首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prenatal influence of ethanol doesn't induce the changes of 3H-NA secretion intensity from rat cerebral cortex slices, but induces an increase of coefficient of variation of 3H-NA secretion intensity. The self-facilitation and stabilization of secretion are described during study of 3H-NA secretion intensity in the series of successive depolarization of control animals slices. Prenatal influence of ethanol induces self-facilitation but destabilize 3H-NA secretion. The results show that prenatal influence of ethanol breaks of autoreceptors function which are a cause of 3H-NA secretion destabilization. The break of the higher nervous activity is followed by the break of regulation mechanisms of adrenergic transmission effectiveness which is induced by prenatal influence of ethanol.  相似文献   

2.
Summary The adrenergic innervation and the in vitro uptake of 3H-noradrenaline has been investigated in human atrial tissue slices from patients undergoing thoracic surgery. The atrial appendage was richly innervated, but the density of the adrenergic nerve plexus varied considerably between different tissues examined. The nerve terminals were of characteristic varicose appearance, running singly or in bundles along the long axis of the muscle fibers. The nerve fibers seemed to penetrate in between the muscle cells. The distribution and appearance of the adrenergic nerves were quite similar to those described in earlier investigations of heart tissue from other species. The uptake and accumulation of 3H-noradrenaline in vitro increased with increasing concentration in the medium and with time, and the uptake process could efficiently be blocked by desmethylimipramine (DMI), a potent inhibitor of the uptake mechanism located at the axonal membrane, the so called membrane pump. There was a true accumulation of 3H-noradrenaline in the atrial tissue during the incubation, compared to the medium. The metabolism of 3H-noradrenaline during the incubation has also been studied. The data presented speak in favour of the view that the adrenergic nerves of human atria possess an efficient uptake accumulation mechanism for noradrenaline.Abbreviations used DMI desmethylimipramine - NA noradrenaline - NM normetanephrine  相似文献   

3.
The inhibition of 3H-noradrenaline (3H-NA) release by adenosine, and the possible involvement of purine receptors in the regulation of transmitter release in the portal vein were studied. The inhibitory effect of different concentrations of adenosine (10, 30, 100 and 300 microM) decreased with frequency of stimulation, but there was no marked concentration-dependence. Tetraethylammonium (TEA) enhanced the 3H-NA overflow induced by transmural stimulation. The adenosine-induced inhibition of 3H-NA overflow was antagonized by TEA. Transmural stimulation induced release of tritium from tissues prelabelled with either 3H-NA or 3H-adenine had a similar pattern of distribution. In contrast, when the rat portal vein was stimulated with (-) NA, the overflow of purine derivates was delayed and the maximum release was achieved 5 min later than the maximum induced by transmural stimulation. Phenoxybenzamine (PBA) increased 3H-NA overflow two-fold, but had no effect on the 3H-purine release induced by transmural stimulation. PBA reduced the 3H-purine release by exogenous (-) NA. These results indicate that in rat portal vein, the purine compounds have pre- and postjunctional origins and that the purine that modulates adrenergic neurotransmission might be of neuronal origin, possibly independent of adrenergic innervation.  相似文献   

4.
Summary We examined the effect of adrenergic agents on the cellular electrical properties of primary cultures of canine tracheal epithelium. Both isoproterenol and epinephrine stimulated Cl secretion, as evidenced by an increase in transepithelial voltage and a fall in transepithelial resistance. Moreover, both agents appear to increase the conductance of apical and basolateral membranes. However, the pattern of response was different. Isoproterenol initially depolarized apical voltage a and decreased the fractional resistance of the apical membranef R. These changes are consistent with an initial increase in apical Cl conductance. In contrast, epinephrine acutely hyperpolarized a and increasedf R, changes consistent with an initial increase in basolateral K conductance. Following the acute effect of epinephrine, a depolarized andf R decreased to values not significantly different from those observed with isoproterenol. The acute increase in basolateral K conductance produced by epinephrine appeared to result from stimulation of adrenergic receptors because it was reproduced by addition of the agonist phenylephrine, and blocked by the antagonist phentolamine. The ability of prazosin but not yohimbine to block the acute epinephrine-induced increase in K permeability indicates the presence of 1 adrenergic receptors. The acute adrenergic-induced increase in basolateral K conductance may be mediated by an increase in cell Ca because the response was mimicked by addition of the Ca ionophore A23187. In contrast, the response to isoproterenol was similar to that observed with addition of 8-bromo-cAMP and theophylline. These results indicate that both and adrenergic agents mediate the ion transport processes in canine tracheal epithelium. adrenergic agents have their primary effect on the apical Cl conductance, probably via an increase in cAMP. adrenergic agents exert their primary effect on the basolateral K conductance, possibly via an increase in cell Ca.  相似文献   

5.
《Life sciences》1995,57(20):PL327-PL332
Facilitatory effects of prenalterol and albuterol (β1- and β2-selective adrenergic agonists, respectively) in the absence and presence of propranolol (a nonselective β-adrenergic antagonist), ICI 89,406 or ICI 118,551 (β1- and β2-selective adrenergic antagonists, respectively) on electrical stimulation-evoked release of 3H-NE from rat cerebral cortical slices were assessed. Albuterol (0.1 –100 nM) increased evoked release of 3H-NE from the cerebral cortical slices with greater potency than prenalterol (1 – 100 nM). The β2-adrenergic antagonist ICI 118,551 (1 nM) and propranolol (50 nM) abolished the facilitatory effects of albuterol (0.1 and 10 nM). In contrast, the βl-adrenergic antagonist ICI 89,406 (1 nM) did not alter the release-enhancing effect of albuterol. Prenalterol (10 and 100 nM)-induced facilitation of evoked release of 3H-NE was abolished by ICI 118,551; propranolol reduced the effect of 10 nM prenalterol and abolished that of 100 nM prenalterol. ICI 89,406 inhibited the effect of 100 nM prenalterol without altering that of 10 nM prenalterol. Basal release of 3H-NE was not altered by the drugs used in this study. These results suggest that facilitation of 3H-NE release induced by β-adrenergic agonists is mediated primarily by β2-adrenergic receptors.  相似文献   

6.
Summary The localization of catecholamines has been investigated in the extrahepatic biliary duct system of cats, guinea-pigs and rhesus monkeys. In fluorimetric determinations noradrenaline was found to be the main primary catecholamine present in the biliary tract of rhesus monkeys. There exist regional differences in the noradrenaline content: Fairly low amounts were detected in the lower fundus of the gall-bladder (0.28 g/g). Increasing concentrations were measured in the corpus vesicae felleae (0.35 g/g), reaching a maximum level in the collum vesicae (0.49 g/g) and the ductus cysticus (0.50 g/g). The noradrenaline content of the choledochus and the choledocho-duodenal junction including Oddi's sphincter was much lower: 0,27 and 0,25 g/g respectively. The noradrenaline level in the small intestine of the rhesus monkey amounted to less than half the concentration found in the biliary ducts. Neither dopamine nor adrenaline have been detected. Fluorescence microscopical analysis reveals the presence of adrenergic nerves in the bile ducts which correspond to the measured noradrenaline concentrations: All parts of the biliary duct system in the different species investigated contain an elaborate perivascular adventitial plexus and adrenergic fibres confined to adventitial non-adrenergic ganglia. In guinea-pigs adrenergically innervated ganglia extend into the smooth muscle layer. The smooth muscle layer of the gall-bladder and the terminal choledochus in cats and rhesus monkeys is penetrated by a wide-meshed adrenergic ground plexus. This plexus was absent in guinea-pigs. The smooth musculature of the sphincter Oddi lacks a specialized adrenergic nerve supply in all species investigated. Finally, bound to the arterial vascular bed inside the propria in all parts of the biliary tract from all species investigated a prominent perivascular plexus is present. It is concluded that the smooth musculature of the gall-bladder and the terminal choledochus (the sphincter region excluded) in cats and monkeys receives 1. a direct sympathetic noradrenergic inhibitory innervation and 2. an indirect sympathetic noradrenergic inhibitory innervation which acts on intrinsic excitatory neurons and is present in all species investigated. The functional significance of the direct and indirect inhibitory innervation to the smooth musculature of the gall-bladder is discussed in detail.Dedicated to Professor Bengt Falck.Supported by the Deutsche Forschungsgemeinschaft and Joachim-Jungius-Gesellschaft zur Förderung der Wissenschaften, Hamburg.  相似文献   

7.
We have investigated the mechanisms underlying the facilitatory modulation mediated by kainate receptor (KAR) activation in the cortex, using isolated nerve terminals (synaptosomes) and slice preparations. In cortical nerve terminals, kainate (KA, 100 μM) produced an increase in 4‐aminopyridine (4‐AP)‐evoked glutamate release. In thalamocortical slices, KA (1 μM) produced an increase in the amplitude of evoked excitatory post‐synaptic currents (eEPSCs) at synapses established between thalamic axon terminals from the ventrobasal nucleus onto stellate neurons of L4 of the somatosensory cortex. In both, synaptosomes and slices, the effect of KA was antagonized by 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione, and persisted after pre‐treatment with a cocktail of antagonists of other receptors whose activation could potentially have produced facilitation of release indirectly. Mechanistically, the observed effects of KA appear to be congruent in synaptosomal and slice preparations. Thus, the facilitation by KA of synaptosomal glutamate release and thalamocortical synaptic transmission were suppressed by the inhibition of protein kinase A and occluded by the stimulation of adenylyl cyclase. Dissecting this G‐protein‐independent regulation further in thalamocortical slices, the KAR‐mediated facilitation of synaptic transmission was found to be sensitive to the block of Ca2+ permeant KARs by philanthotoxin. Intriguingly, the synaptic facilitation was abrogated by depletion of intracellular Ca2+ stores by thapsigargin, or inhibition of Ca2+‐induced Ca2+‐release by ryanodine. Thus, the KA‐mediated modulation was contingent on both Ca2+ entry through Ca2+‐permeable KARs and liberation of intracellular Ca2+ stores. Finally, sensitivity to W‐7 indicated that the increased cytosolic [Ca2+] underpinning KAR‐mediated regulation of synaptic transmission at thalamocortical synapses, requires downstream activation of calmodulin. We conclude that neocortical pre‐synaptic KARs mediate the facilitation of glutamate release and synaptic transmission by a Ca2+‐calmodulin dependent activation of an adenylyl cyclase/cAMP/protein kinase A signalling cascade, independent of G‐protein involvement.

  相似文献   


8.
Summary Small pieces of fetal rat brain selected to contain a high number of noradrenaline (NA), dopamine (DA), or 5-hydroxytryptamine (5-HT) neuroblasts were transplanted to the anterior chamber of the eye of adult rats. The sympathetic ground plexus of the host iris was removed by superior cervical ganglionectomy so that transmitter mechanisms of the different central monoamine fibers innervating the iris could be selectively studied after intraocular maturation. Such irides, containing NA, DA, or 5-HT nerve terminals were incubated with radiolabelled transmitters and then stimulated by an electrical field while superfused, to investigate the spontaneous and stimulation-induced release of amine, both in drug-free buffer and buffer containing drugs acting on monoamine receptors.The central monoamine neurons of all three types were able to take up exogenous amines and release them upon stimulation by an electrical field, in much the same way as corresponding nerves in situ in slices of cerebral cortex (NA, 5-HT) or olfactory tubercle (DA).The -adrenergic receptor blocking agent phentolamine increased the stimulation-induced release of 3H-NA from central NA fibers on the iris significantly. The dopamine receptor stimulating agent apomorphine decreased the stimulation-induced release of 3H-DA from central DA fibers on the iris. Pimozide, a DA receptor blocking drug tended to increase the 3H-DA release. The 5-HT receptor stimulating agent ergocornine tended to reduce the stimulation-induced release of 3H-5-HT from central 5-HT fibers on the iris. It was concluded that all three types of central monoamine nerve fibers develop essentially normal transmitter storage and release mechanisms also in an environment completely devoid of normal postsynaptic receptors. The drug experiments add strong support to the view that there are presynaptic monoamine receptors (autoreceptors) able to modulate transmitter release present on the monoamine nerve terminals.Supported by the Swedish Medical Research Council (04X-3185 and 04X-2330) and by grants from Magnus Bergvalls Stiftelse and Karolinska Institutets Fonder, we thank Miss Ingrid Strömberg and Miss Ulla Enberg for skilful technical assistance.  相似文献   

9.
In this study 3H-noradrenaline (NA) release from rat neocortex slices evoked by electrical field-stimulation (1 Hz, 12 mA, 2 msec) was compared with that induced by K+-depolarization (13–30 mM K+) under similar experimental conditions, with a particular emphasis on the role of external Ca2+ and the releasable transmitter pool(s). Not only 3H-NA release evoked by electrical stimulation but also that induced by 13 mM K+ was almost completely blocked by 0.3 μM tetrodotoxin (TTX). Release induced by 20 mM K+ appeared to be less sensitive to TTX. Thus, under relatively mild stimulation conditions, the activation of sodium channels appears to be involved in 3H-NA release elicited by both stimuli.The electrically evoked 3H-NA release increased sigmoidally with the external Ca2+-concentration up to 1.2 mM. In contrast, 3H-NA release induced by 13–20 mM K+ reached a maximal value at 0.6–0.9 mM Ca2+ and gradually decreased at higher Ca2+-concentrations. The Ca2+-antagonist D-600 (1–30 μM) did not inhibit electrically evoked release, while K+-induced 3H-NA release was dose-dependently reduced. Upon repetitive K+-depolarization a strong depression of 3H-NA release could be demonstrated, while this phenomenon did not occur with repeated electrical stimulation. Moreover, a previous K+-induced (partial) depletion of 3H-NA stores did not affect the release evoked by electrical pulses and vice versa. Taken together these data are compatible with a much stronger activation of Ca2+-channels and a larger vesicle mobilizing capacity in case of electrical stimulation at physiological frequencies compared to sustained depolarization with moderate K+-concentrations.  相似文献   

10.
Abstract: The existence in the mammalian CNS of release-inhibiting muscarinic autoreceptors is well established. In contrast, few reports have focused on nicotinic autoreceptors mediating enhancement of acetylcholine (ACh) release. Moreover, it is unclear under what conditions the function of one type of autoreceptor prevails over that of the other. Rat cerebrocortex slices, prelabeled with [3H]choline, were stimulated electrically at 3 or 0.1 Hz. The release of [3H]ACh evoked at both frequencies was inhibited by oxotremorine, a muscarinic receptor agonist, and stimulated by atropine, a muscarinic antagonist. Nicotine, ineffective at 3 Hz, enhanced [3H]ACh release at 0.1 Hz; mecamylamine, a nicotinic antagonist, had no effect at 3 Hz but inhibited [3H]ACh release at 0.1 Hz. The cholinesterase inhibitor neostigmine decreased [3H]ACh release at 3 Hz but not at 0.1 Hz; in the presence of atropine, neostigmine potentiated [3H]ACh release, an effect blocked by mecamylamine. In synaptosomes depolarized with 15 mM KCI, ACh inhibited [3H]ACh release; this inhibition was reversed to an enhancement when the external [Ca2+] was lowered. The same occurred when, at 1.2 mM Ca2+, external [K+] was decreased. Oxotremorine still inhibited [3H]ACh release at 0.1 mM Ca2+. When muscarinic receptors were inactivated with atropine, the K+ (15 mM)-evoked release of [3H]ACh (at 0.1 mM Ca2+) was potently enhanced by ACh acting at nicotinic receptors (EC50? 0.6 µM). In conclusion, synaptic ACh concentration does not seem to determine whether muscarinic or nicotinic autoreceptors are activated. Although muscarinic autoreceptors prevail under normal conditions, nicotinic autoreceptors appear to become responsive to endogenous ACh and to exogenous nicotinic agents under conditions mimicking impairment of ACh release. Our data may explain in part the reported efficacy of cholinesterase inhibitors (and nicotinic agonists) in Alzheimer's disease.  相似文献   

11.
The modulatory effects of noradrenergic agonists on the 25 mM K+-induced release of [3H]dopamine (3H-DA) from rat brain nucleus accumbens slices was investigated, using a superfusion technique. The K+-induced release of3H-DA was Ca2+ dependent, significantly enhanced (25–32%;p<0.02) by the -adrenoceptor agonist isoproterenol (10 M), and significantly decreased (13–25%;p<0.05) by the 2-adrenoceptor agonist clonidine (10 M). At these concentrations neither drug affected basal release of3H-DA. Clonidine (100 M) increased the basal release of3H-DA, while decreasing the K+-induced release by 19% (p<0.01). The inclusion of desipramine in the incubation medium, to prevent accumulation of3H-DA into noradrenergic neurons, did not alter the inhibitory effect of clonidine (10 M) on3H-DA release. This study provides direct evidence that noradrenergic neurons can modulate dopaminergic neurotransmission in the mesolimbic system.  相似文献   

12.
A rapid procedure is described for the separation of CMP-sialic acid:lactosylceramide sialyltransferase reaction components using Sep Pak C18 cartridges. The quantitative separation of the more polar nucleotide sugar, CMP-sialic acid, and its free acid from the less polar GM3-ganglioside is simple and rapid relative to previously described methods. Recovery of GM3 is optimized by the addition of phosphatidylcholine to the reaction mixture prior to the chromatographic step. Using rat liver Golgi membranes as a source of CMP-sialic acid: lactosylceramide sialyltransferase activity (GM3 synthase; ST-1), the transfer of [14C] sialic acid from CMP-[14C] sialic acid to lactosylceramide can be quantified by this assay. The procedure is reliable and may be applicable to the isolation of ganglioside products in otherin vitro glycosyltransferase assays.Abbreviations GM3 GM3-ganglioside - II3NeuAc-LacCer NeuAc2-3Gal1-4Glc1-1Cer - GD1a GD1a-ganglioside, IV3NeuAc, II3NeuAc-GgOse4Cer, NeuAc2-3Gal1-3GalNac1-4(NeuAc2-3)Gal1-4Glc1-1Cer - GD3 GD3-ganglioside, II3(NeuAc)2LacCer, NeuAc2-8NeuAc2-3Gal1-4Glc1-1Cer - GgOse4Cer asialo-GM1 Gal1-3GalNAc1-4Gal1-4Glc1-1Cer - FucGMI fucosyl-GMI-ganglioside, Fuc1-2Gal1-3GalNAc1-4Gal1-4 Glc1-1Cer - ST-1 GM3 synthase, CMP-sialic acid:lactosylceramide sialyltransferase - LacCer lactosylceramide, Gal1-4Glc1-1Cer - CMP-NeuAc cytidine 5-monophospho-N-acetylneuraminic acid - PC phosphatidylcholine - PMSF phenylmethylsulfonyl fluoride  相似文献   

13.
Autoinhibition of neurotransmitter release occurs via binding of transmitter to appropriate receptors. Experiments have provided evidence suggesting that the control of neurotransmitter release in fast systems is mediated by these inhibitory autoreceptors. Earlier, the authors formulated and analysed a mathematical model for a theory of release control in which these autoreceptors played a key role. The key experimental findings on which the release-control theory is based are: (i) the inhibitory autoreceptor has high affinity for transmitter under rest potential and shifts to low affinity upon depolarization; (ii) the bound (with transmitter) autoreceptor associates with exocytotic machinery Ex and thereby blocks it, preventing release of neurotransmitter. Release commences when depolarization shifts the autoreceptor to a low-affinity state and thereby frees Ex from its association with the autoreceptors. Here we extend the model that describes control of release so that it also accounts for release autoinhibition. We propose that inhibition is achieved because addition of transmitter, above its rest level, causes transition of the complex of autoreceptor and Ex to a state of stronger association. Relief of Ex from this state requires higher depolarization than from the weakly associated complex. In contrast to the weakly associated complex that only requires binding of transmitter to the autoreceptor to be formed, the transition to the strongly associated complex is induced by a second messenger, which is produced as a result of the receptor binding to transmitter. The theory explains the following experimental results (among others): for inhibition via transmitter or its agonists, the magnitude of inhibition decreases with depolarization; a plot of inhibition as a function of the concentration of muscarine (an acetylcholine agonist) yields an S-shaped curve that shifts to the right for higher depolarizations; the time course of release does not change when transmitter is added; the time course of release also does not change when transmitter antagonists are added, although quantal content increases; however, addition of acetylcholine esterase (an enzyme that hydrolyses acetylcholine) prolongs release.  相似文献   

14.
Actions of angiotensin on adrenergic nerve endings.   总被引:10,自引:0,他引:10  
In the perfused vascular bed, vasoconstrictor responses to adrenergic nerve stimulation are augmented to a greater degree by angiotensin II than are the responses to injected norepinephrine. Overflow of adrenergic transmitter is also greater during nerve stimulation in the presence of angiotensin than in its absence. The evidence indicates that facilitation of adrenergic transmitter release rather than uptake blockade accounts for these results. In addition, an increased responsiveness of isolated arterial strips to norepinephrine as well as other agonists appears to contribute to the adrenergic potentiating effect of angiotensin II as well as angiotensin III. This action, which appears to be a cell membrane effect, seems to participate in adrenergic potentiation mainly in the arterial segment of the intact vascular bed. Both of these effects of angiotensin, i.e., facilitation of release and increased smooth muscle responsiveness, appear to be mediated by angiotensin receptors.  相似文献   

15.
The results presented in this paper indicate that: 1. The prostaglandin synthesis inhibitor, indomethacin, increases noradrenaline turnover in a variety of rat organs. This observation increases the probability that prostaglandins are involved in the control of adrenergic neurotransmission in vivo. 2. Administration of endoperoxides inhibits the release of noradrenaline from adrenergic nerve terminals. The effect can be explained, however, at least in part, by formation of degradation products, presumably mainly prostaglandin E2. 3. Prostaglandin F2 alpha enhances smooth muscle responses to adrenergic nerve stimulation in rabbit heart and guinea pig vas deferens. These actions must be considered prostjunctional, since the release of noradrenaline is unchanged or depressed.  相似文献   

16.
Oxotremorine-induced inhibition of electrically evoked release of 3H-acetylcholine from brain slices preincubated with 3H-choline was used to characterize muscarinic autoreceptors in rabbit hippocampus and caudate nucleus. From the shifts to the right of the concentration-response curves of oxotremorine in the presence of muscarinic receptor antagonists, the following pKB values [95% C.I.] were determined in the hippocampus: tripinamide: 8.7 [8.5, 8.8]; himbacine: 8.4 [8.3, 8.5]; AQ-RA 741: 8.3 [8.2, 8.5]; 4-DAMP: 8.2 [8.0, 8.3]; hexahydrosiladifenidol: 7.4 [7.2, 7.5]; AF-DX 116: 7.3 [7.1, 7.4]; pirenzepine: 6.8 [6.6, 7.0]; and PD102807: 6.3 [6.0, 6.5]. In the caudate nucleus: tripinamide: 9.1 [8.9, 9.2]; 4-DAMP: 8.3 [8.2, 8.5]; himbacine: 8.1 [8.0, 8.2]; AQ-RA 741: 8.1 [8.0, 8.3]; hexahydrosiladifenidol: 7.3 [7.2, 7.4]; AF-DX 116: 7.1 [7.0, 7.2]; pirenzepine: 6.7 [6.6, 6.8]; and PD102807: 6.5 [6.2, 6.8]. These pKB values fit best to literature values for M2 receptors, suggesting that the muscarinic autoreceptor of the rabbit hippocampus and caudate nucleus is the m2 gene product.  相似文献   

17.

Rationale

Previous in vitro research demonstrated that ascorbate enhances potency and duration of activity of agonists binding to alpha 1 adrenergic and histamine receptors.

Objectives

Extending this work to beta 2 adrenergic systems in vitro and in vivo.

Methods

Ultraviolet spectroscopy was used to study ascorbate binding to adrenergic receptor preparations and peptides. Force transduction studies on acetylcholine-contracted trachealis preparations from pigs and guinea pigs measured the effect of ascorbate on relaxation due to submaximal doses of beta adrenergic agonists. The effect of inhaled albuterol with and without ascorbate was tested on horses with heaves and sheep with carbachol-induced bronchoconstriction.

Measurements

Binding constants for ascorbate binding to beta adrenergic receptor were derived from concentration-dependent spectral shifts. Dose- dependence curves were obtained for the relaxation of pre-contracted trachealis preparations due to beta agonists in the presence and absence of varied ascorbate. Tachyphylaxis and fade were also measured. Dose response curves were determined for the effect of albuterol plus-and-minus ascorbate on airway resistance in horses and sheep.

Main Results

Ascorbate binds to the beta 2 adrenergic receptor at physiological concentrations. The receptor recycles dehydroascorbate. Physiological and supra-physiological concentrations of ascorbate enhance submaximal epinephrine and isoproterenol relaxation of trachealis, producing a 3–10-fold increase in sensitivity, preventing tachyphylaxis, and reversing fade. In vivo, ascorbate improves albuterol''s effect on heaves and produces a 10-fold enhancement of albuterol activity in “asthmatic” sheep.

Conclusions

Ascorbate enhances beta-adrenergic activity via a novel receptor-mediated mechanism; increases potency and duration of beta adrenergic agonists effective in asthma and COPD; prevents tachyphylaxis; and reverses fade. These novel effects are probably caused by a novel mechanism involving phosphorylation of aminergic receptors and have clinical and drug-development applications.  相似文献   

18.
Mouse isolated vas deferens preincubated with [3-H]noradrenaline was superfused and the effect of 1-adrenoceptor agonists was studied on the release of total radioactivity ([3H]noradrenaline +3H-metabolites) and [3H]noradrenaline. Reverse phase high pressure liquid chromatography (HPLC) combined with scintillation spectrometry was used to separate [3H]noradrenaline from its metabolites. Among the 1-adrenoceptor agonists (1-phenylephrine, ST-587(2-(2-chloro-5-trifluoromethyl phenylimino)-imidazole), (–)-amidephrine, methoxamine, cirazoline and l-noradrenaline) studied l-phenylephrine, ST-587 and l-noradrenaline were capable of releasing3H-noradrenaline. The effect of noradrenaline was stereospecific. As determined by HPLC combined with scintillation spectrometry the release of total radioactivity in response to l-noradrenaline is mainly due to [3H]noradrenaline. It is suggested that l-noradrenaline, l-phenylephrine, and ST-587 in addition to their direct effect on different receptors they also have indirect action through the release of noradrenaline which might be partly involved in the pharmacological responses. The mechanisms whereby l-noradrenaline and l-phenylephrine release noradrenaline would appear to involve a saturable Ca-independent and a cocaine and temperature sensitive process. On the basis of our findings among the 1-adrenoceptor agonist studied (–)-amidephrine, methoxamine and cirazoline is a better choice than l-phenylephrine or ST-587 for selective stimulation of postjunctional 1-adrenoceptor, they do not release noradrenaline.  相似文献   

19.
20.
Summary The development of the intraovarian adrenergic nervous system was investigated in the guinea-pig by use of chemical determination of catecholamines with high performance liquid chromatography (HPLC) and with the formaldehyde-induced fluorescence method for visualization of adrenergic nerves (Falck-Hillarp technique). Ovaries from fetuses (39–40, 45–50, 55–57, 60–63 days of gestation) and young animals (1, 2, 3, 7, 14, 30, 40–45 days of age) were included in the study. The noradrenaline concentration was low in the ovaries from the youngest fetuses but increased with age, reaching a maximum level at 2 days post partum. A marked decrease in noradrenaline concentration from the second to the third day of life was found as a consequence of the rapid increase in the ovarian weight during this time. A similar decrease in ovarian noradrenaline concentration after a period of rapid ovarian growth was noted at 30 days of age. Measurable amounts of adrenaline were found in the ovary only in the fetal stages; the highest concentration (0.73 g) was detected at 55–57 days of gestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号