首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
2.
The term “molecular karyotyping” refers to the genome-wide analysis of copy number variations using arrays that cover the genome with genomic markers with varying density. Currently the main application is the investigation of patients with otherwise unexplained mental retardation and multiple congenital anomalies. Studies of such patients who remained without etiological diagnosis after conventional karyotyping, subtelomeric screening, and targeted molecular–cytogenetic studies for well-known microdeletion syndromes revealed chromosomal microaberrations in about 10% of cases and allowed the delineation of several new microdeletion and microduplication syndromes. Nevertheless, because of the large number of copy number polymorphisms, interpretation of unique findings needs thorough consideration.  相似文献   

3.
The cause of mental retardation in one-third to one-half of all affected individuals is unknown. Microscopically detectable chromosomal abnormalities are the most frequently recognized cause, but gain or loss of chromosomal segments that are too small to be seen by conventional cytogenetic analysis has been found to be another important cause. Array-based methods offer a practical means of performing a high-resolution survey of the entire genome for submicroscopic copy-number variants. We studied 100 children with idiopathic mental retardation and normal results of standard chromosomal analysis, by use of whole-genome sampling analysis with Affymetrix GeneChip Human Mapping 100K arrays. We found de novo deletions as small as 178 kb in eight cases, de novo duplications as small as 1.1 Mb in two cases, and unsuspected mosaic trisomy 9 in another case. This technology can detect at least twice as many potentially pathogenic de novo copy-number variants as conventional cytogenetic analysis can in people with mental retardation.  相似文献   

4.
Microarray technology for the detection of putative pathological submicroscopic copy number variants (CNV) has become a standard tool in the field of molecular cytogenetics in recent years. In addition to the identification of somatic CNVs in tumour genetics this technology is increasingly used for the analysis of constitutional CNVs in patients with developmental delay. Array-based genomic hybridisation increases sensitivity in comparison to more conventional technologies such as comparative genomic hybridisation (CGH). Recent developments now allow a genome-wide detection of submicroscopic chromosomal alterations, deletions and duplications smaller than 100 Kb, thus significantly increasing the detection rate of chromosomal aberrations in patients suffering from idiopathic mental retardation. Several centers are already using array technology in their routine setting in the diagnostic approach to syndromes. Therefore, this overview focuses on the similarities, as well as the differences, of several basic array techniques.  相似文献   

5.
Chromosomal imbalances are the major cause of mental retardation (MR). Many of these imbalances are caused by submicroscopic deletions or duplications not detected by conventional cytogenetic methods. Microarray-based comparative genomic hybridization (array-CGH) is considered to be superior for the investigation of chromosomal aberrations in children with MR, and has been demonstrated to improve the diagnostic detection rate of these small chromosomal abnormalities. In this study we used 1 Mb genome-wide array-CGH to screen 48 children with MR and congenital malformations for submicroscopic chromosomal imbalances, where the underlying cause was unknown. All children were clinically investigated and subtelomere FISH analysis had been performed in all cases. Suspected microdeletion syndromes such as deletion 22q11.2, Williams-Beuren and Angelman syndromes were excluded before array-CGH analysis was performed. We identified de novo interstitial chromosomal imbalances in two patients (4%), and an interstitial deletion inherited from an affected mother in one patient (2%). In another two of the children (4%), suspected imbalances were detected but were also found in one of the non-affected parents. The yield of identified de novo alterations detected in this study is somewhat less than previously described, and might reflect the importance of which selection criterion of patients to be used before array-CGH analysis is performed. However, array-CGH proved to be a high-quality and reliable tool for genome-wide screening of MR patients of unknown etiology.  相似文献   

6.
The genomic architecture predisposed to the emergence of DNA copy number variation causing a new class of human chromosomal diseases—reciprocal microdeletion and microduplication syndromes— is reviewed in the paper. The molecular mechanisms of such chromosomal abnormalities are described. The problems of the interpretation of their clinical significance and genotype-phenotype correlations are discussed. The classification of phenotypes due to reciprocal chromosomal microdeletions and microduplications is shown. Published by 2015, reciprocal mutations associated with inherited and congenital human pathology and involving 58 chromosomal regions are summarized.  相似文献   

7.
The initial strategy of the Corynebacterium glutamicum genome project was to sequence overlapping inserts of an ordered cosmid library. High-density colony grids of approximately 28 genome equivalents were used for the identification of overlapping clones by Southern hybridization. Altogether 18 contiguous genomic segments comprising 95 overlapping cosmids were assembled. Systematic shotgun sequencing of the assembled cosmid set revealed that only 2.84 Mb (86.6%) of the C. glutamicum genome were represented by the cosmid library. To obtain a complete genome coverage, a bacterial artificial chromosome (BAC) library of the C. glutamicum chromosome was constructed in pBeloBAC11 and used for genome mapping. The BAC library consists of 3168 BACs and represents a theoretical 63-fold coverage of the C. glutamicum genome (3.28 Mb). Southern screening of 2304 BAC clones with PCR-amplified chromosomal markers and subsequent insert terminal sequencing allowed the identification of 119 BACs covering the entire chromosome of C. glutamicum. The minimal set representing a 100% genome coverage contains 44 unique BAC clones with an average overlap of 22 kb. A total of 21 BACs represented linking clones between previously sequenced cosmid contigs and provided a valuable tool for completing the genome sequence of C. glutamicum.  相似文献   

8.
Whole-genome analysis using high-density single-nucleotide-polymorphism oligonucleotide arrays allows identification of microdeletions, microduplications, and uniparental disomies. We studied 67 children with unexplained mental retardation with normal karyotypes, as assessed by G-banded chromosome analyses. Their DNAs were analyzed with Affymetrix 100K arrays. We detected 11 copy-number variations that most likely are causative of mental retardation, because they either arose de novo (9 cases) and/or overlapped with known microdeletions (2 cases). The eight deletions and three duplications varied in size from 200 kb to 7.5 Mb. Of the 11 copy-number variations, 5 were flanked by low-copy repeats. Two of those, on chromosomes 15q25.2 and Xp22.31, have not been described before and have a high probability of being causative of new deletion and duplication syndromes, respectively. In one patient, we found a deletion affecting only a single gene, MBD5, which codes for the methyl-CpG-binding domain protein 5. In addition to the 67 children, we investigated 4 mentally retarded children with apparent balanced translocations and detected four deletions at breakpoint regions ranging in size from 1.1 to 14 Mb.  相似文献   

9.
Effective procedures have been developed for constructing NotI linking libraries starting from chromosome-specific genomic libraries. Fifteen different single copy and two rDNA NotI linking clones from human chromosome 21 were identified in two libraries. Their chromosomal origin was confirmed, and regional location established using hybrid cell panels. Hybridization experiments with these probes revealed pairs of genomic NotI fragments, each ranging in size from less than 0.05 to 4.0 Mb. Many fragments displayed cell type variation. The total size of the NotI fragments detected in a human fibroblast cell line (GM6167) and mouse hybrid cell containing chromosome 21 as its only human component (WAV17) were approximately 32 and 34 Mb, respectively. If these fragments were all non-overlapping, this would correspond to about 70% of the 50-Mb content estimated for the whole chromosome. The linking clones will be enormously useful in the subsequent construction of a NotI restriction map of this chromosome. Characterization of these clones indicates the presence of numerous additional sites for other enzymes that recognize sequences containing CpG. Thus most NotI linking clones appear to derive from CpG islands and probably identify the 5' end of genes.  相似文献   

10.
Structural variation (SV) is a significant component of the genetic etiology of both neurodevelopmental and psychiatric disorders; however, routine guidelines for clinical genetic screening have been established only in the former category. Genome-wide chromosomal microarray (CMA) can detect genomic imbalances such as copy-number variants (CNVs), but balanced chromosomal abnormalities (BCAs) still require karyotyping for clinical detection. Moreover, submicroscopic BCAs and subarray threshold CNVs are intractable, or cryptic, to both CMA and karyotyping. Here, we performed whole-genome sequencing using large-insert jumping libraries to delineate both cytogenetically visible and cryptic SVs in a single test among 30 clinically referred youth representing a range of severe neuropsychiatric conditions. We detected 96 SVs per person on average that passed filtering criteria above our highest-confidence resolution (6,305 bp) and an additional 111 SVs per genome below this resolution. These SVs rearranged 3.8 Mb of genomic sequence and resulted in 42 putative loss-of-function (LoF) or gain-of-function mutations per person. We estimate that 80% of the LoF variants were cryptic to clinical CMA. We found myriad complex and cryptic rearrangements, including a “paired” duplication (360 kb, 169 kb) that flanks a 5.25 Mb inversion that appears in 7 additional cases from clinical CNV data among 47,562 individuals. Following convergent genomic profiling of these independent clinical CNV data, we interpreted three SVs to be of potential clinical significance. These data indicate that sequence-based delineation of the full SV mutational spectrum warrants exploration in youth referred for neuropsychiatric evaluation and clinical diagnostic SV screening more broadly.  相似文献   

11.
Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome associated with genetic or epigenetic alterations in one of two imprinted domains on chromosome 11p15.5. Rarely, chromosomal translocations or inversions of chromosome 11p15.5 are associated with BWS but the molecular pathophysiology in such cases is not understood. In our series of 3 translocation and 2 inversion patients with BWS, the chromosome 11p15.5 breakpoints map within the centromeric imprinted domain, 2. We hypothesized that either microdeletions/microduplications adjacent to the breakpoints could disrupt genomic sequences important for imprinted gene regulation. An alternate hypothesis was that epigenetic alterations of as yet unknown regulatory DNA sequences, result in the BWS phenotype. A high resolution Nimblegen custom microarray was designed representing all non-repetitive sequences in the telomeric 33 Mb of the short arm of human chromosome 11. For the BWS-associated chromosome 11p15.5 translocations and inversions, we found no evidence of microdeletions/microduplications. DNA methylation was also tested on this microarray using the HpaII tiny fragment enrichment by ligation-mediated PCR (HELP) assay. This high-resolution DNA methylation microarray analysis revealed a gain of DNA methylation in the translocation/inversion patients affecting the p-ter segment of chromosome 11p15, including both imprinted domains. BWS patients that inherited a maternal translocation or inversion also demonstrated reduced expression of the growth suppressing imprinted gene, CDKN1C in Domain 2. In summary, our data demonstrate that translocations and inversions involving imprinted domain 2 on chromosome 11p15.5, alter regional DNA methylation patterns and imprinted gene expression in cis, suggesting that these epigenetic alterations are generated by an alteration in "chromatin context".  相似文献   

12.
High-resolution molecular cytogenetic techniques such as genomic array CGH and MLPA detect submicroscopic chromosome aberrations in patients with unexplained mental retardation. These techniques rapidly change the practice of cytogenetic testing. Additionally, these techniques may improve genotype-phenotype studies of patients with microscopically visible chromosome aberrations, such as Wolf-Hirschhorn syndrome, 18q deletion syndrome and 1p36 deletion syndrome. In order to make the most of high-resolution karyotyping, a similar accuracy of phenotyping is needed to allow researchers and clinicians to make optimal use of the recent advances. International agreements on phenotype nomenclature and the use of computerized 3D face surface models are examples of such improvements in the practice of phenotyping patients with chromosomal anomalies. The combination of high-resolution cytogenetic techniques, a comprehensive, systematic system for phenotyping and optimal data storage will facilitate advances in genotype-phenotype studies and a further deconstruction of chromosomal syndromes. As a result, critical regions or single genes can be determined to be responsible for specific features and malformations.  相似文献   

13.
A physical map of rice chromosome 5 was constructed with yeastartificial chromosome (YAC) clones along a high-resolution molecularlinkage map carrying 118 DNA markers distributed over 123.7cM of genomic DNA. YAC clones have been identified by colonyand Southern hybridization for 105 restriction fragment lengthpolymorphism (RFLP) markers and by polymerase chain reaction(PCR) screening for 8 sequence-tagged site (STS) markers and5 randomly amplified polymorphic DNA (RAPD) markers. Of 458YACs, 235 individual YACs with an average insert length of 350kb were selected and ordered on chromosome 5 from the YAC library.Forty-eight contigs covering nearly 21 Mb were formed on thechromosome 5; the longest one was 6 cM and covered 1.5 Mb. Thelength covered with YAC clones corresponded to 62% of the totallength of chromosome 5. There were many multicopy sequencesof expressed genes on chromosome 5. The distribution of manycopies of these expressed gene sequences was determined by YACSouthern hybridization and is discussed. A physical map withthese characteristics provides a powerful tool for elucidationof genome structure and extraction of useful genetic informationin rice.  相似文献   

14.
Diagnostic genome profiling in mental retardation   总被引:16,自引:0,他引:16       下载免费PDF全文
Mental retardation (MR) occurs in 2%-3% of the general population. Conventional karyotyping has a resolution of 5-10 million bases and detects chromosomal alterations in approximately 5% of individuals with unexplained MR. The frequency of smaller submicroscopic chromosomal alterations in these patients is unknown. Novel molecular karyotyping methods, such as array-based comparative genomic hybridization (array CGH), can detect submicroscopic chromosome alterations at a resolution of 100 kb. In this study, 100 patients with unexplained MR were analyzed using array CGH for DNA copy-number changes by use of a novel tiling-resolution genomewide microarray containing 32,447 bacterial artificial clones. Alterations were validated by fluorescence in situ hybridization and/or multiplex ligation-dependent probe amplification, and parents were tested to determine de novo occurrence. Reproducible DNA copy-number changes were present in 97% of patients. The majority of these alterations were inherited from phenotypically normal parents, which reflects normal large-scale copy-number variation. In 10% of the patients, de novo alterations considered to be clinically relevant were found: seven deletions and three duplications. These alterations varied in size from 540 kb to 12 Mb and were scattered throughout the genome. Our results indicate that the diagnostic yield of this approach in the general population of patients with MR is at least twice as high as that of standard GTG-banded karyotyping.  相似文献   

15.
Fetal DNA is present in the plasma of pregnant women. Massively parallel sequencing of maternal plasma DNA has been used to detect fetal trisomies 21, 18, 13 and selected sex chromosomal aneuploidies noninvasively. Case reports describing the detection of fetal microdeletions from maternal plasma using massively parallel sequencing have been reported. However, these previous reports were either polymorphism-dependent or used statistical analyses which were confined to one or a small number of selected parts of the genome. In this report, we reported a procedure for performing noninvasive prenatal karyotyping at 3 Mb resolution across the whole genome through the massively parallel sequencing of maternal plasma DNA. This method has been used to analyze the plasma obtained from 6 cases. In three cases, fetal microdeletions have been detected successfully from maternal plasma. In two cases, fetal microduplications have been detected successfully from maternal plasma. In the remaining case, the plasma DNA sequencing result was consistent with the pregnant mother being a carrier of a microduplication. Simulation analyses were performed for determining the number of plasma DNA molecules that would need to be sequenced and aligned for enhancing the diagnostic resolution of noninvasive prenatal karyotyping to 2 Mb and 1 Mb. In conclusion, noninvasive prenatal molecular karyotyping from maternal plasma by massively parallel sequencing is feasible and would enhance the diagnostic spectrum of noninvasive prenatal testing.  相似文献   

16.
Molecular karyotyping has revealed that microdeletions/duplications in the human genome are a major cause of multiple congenital anomalies associated with mental retardation (MCA/MR). The identification of a de novo chromosomal imbalance in a patient with MCA/MR is usually considered causal for the phenotype while a chromosomal imbalance inherited from a phenotypically normal parent is considered as a benign variation and not related to the disorder. Around 40% of imbalances in patients with MCA/MR in this series is inherited from a healthy parent and the majority of these appear to be (extremely) rare variants. As some of these contain known disease-causing genes and have also been found to be de novo in MCA/MR patients, this challenges the general view that such familial variants are innocent and of no major phenotypic consequence. Rather, we argue, that human genomes can be tolerant of genomic copy number variations depending on the genetic and environmental background and that different mechanisms play a role in determining whether these chromosomal imbalances manifest themselves.  相似文献   

17.
BACKGROUND: Array-based comparative genomic hybridization (aCGH) enables genome-wide quantitative delineation of genomic imbalances. A high-resolution contig array was developed specifically for chromosome 8q because this chromosome arm is frequently altered in many human cancers. METHODS: A minimal tiling path contig of 702 8q-specific bacterial artificial chromosome (BAC) clones was generated with a novel computational tool (BAC Contig Assembler). BAC clones were amplified by degenerative oligonucleotide primer (DOP) polymerase chain reaction and subsequently printed onto glass slides. For validation of the array DNA samples of gastroesophageal and prostate cancer cell lines, and chronic myeloid leukemia specimens were used, which were previously characterized by multicolor fluorescence in situ hybridization and conventional CGH. RESULTS: Single and double copy gains were confidently demonstrated with the 8q array. Single copy loss and high-level amplifications were accurately detected and confirmed by bicolor fluorescence in situ hybridization experiments. The 8q array was further tested with paraffin-embedded prostate cancer specimens. In these archival specimens, the copy number changes were confirmed. In fresh and archival samples, additional alterations were disclosed. In comparison with conventional CGH, the resolution of the detected changes was much improved, which was demonstrated by an amplicon of 0.7 Mb and a deletion of 0.6 Mb, both spanned by only six BAC clones. CONCLUSIONS: A comprehensive array is presented, which provides a high-resolution method for mapping copy number alterations on chromosome 8q.  相似文献   

18.
The use of massively parallel sequencing of maternal cfDNA for non-invasive prenatal testing (NIPT) of aneuploidy is widely available. Recently, the scope of testing has increased to include selected subchromosomal abnormalities, but the number of samples reported has been small. We developed a calling pipeline based on a segmentation algorithm for the detection of these rearrangements in maternal plasma. The same read depth used in our standard pipeline for aneuploidy NIPT detected 15/18 (83%) samples with pathogenic rearrangements > 6 Mb but only 2/10 samples with rearrangements < 6 Mb, unless they were maternally inherited. There were two false-positive calls in 534 samples with no known subchromosomal abnormalities (specificity 99.6%). Using higher read depths, we detected 29/31 fetal subchromosomal abnormalities, including the three samples with maternally inherited microduplications. We conclude that test sensitivity is a function of the fetal fraction, read depth, and size of the fetal CNV and that at least one of the two false negatives is due to a low fetal fraction. The lack of an independent method for determining fetal fraction, especially for female fetuses, leads to uncertainty in test sensitivity, which currently has implications for this technique’s future as a clinical diagnostic test. Furthermore, to be effective, NIPT must be able to detect chromosomal rearrangements across the whole genome for a very low false-positive rate. Because standard NIPT can only detect the majority of larger (>6 Mb) chromosomal rearrangements and requires knowledge of fetal fraction, we consider that it is not yet ready for routine clinical implementation.  相似文献   

19.
Teneurins are a novel family of transmembrane proteins conserved between invertebrates and vertebrates. There are two members in Drosophila, one in C. elegans and four members in mouse. Here, we describe the analysis of the genomic structure of the human teneurin-1 gene. The entire human teneurin-1 (TEN1) gene is contained in eight PAC clones representing part of the chromosomal locus Xq25. Interestingly, many X-linked mental retardation syndromes (XLMR) and non-specific mental retardation (MRX) are mapped to this region. The location of the human TEN1 together with the neuronal expression makes TEN1 a candidate gene for XLMR and MRX. We also identified large parts of the human teneurin-2 sequence on chromosome 5 and sections of human teneurin-4 at chromosomal position 11q14. Database searches resulted in the identification of ESTs encoding parts of all four human members of the teneurin family. Analysis of the genomic organization of the Drosophila ten-a gene revealed the presence of exons encoding a long form of ten-a, which can be aligned with all other teneurins known. Sequence comparison and phylogenetic trees of teneurins show that insects and vertebrates diverged before the teneurin ancestor was duplicated independently in the two phyla. This is supported by the presence of conserved intron positions between teneurin genes of man, Drosophila and C. elegans. It is therefore not possible to class any of the vertebrate teneurins with either Drosophila Ten-a or Ten-m. The C-terminal part of all teneurins harbours 26 repetitive sequence motifs termed YD-repeats. YD-repeats are most similar to the repeats encoded by the core of the rearrangement hot spot (rhs) elements of Escherichia coli. This makes the teneurin ancestor a candidate gene for the source of the rhs core acquired by horizontal gene transfer.  相似文献   

20.
Genomic imbalances are a major cause of constitutional and acquired disorders. Therefore, aneuploidy screening has become the cornerstone of preimplantation, prenatal and postnatal genetic diagnosis, as well as a routine aspect of the diagnostic workup of many acquired disorders. Recently, array comparative genomic hybridization (array CGH) has been introduced as a rapid and high-resolution method for the detection of both benign and disease-causing genomic copy-number variations. Until now, array CGH has been performed using a significant quantity of DNA derived from a pool of cells. Here, we present an array CGH method that accurately detects chromosomal imbalances from a single lymphoblast, fibroblast and blastomere within a single day. Trisomy 13, 18, 21 and monosomy X, as well as normal ploidy levels of all other chromosomes, were accurately determined from single fibroblasts. Moreover, we showed that a segmental deletion as small as 34 Mb could be detected. Finally, we demonstrated the possibility to detect aneuploidies in single blastomeres derived from preimplantation embryos. This technique offers new possibilities for genetic analysis of single cells in general and opens the route towards aneuploidy screening and detection of unbalanced translocations in preimplantation embryos in particular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号