereby enabling the restoration of damaged CNS circuitry, remains unknown. We hypothesize that grafted EGF-responsive stem cells and their progeny are not competent to project axons into distant target sites unless exposed to specific neurotrophic factors. We compared neurite outgrowth between gestation day 14 primary mouse hippocampal cells and EGF-generated secondary neurospheres of postnatal mouse hippocampal stem cells, following grafting onto the CA3 region of organotypic hippocampal slice cultures prepared from postnatal rats. Neurite outgrowth from grafted cells was visualized using immunohistochemical staining for the mouse specific antigen M6. Fetal hippocampal cells showed extensive and specific neurite outgrowth into many regions of the slice, including the CA1 region and distant subiculum, by 7 days after grafting. In contrast, neurite outgrowth from neurosphere cells was nonspecific and restricted to the immediate surrounding region after either 7 or even 15 days following grafting. Application of brain-derived neurotrophic factor (BDNF) (5 ng in 0.5 microL) to slices on day 1 after grafting significantly enhanced neurite outgrowth from neurosphere cells, but overall neurite outgrowth from neurosphere cells remained decreased compared to that from fetal hippocampal cells. These results underscore that EGF-responsive stem cell-derived neurons possess limited intrinsic capability for long-distance neurite outgrowth compared to fetal neurons. However, neurite outgrowth from EGF-responsive stem cell-derived neurons can be enhanced by treating with specific neurotrophic factors such as BDNF.  相似文献   

15.
Brain-derived neurotrophic factor (BDNF) is a protein that allows the survival of specific neuronal populations. This study reports on the distribution of the BDNF mRNA in the adult mouse brain, where the BDNF gene is strongly expressed, using quantitative Northern blot analysis and in situ hybridization. All brain regions examined were found to contain substantial amounts of BDNF mRNA, the highest levels being found in the hippocampus followed by the cerebral cortex. In the hippocampus, which is also the site of highest nerve growth factor (NGF) gene expression in the central nervous system (CNS), there is approximately 50-fold more BDNF mRNA than NGF mRNA. In other brain regions, such as the granule cell layer of the cerebellum, the differences between the levels of BDNF and NGF mRNAs are even more pronounced. The BDNF mRNA was localized by in situ hybridization in hippocampal neurons (pyramidal and granule cells). These data suggest that BDNF may play an important role in the CNS for a wide variety of adult neurons.  相似文献   

16.
The neurotrophins are growth factors that are involved in the development and survival of neurons. Neurotrophin release by a target tissue results in neuron growth along the neurotrophin concentration gradient, culminating in the eventual innervation of the target tissue. These activities are mediated through trk cell surface receptors. We have determined the structures of the heterodimer formed between brain-derived neurotrophic factor (BDNF) and neurotrophin 4 (NT4), as well as the structure of homodimer of NT4. We also present the structure of the Neurotrophin 3 homodimer, which is refined to higher resolution than previously published. These structures provide the first views of the architecture of the NT4 protomer. Comparison of the surface of a model of the BDNF homodimer with the structures of the neurotrophin homodimers reveals common features that may be important in the binding between the neurotrophins and their receptors. In particular, there exists an analogous region on the surface of each neurotrophin that is likely to be involved in trk receptor binding. Variations in sequence on the periphery of this common region serve to confer trk receptor specificity.  相似文献   

17.
18.
Several reports have established that the action of neurotrophins is not restricted to the nervous system but can affect a broad range of non-neuronal cells. Nerve growth factor (NGF) is present in adult testis and has been suggested as a potential regulator of meiosis in rat seminiferous epithelium. Here we present an extensive immunohistochemical study on neurotrophins and their receptors (p75 and trk) in the developing mouse testis and epididymis, and in fetal human testis. During the early steps of testicular and epididymal organization in the mouse, strong p75 immunoreactivity is detectable in the gonadal ridge in the mesenchyme that is excluded from the evolving testicular cords, and in the mesenchymal cells of the mesonephros. Later in organogenesis, most of the p75-positive interstitial cells of the testis coexpress neurotrophin-3 (NT-3) and the truncated trk B receptor in a developmentally regulated pattern. Our Western blot data confirm the expression of these molecules. These findings suggest that neurotrophin receptors play a role in early inductive events during critical periods of testicular and epididymal development. During fetal and postnatal histogenesis, an increasing number of NT-3- and p75-positive mesenchymal cells start to express alpha-smooth muscle isoactin, suggesting a role for the so-called neurotrophic system in the differentiation of testicular myoid cells and epididymal smooth muscle cells. In the testis of an 18-wk gestational-age human fetus, immunohistochemical analysis has shown intense immunoreactivity of mesenchymal cells to antibodies for neurotrophin receptors p75, trk A, and trk C, and their ligands NGF and NT-3. In addition, we found that in the human fetal testis, the interstitial cells that are differentiating into peritubular myoid cells are associated with a dense network of nerve fibers. Our data suggest that neurotrophins and their receptors are involved in a multifunctional system that regulates cell differentiation and innervation in the developing testis and epididymis.  相似文献   

19.
20.
Growth factor synergism and antagonism in early neural crest development.   总被引:8,自引:0,他引:8  
This review article focuses on data that reveal the importance of synergistic and antagonistic effects in growth factor action during the early phases of neural crest development. Growth factors act in concert in different cell lineages and in several aspects of neural crest cell development, including survival, proliferation, and differentiation. Stem cell factor (SCF) is a survival factor for the neural crest stem cell. Its action is neutralized by neurotrophins, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) through apoptotic cell death. In contrast, SCF alone does not support the survival of melanogenic cells (pigment cell precursors). They require the additional presence of a neurotrophin (NGF, BDNF, or NT-3). Fibroblast growth factor-2 (FGF-2) is an important promoter of proliferation in neuronal progenitor cells. In neural crest cells, fibroblast growth factor treatment alone does not lead to cell expansion but also requires the presence of a neurotrophin. The proliferative stimulus of the fibroblast growth factor - neurotrophin combination is antagonized by transforming growth factor beta-1 (TGFbeta-1). Moreover, TGFbeta-1 promotes the concomitant expression of neuronal markers from two cell lineages, sympathetic neurons and primary sensory neurons, indicating that it acts on a pluripotent neuronal progenitor cell. Moreover, the combination of FGF-2 and NT3, but not other neurotrophins, promotes expression or activation of one of the earliest markers expressed by presumptive sympathetic neuroblasts, the norepinephrine transporter. Taken together, these data emphasize the importance of the concerted action of growth factors in neural crest development at different levels and in several cell lineages. The underlying mechanisms involve growth-factor-induced dependence of the cells on other factors and susceptibility to growth-factor-mediated apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号