首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Costimulation of G protein-coupled receptors (GPCRs) may result in cross talk interactions between their downstream signaling pathways. Stimulation of GPCRs may also lead to cross talk regulation of receptor tyrosine kinase signaling and thereby to activation of mitogen-activated protein kinase (MAPK). In COS-7 cells, we investigated the interactions between two particular mitogenic receptor pathways, the endogenously expressed beta-adrenergic receptor (beta-AR) and the transiently transfected human bradykinin (BK) B(2) receptor (B(2)R). When beta-AR and B(2)R are costimulated, we found two different cross talk mechanisms. First, the predominantly G(q) protein-coupled B(2)R is enabled to activate a G(i) protein and, subsequently, type II adenylate cyclase. This results in augmentation of beta-AR-mediated cyclic AMP (cAMP) accumulation by BK, which alone is unable to increase the cAMP level. Second, independently of BK-induced superactivation of the cAMP system, costimulation of beta-AR leads to protein kinase A-mediated blockade of phospholipase C activation by BK. Thereby, the pathway from B(2)R to MAPK, which essentially involves protein kinase C activation, is selectively switched off. The MAPK activation in response to isoproterenol was not affected due to costimulation. Furthermore, in the presence of isoproterenol, BK lost its ability to stimulate DNA synthesis in COS-7 cells. Thus, our findings might establish a novel paradigm: cooperation between simultaneously activated mitogenic pathways may prevent multiple stimulation of MAPK activity and increased cell growth.  相似文献   

2.
In our previous study, bradykinin (BK) exerts its mitogenic effect through Ras/Raf/MEK/MAPK pathway in vascular smooth muscle cells (VSMCs). In addition to this pathway, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3-K) have been implicated in linking a variety of G-protein coupled receptors to MAPK cascades. Here, we investigated whether these different mechanisms participating in BK-induced activation of p42/p44 MAPK and cell proliferation in VSMCs. We initially observed that BK- and EGF-dependent activation of Src, EGFR, Akt, and p42/p44 MAPK and [3H]thymidine incorporation were mediated by Src and EGFR, because the Src inhibitor PP1 and EGFR kinase inhibitor AG1478 abrogated BK- and EGF-dependent effects. Inhibition of PI3-K by LY294002 attenuated BK-induced Akt and p42/p44 MAPK phosphorylation and [3H]thymidine incorporation, but had no effect on EGFR phosphorylation, suggesting that EGFR may be an upstream component of PI3-K/Akt and MAPK in these responses. This hypothesis was supported by the tranfection with dominant negative plasmids of p85 and Akt which significantly attenuated BK-induced Akt and p42/p44 MAPK phosphorylation. Pretreatment with U0126 (a MEK1/2 inhibitor) attenuated the p42/p44 MAPK phosphorylation and [3H]thymidine incorporation stimulated by BK, but had no effect on Akt activation. Moreover, BK-induced transactivation of EGFR and cell proliferation was blocked by matrix metalloproteinase inhibitor GM6001. These results suggest that, in VSMCs, the mechanism of BK-stimulated activation of p42/p44 MAPK and cell proliferation was mediated, at least in part, through activation of Src family kinases, EGFR transactivation, and PI3-K/Akt.  相似文献   

3.
In previous studies, bradykinin (BK) has been shown to induce cell proliferation through BK B2 receptor (B2R) via p42/p44 MAPK in Statens Seruminstitut Rabbit Corneal Cells (SIRCs). In addition to this pathway, EGFR transactivation pathway has been implicated in linking a variety of G-protein coupled receptors to MAPK cascades. Here, we further investigate whether these transactivation mechanisms participating in BK-induced cell proliferation in SIRCs. Using an immunofluorescence staining and RT-PCR, we initially characterize that SIRCs were corneal fibroblasts and predominantly expressed B2R by BK. Inhibition of p42/p44 MAPK by the inhibitors of Src, EGFR, and Akt or transfection with respective siRNAs prevents BK-induced DNA synthesis in SIRCs. The mechanisms underlying these responses were mediated through phosphorylation of Src and EGFR via the formation of Src/EGFR complex which was attenuated by PP1 and AG1478. Moreover, BK-induced p42/p44 MAPK and Akt activation was mediated through EGFR transactivation, which was diminished by the inhibitors of MMP-2/9 and heparin-binding EGF-like factor (HB-EGF). Finally, increased nuclear translocation of Akt and p42/p44 MAPK turns on early gene expression leading to cell proliferation. These results suggest that BK-induced cell proliferation is mediated through c-Src-dependent transactivation of EGFR via MMP2/9-dependent pro-HB-EGF shedding linking to activation of Akt and p42/p44 MAPK in corneal fibroblasts.  相似文献   

4.
Signal characteristics of G protein-transactivated EGF receptor.   总被引:24,自引:2,他引:22       下载免费PDF全文
The epidermal growth factor receptor (EGFR) tyrosine kinase recently was identified as providing a link to mitogen-activated protein kinase (MAPK) in response to G protein-coupled receptor (GPCR) agonists in Rat-1 fibroblasts. This cross-talk pathway is also established in other cell types such as HaCaT keratinocytes, primary mouse astrocytes and COS-7 cells. Transient expression of either Gq- or Gi-coupled receptors in COS-7 cells allowed GPCR agonist-induced EGFR transactivation, and lysophosphatidic acid (LPA)-generated signals involved the docking protein Gab1. The increase in SHC tyrosine phosphorylation and MAPK stimulation through both Gq- and Gi-coupled receptors was reduced strongly upon selective inhibition of EGFR function. Inhibition of phosphoinositide 3-kinase did not affect GPCR-induced stimulation of EGFR tyrosine phosphorylation, but inhibited MAPK stimulation, upon treatment with both GPCR agonists and low doses of EGF. Furthermore, the Src tyrosine kinase inhibitor PP1 strongly interfered with LPA- and EGF-induced tyrosine phosphorylation and MAPK activation downstream of EGFR. Our results demonstrate an essential role for EGFR function in signaling through both Gq- and Gi-coupled receptors and provide novel insights into signal transmission downstream of EGFR for efficient activation of the Ras/MAPK pathway.  相似文献   

5.
It has been suggested that bradykinin (BK) plays an important role in regulating neointimal formation after vascular injury. However, implication of BK in the growth of rat vascular smooth muscle cells (VSMCs) is controversial. Therefore, we examined the mitogenic effect of BK on VSMCs associated with activation of mitogen-activated protein kinase (MAPK). Both [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation were activated by BK in time- and concentration-dependent manners. Pretreatment of these cells with neither pertussis toxin nor cholera toxin attenuated the BK-induced responses. Pretreatment of VSMCs with Hoe 140 (a selective B(2) receptor antagonist), U73122 (an inhibitor of phospholipase C), and BAPTA/AM (an intracellular Ca(2+) chelator) inhibited both [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation in response to BK. BK-induced [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation were inhibited by pretreatment of VSMCs with tyrosine kinase inhibitors (genistein and herbimycin A), protein kinase C (PKC) inhibitors (staurosporine, Go-6976, and Ro-318220), an MAPK kinase inhibitor (PD98059), and a p38 MAPK inhibitor (SB203580). Overexpression of the dominant negative mutants, H-Ras-15A and Raf-N4, suppressed p42/p44 MAPK activation induced by BK and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. From these results, we concluded that the mitogenic effect of BK is mediated through activation of the Ras/Raf/MEK/MAPK pathway similar to that of PDGF-BB. BK-mediated MAPK activation was modulated by Ca(2+), PKC, and tyrosine kinase all of which are associated with cell proliferation in rat cultured VSMCs.  相似文献   

6.
The hypothalamic decapeptide, gonadotropin-releasing hormone (GnRH), utilizes multiple signaling pathways to activate extracellularly regulated mitogen-activated protein kinases (ERK1/2) in normal and immortalized pituitary gonadotrophs and transfected cells expressing the GnRH receptor. In immortalized hypothalamic GnRH neurons (GT1-7 cells), which also express GnRH receptors, GnRH, epidermal growth factor (EGF), and phorbol 12-myristate 13-acetate (PMA) caused marked phosphorylation of ERK1/2. This action of GnRH and PMA, but not that of EGF, was primarily dependent on activation of protein kinase C (PKC), and the ERK1/2 responses to all three agents were abolished by the selective EGF receptor kinase inhibitor, AG1478. Consistent with this, both GnRH and EGF increased tyrosine phosphorylation of the EGF receptor. GnRH and PMA, but not EGF, caused rapid phosphorylation of the proline-rich tyrosine kinase, Pyk2, at Tyr(402). This was reduced by Ca(2+) chelation and inhibition of PKC, but not by AG1478. GnRH stimulation caused translocation of PKC alpha and -epsilon to the cell membrane and enhanced the association of Src with PKC alpha and PKC epsilon, Pyk2, and the EGF receptor. The Src inhibitor, PP2, the C-terminal Src kinase (Csk), and dominant-negative Pyk2 attenuated ERK1/2 activation by GnRH and PMA but not by EGF. These findings indicate that Src and Pyk2 act upstream of the EGF receptor to mediate its transactivation, which is essential for GnRH-induced ERK1/2 phosphorylation in hypothalamic GnRH neurons.  相似文献   

7.
A polyHis-tagged bradykinin (BK) B2 receptor (pHis-BKR) cDNA was constructed and expressed in COS-7 cells. The pHis-BKR is suitable for both immunoprecipitation and immunoblotting with anti-polyHis antibodies and can be easily purified using Ni-NTA columns. Immunochemical detection revealed a molecular mass of approximately 66 kDa. The pHis-BKR is capable of mediating BK-induced stimulation of inositol phosphate formation as well as of mitogen-activated protein kinase (MAPK) activity. Compared with the wild-type receptor (WT-BKR) the tagged receptor showed a slightly enhanced affinity towards BK but a reduced expression level. Despite these modified pharmacological properties the pHis-tagged BKR may be a useful tool for studying BKR modifications and signaling.  相似文献   

8.
9.
The receptor for gonadotropin-releasing hormone (GnRH) belongs to the G protein-coupled receptors (GPCRs), and its stimulation activates extracellular signal-regulated protein kinase (ERK). We found that the transactivation of ErbB4 was involved in GnRH-induced ERK activation in immortalized GnRH neurons (GT1–7 cells). We found also that GnRH induced the cleavage of ErbB4. In the present study, we examined signal transduction for the activation of ERK and the cleavage of ErbB4 after GnRH treatment. Both ERK activation and ErbB4 cleavage were completely inhibited by YM-254890, an inhibitor of Gq/11 proteins. Down-regulation of protein kinase C (PKC) markedly decreased both ERK activation and ErbB4 cleavage. Experiments with two types of PKC inhibitors, Gö 6976 and bisindolylmaleimide I, indicated that novel PKC isoforms but not conventional PKC isoforms were involved in ERK activation and ErbB4 cleavage. Our experiments indicated that the novel PKC isoforms activated protein kinase D (PKD) after GnRH treatment. Knockdown and inhibitor experiments suggested that PKD1 stimulated the phosphorylation of Pyk2 by constitutively activated Src and Fyn for ERK activation. Taken together, it is highly possible that PKD1 plays a critical role in signal transduction from the PKC pathway to the tyrosine kinase pathway. Activation of the tyrosine kinase pathway may be involved in the progression of cancer.  相似文献   

10.
Eukaryotic cells are known to have an inducible or adaptive response that enhances radioresistance after a low priming dose of radiation. This radioadaptive response seems to present a novel cellular defense mechanism. However, its molecular processing and signaling mechanisms are largely unknown. Here, we studied the role of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) in the expression of radioadaptive response in cultured mouse cells. Protein immunoblot analysis using isoform-specific antibodies showed an immediate activation of PKC-alpha upon X-irradiation as indicated by a translocation from cytosol to membrane. A low priming dose caused a prolonged translocation, while a nonadaptive high dose dramatically downregulated the total PKC level. Low-dose X-rays also activated the p38 MAPK. The activation of p38 MAPK and resistance to chromosome aberration formation were blocked by SB203580, an inhibitor of p38 MAPK, and Calphostin C, an inhibitor of PKC. Furthermore, it was demonstrated that p38 MAPK was physically associated with delta1 isoform of phospholipase C (PLC-delta1), which hydrolyzed phosphatidylinositol bisphosphate into diacylglycerol, an activator of PKC, and that SB203580 also blocked the activation of PKC-alpha. These results indicate the presence of a novel mechanism for coordinated regulation of adaptive response to low-dose X-rays by a nexus of PKC-alpha/p38 MAPK/PLC-delta1 circuitry feedback signaling pathway with its breakage operated by downregulation of labile PKC-alpha at high doses or excess stimuli.  相似文献   

11.
Our laboratory showed previously that estrogen activates ERK in neocortical cultures. To further elucidate the precise signaling sequelae that lead to estrogen-induced ERK activity, we evaluated the involvement of protein kinase C (PKC). We found that neocortical explants expressed primarily PKC gamma and PKC epsilon. Consistent with the involvement of PKC in mediating estrogen-induced ERK phosphorylation, we found that estrogen treatment induced translocation of these PKC isoforms to the plasma membrane. Importantly, inhibition of these isoforms abolished the ability of estrogen to phosphorylate ERK. While direct activation of PKC mimicked the effect of estrogen on ERK, both in pattern of activation and resulting intraneuronal distribution of ERK, PKC-induced ERK phosphorylation required the activity of MEK but not B-Raf. Collectively, these data suggest a critical role for PKC in mediating estrogen induction of ERK activation in the developing brain via a MEK-dependent but B-Raf-independent pathway.  相似文献   

12.
Hyperammonemia is responsible for most neurological alterations in patients with hepatic encephalopathy by mechanisms that remain unclear. Hyperammonemia alters phosphorylation of neuronal protein kinase C (PKC) substrates and impairs NMDA receptor-associated signal transduction. The aim of this work was to analyse the effects of hyperammonemia on the amount and intracellular distribution of PKC isoforms and on translocation of each isoform induced by NMDA receptor activation in cerebellar neurons. Chronic hyperammonemia alters differentially the intracellular distribution of PKC isoforms. The amount of all isoforms (except PKC zeta) was reduced (17-50%) in the particulate fraction. The contents of alpha, beta1, and epsilon isoforms decreased similarly in cytosol (65-78%) and membranes (66-83%), whereas gamma, delta, and theta; isoforms increased in cytosol but decreased in membranes, and zeta isoform increased in membranes and decreased in cytosol. Chronic hyperammonemia also affects differentially NMDA-induced translocation of PKC isoforms. NMDA-induced translocation of PKC alpha and beta is prevented by ammonia, whereas PKC gamma, delta, epsilon, or theta; translocation is not affected. Inhibition of phospholipase C did not affect PKC alpha translocation but reduced significantly PKC gamma translocation, indicating that NMDA-induced translocation of PKC alpha is mediated by Ca2+, whereas PKC gamma translocation is mediated by diacylglycerol. Chronic hyperammonemia reduces Ca+2-mediated but not diacylglycerol-mediated translocation of PKC isoforms induced by NMDA.  相似文献   

13.
Inhalation of tumour necrosis factor-alpha (TNF-alpha) induced a bronchial hyperreactivity to contractile agonists. However, the mechanisms of TNF-alpha involved in the pathogenesis of bronchial hyperreactivity were not completely understood. Therefore, we investigated the effect of TNF-alpha on bradykinin (BK)-induced inositol phosphate (IP) accumulation and Ca(2+) mobilization, and up-regulation of BK receptor density in canine cultured tracheal smooth muscle cells (TSMCs). Pretreatment of TSMCs with TNF-alpha potentiated BK-induced IP accumulation and Ca(2+) mobilization. However, there was no effect on the IP response induced by endothelin-1 (ET-1), 5-hydroxytryptamine (5-HT), and carbachol. Pretreatment with PDGF B-chain homodimer (PDGF-BB) also enhanced BK-induced IP response. These enhancements induced by TNF-alpha and PDGF-BB might be due to an increase in BK B(2) receptor density (B(max)), since [3H]BK binding to TSMCs was inhibited by the B(2) selective agonist and antagonist, BK and Hoe 140, but not by the B(1) selective reagents. The enhancing effects of TNF-alpha and PDGF-BB were attenuated by PD98059 (an inhibitor of activation of MAPK kinase, MEK) and cycloheximide (an inhibitor of protein synthesis), suggesting that TNF-alpha may share a common signalling pathway with PDGF-BB via protein(s) synthesis in TSMCs. Furthermore, overexpression of dominant negative mutants, H-Ras-15A and Raf-N4, significantly suppressed p42/p44 mitogen-activated protein kinase (MAPK) activation induced by TNF-alpha and PDGF-BB and attenuated the effect of TNF-alpha on BK-induced IP response, indicating that Ras and Raf may be required for activation of these kinases. These results suggest that the augmentation of BK-induced responses produced by TNF-alpha might be, at least in part, mediated through activation of Ras/Raf/MEK/MAPK pathway in TSMCs.  相似文献   

14.
Pain is unique among sensations in that the perceived intensity increases, or sensitizes, during exposure to a strong stimulus. One important mediator of sensitization is bradykinin (BK), a peptide released as a consequence of tissue damage. BK enhances the membrane ionic current activated by heat in nociceptive neurons, using a pathway that involves activation of protein kinase C (PKC). We find that five PKC isoforms are present in sensory neurons but that only PKC-epsilon is translocated to the cell membrane by BK. The heat response is sensitized when constitutively active PKC-epsilon is incorporated into nociceptive neurons. Conversely, BK-induced sensitization is suppressed by a specific peptide inhibitor of PKC-epsilon. We conclude that PKC-epsilon is principally responsible for sensitization of the heat response in nociceptors by bradykinin.  相似文献   

15.
Regulation of the increase in inositol phosphate (IP) production and intracellular Ca2+ concentration ([Ca2+]i by protein kinase C (PKC) was investigated in cultured rat vascular smooth muscle cells (VSMCs). Pretreatment of VSMCs with phorbol 12-myristate 14-acetate (PMA, 1 microM) for 30 min almost abolished the BK-induced IP formation and Ca2+ mobilisation. This inhibition was reduced after incubating the cells with PMA for 4 h, and within 24 h the BK-induced responses were greater than those of control cells. The concentrations of PMA giving a half-maximal (pEC50) and maximal inhibition of BK induced an increase in [Ca2+]i, were 7.8 +/- 0.3 M and 1 microM, n = 8, respectively. Prior treatment of VSMCs with staurosporine (1 microM), a PKC inhibitor, inhibited the ability of PMA to attenuate BK-induced responses, suggesting that the inhibitory effect of PMA is mediated through the activation of PKC. Paralleling the effect of PMA on the BK-induced IP formation and Ca2+ mobilisation, the translocation and downregulation of PKC isozymes were determined by Western blotting with antibodies against different PKC isozymes. The results revealed that treatment of the cells with PMA for various times, translocation of PKC-alpha, betaI, betaII, delta, epsilon, and zeta isozymes from the cytosol to the membrane were seen after 5 min, 30 min, 2 h, and 4 h of treatment. However, 24-h treatment caused a partial downregulation of these PKC isozymes in both fractions. Treatment of VSMCs with 1 microM PMA for either 1 or 24 h did not significantly change the K(D) and Bmax of the BK receptor for binding (control: K(D) = 1.7 +/- 0.2 nM; Bmax = 47.3 +/- 4.4 fmol/mg protein), indicating that BK receptors are not a site for the inhibitory effect of PMA on BK-induced responses. In conclusion, these results demonstrate that translocation of PKC-alpha, betaI, betaII, delta, epsilon, and zeta induced by PMA caused an attenuation of BK-induced IPs accumulation and Ca2+ mobilisation in VSMCs.  相似文献   

16.
Recent work has suggested a role for the serine/threonine kinase Akt and IkappaB kinases (IKKs) in nuclear factor (NF)-kappaB activation. In this study, the involvement of these components in NF-kappaB activation through a G protein-coupled pathway was examined using transfected HeLa cells that express the B2-type bradykinin (BK) receptor. The function of IKK2, and to a lesser extent, IKK1, was suggested by BK-induced activation of their kinase activities and by the ability of their dominant negative mutants to inhibit BK-induced NF-kappaB activation. BK-induced NF-kappaB activation and IKK2 activity were markedly inhibited by RGS3T, a regulator of G protein signaling that inhibits Galpha(q), and by two Gbetagamma scavengers. Co-expression of Galpha(q) potentiated BK-induced NF-kappaB activation, whereas co-expression of either an activated Galpha(q)(Q209L) or Gbeta(1)gamma(2) induced IKK2 activity and NF-kappaB activation without BK stimulation. BK-induced NF-kappaB activation was partially blocked by LY294002 and by a dominant negative mutant of phosphoinositide 3-kinase (PI3K), suggesting that PI3K is a downstream effector of Galpha(q) and Gbeta(1)gamma(2) for NF-kappaB activation. Furthermore, BK could activate the PI3K downstream kinase Akt, whereas a catalytically inactive mutant of Akt inhibited BK-induced NF-kappaB activation. Taken together, these findings suggest that BK utilizes a signaling pathway that involves Galpha(q), Gbeta(1)gamma(2), PI3K, Akt, and IKK for NF-kappaB activation.  相似文献   

17.
18.
In this study, we investigated the signaling pathways involved in bradykinin (BK)-induced NF-kappaB activation and cyclooxygenase-2 (COX-2) expression in human airway epithelial cells (A549). BK caused concentration- and time-dependent increase in COX-2 expression, which was attenuated by a selective B2 BK receptor antagonist (HOE140), a Ras inhibitor (manumycin A), a Raf-1 inhibitor (GW 5074), a MEK inhibitor (PD 098059), an NF-kappaB inhibitor (pyrrolidine dithiocarbate), and an IkappaB protease inhibitor (L-1-tosylamido-2-phenylethyl chloromethyl ketone). The B1 BK receptor antagonist (Lys-(Leu8)des-Arg9-BK) had no effect on COX-2 induction by BK. BK-induced increase in COX-2-luciferase activity was inhibited by cells transfected with the kappaB site deletion of COX-2 construct. BK-induced Ras activation was inhibited by manumycin A. Raf-1 phosphorylation at Ser338 by BK was inhibited by manumycin A and GW 5074. BK-induced ERK activation was inhibited by HOE140, manumycin A, GW 5074, and PD 098059. Stimulation of cells with BK activated IkappaB kinase alphabeta (IKKalphabeta), IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 and p50 translocation from the cytosol to the nucleus, the formation of an NF-kappaB-specific DNA-protein complex, and kappaB-luciferase activity. BK-mediated increase in IKKalphabeta activity and formation of the NF-kappaB-specific DNA-protein complex were inhibited by HOE140, a Ras dominant-negative mutant (RasN17), manumycin A, GW 5074, and PD 098059. Our results demonstrated for the first time that BK, acting through B2 BK receptor, induces activation of the Ras/Raf-1/ERK pathway, which in turn initiates IKKalphabeta and NF-kappaB activation, and ultimately induces COX-2 expression in human airway epithelial cell line (A549).  相似文献   

19.
We sought to further elucidate signal transduction pathways for the I1-imidazoline receptor in PC12 cells by testing involvement of protein kinase C (PKC) isoforms (betaII, epsilon, zeta), and the mitogen-activated protein kinases (MAPK) ERK and JNK. Stimulation of I1-imidazoline receptor with moxonidine increased enzymatic activity of the classical betaII isoform in membranes by about 75% and redistributed the atypical isoform into membranes (40% increase in membrane-bound activity), but the novel isoform of PKC was unaffected. Moxonidine and clonidine also increased by greater than two-fold the proportion of ERK-1 and ERK-2 in the phosphorylated active form. In addition, JNK enzymatic activity was increased by exposure to moxonidine. Activation of ERK and JNK followed similar time courses with peaks at 90 min. The action of moxonidine on ERK activation was blocked by the I1-receptor antagonist efaroxan and by D609, an inhibitor of phosphatidylcholine-selective phospholipase C (PC-PLC), previously implicated as the initial event in I1-receptor signaling. Inhibition or depletion of PKC blocked activation of ERK by moxonidine. Two-day treatment of PC12 cells with the I1/alpha2-agonist clonidine increased cell number by up to 50% in a dose related manner. These data suggest that ERK and JNK, along with PKC, are signaling components of the I1-receptor pathway, and that this receptor may play a role in cell growth.  相似文献   

20.
Epidermal growth factor receptor (EGFR) activation is negatively regulated by protein kinase C (PKC) signaling. Stimulation of A431 cells with EGF, bradykinin or UTP increased EGFR phosphorylation at Thr654 in a PKC-dependent manner. Inhibition of PKC signaling enhanced EGFR activation, as assessed by increased phosphorylation of Tyr845 and Tyr1068 residues of the EGFR. Diacylglycerol is a physiological activator of PKC that can be removed by diacylglycerol kinase (DGK) activity. We found, in A431 and HEK293 cells, that the DGKθ isozyme translocated from the cytosol to the plasma membrane, where it co-localized with the EGFR and subsequently moved into EGFR-containing intracellular vesicles. This translocation was dependent on both activation of EGFR and PKC signaling. Furthermore, DGKθ physically interacted with the EGFR and became tyrosine-phosphorylated upon EGFR stimulation. Overexpression of DGKθ attenuated the bradykinin-stimulated, PKC-mediated EGFR phosphorylation at Thr654, and enhanced the phosphorylation at Tyr845 and Tyr1068. SiRNA-induced DGKθ downregulation enhanced this PKC-mediated Thr654 phosphorylation. Our data indicate that DGKθ translocation and activity is regulated by the concerted activity of EGFR and PKC and that DGKθ attenuates PKC-mediated Thr654 phosphorylation that is linked to desensitisation of EGFR signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号