共查询到20条相似文献,搜索用时 11 毫秒
1.
Aeromonas hydrophila 4AK4 produces poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) containing 3-hydroxybutyrate (3HB) and about 15 mol% 3-hydroxyhexanoate (3HHx) from dodecanoate. To study the factors affecting the monomer composition and PHBHHx content, genes encoding phasin (phaP), PHA synthase (phaC) and (R)-specific enoyl-CoA hydratase (phaJ) from Aeromonas punctata (formerly named Aeromonas caviae) were introduced individually or jointly into A. hydrophila 4AK4. The phaC gene increased 3HHx fraction more significantly than phaP, while phaJ had little effect. Expression of phaC alone increased the 3HHx fraction from 14 to 22 mol%. When phaC was co-expressed with phaP and phaJ, the 3HHx fraction increased from 14 to 34 mol%. Expression of phaP or phaC alone or with another gene enhanced PHBHHx content up to 64%, cell dry weight (CDW) as much as 4.4 gL(-1) and PHBHHx concentration to 2.7 gL(-1) after 48 h in shake flask culture. The results suggest that a higher PHA synthase activity could lead to a higher 3HHx fraction and PHBHHx content. Co-expression of phaJ with phaC or phaP would favor PHA accumulation, although over-expression of phaJ did not affect PHA synthesis much. In addition, inhibition of beta-oxidation by acrylate in A. hydrophila 4AK4 enhanced PHBHHx content. However, no monomers longer than 3HHx were detected. The results show that genetic modification of A. hydrophila 4AK4 enhanced PHBHHx production and altered monomer composition of the polymer. 相似文献
2.
Aeromonas hydrophila 4AK4 and Pseudomonas putida GPp104 were genetically engineered to synthesize poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) using gluconate and glucose rather than fatty acids. A truncated tesA gene, encoding cytosolic thioesterase I of Escherichia coli which catalyzes the conversion of acyl-ACP into free fatty acids, was introduced into A. hydrophila 4AK4. When grown in gluconate, the recombinant A. hydrophila 4AK4 synthesized 10% (w/w) PHBHHx containing 14% (mol/mol) 3-hydroxyhexanoate. If additional PHBHHx synthesis genes, phaPCJ, were over-expressed with the truncated tesA in A. hydrophila 4AK4, the PHBHHx content increased to 15% (w/w) and contained 19% (mol/mol) 3-hydroxyhexanoate. Recombinant P. putida GPp104 harboring phaC encoding PHBHHx synthase of A. hydrophila, phaB encoding acetoacetyl-CoA reductase of Wautersia eutropha and phaG encoding 3-hydroxyacyl-ACP-CoA transferase of P. putida, synthesized 19% (w/w) PHBHHx containing 5% (mol/mol) 3-hydroxyhexanoate from glucose. The results suggest that the engineered
pathways were applicable to synthesize PHBHHx from unrelated carbon sources such as gluconate and glucose. 相似文献
3.
Alex J Lomas George GQ Chen Alicia J El Haj Nicholas R Forsyth 《World journal of stem cells》2012,4(9):94-100
AIM: To establish the potential of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) as a material for tendon repair. METHODS: The biocompatibility of PHBHHx with both rat tenocytes (rT) and human mesenchymal stem cells (hMSC) was explored by monitoring adhesive characteristics on films of varying weight/volume ratios coupled to a culture atmosphere of either 21% O2 (air) or 2% O2 (physiological normoxia). The diameter and stiffness of PHBHHx films was established using optical coherence tomography and mechanical testing, respectively. RESULTS: Film thickness correlated directly with weight/volume PHBHHx (r2 = 0.9473) ranging from 0.1 mm (0.8% weight/volume) to 0.19 mm (2.4% weight/volume). Film stiffness on the other hand displayed a biphasic response which increased rapidly at values 1.6% weight/volume. Optimal cell attachment of rT required films of ≥ 1.6% and ≥ 2.0% weight/volume PHBHHx in 2% O2 and 21% O2 respectively. A qualitative adhesion increase was noted for hMSC in films ≥ 1.2% weight/volume, becoming significant at 2% weight/volume in 2% O2. An increase in cell adhesion was also noted with ≥ 2% weight/volume PHBHHx in 21% O2. Cell migration into films was not observed. CONCLUSION: This evaluation demonstrates that PHBHHx is a suitable polymer for future cell/polymer replacement strategies in tendon repair. 相似文献
4.
A simple and effective method for the recovery poly(3-hydroxybutyrate) [P(3HB)] directly from high cell density culture broth with no pretreatment steps has been developed. This method consists of direct addition of sodium dodecyl sulfate (SDS) to the culture broth, shaking, heat treatment, and washing steps. When the SDS/biomass ratio was higher than 0.4, the purity of recovered P(3HB) was over 95% for various cell concentrations of 50–300 g dry cell l–1, with the highest value of 97%. The recovery of P(3HB) was over 90% regardless of cell concentration and SDS dosage (SDS/biomass ratios, 0.1–0.7). One g SDS digests 0.72 g non-P(3HB) cell materials. The reduction in molecular weight, due to degradation of P(3HB) by SDS, was negligible. 相似文献
5.
Degradation of microbial polyester poly(3-hydroxybutyrate) in environmental samples and in culture 总被引:1,自引:0,他引:1
Poly(3-hydroxybutyrate) [P(3HB)] test-pieces prepared from the polymer produced by Azotobacter chroococcum were degraded in natural environments like soil, water, compost and sewage sludge incubated under laboratory conditions. Degradation in terms of % weight loss of the polymer was maximum (45%) in sewage sludge after 200 days of incubation at 30°C. The P(3HB)-degrading bacterial cultures (36) isolated from degraded test-pieces showed different degrees of degradation in polymer overlayer method. The extent of P(3HB) degradation increases up to 12 days of incubation and was maximum at 30°C for majority of the cultures. For most efficient cultures the optimum concentration of P(3HB) for degradation was 0.3% (w/v). Supplementation of soluble carbon sources like glucose, fructose and arabinose reduced the degradation while it was almost unaffected with lactose. Though the cultures degraded P(3HB) significantly, they were comparatively less efficient in utilizing copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate [P(3HB-co-3HV)]. 相似文献
6.
Five strains ofAeromonas hydrophila were studied for production of haemolysin specific for erythrocytes of various animal species using three cultural methods. All the strains produced haemolysin for all the erythrocyte species when the organisms were cultured on blood agar.Using cellophane overlay method, all the strains produced haemolysin for fish erythrocytes and variable activity to mammalian erythrocytes. Only one strain produced haemolytic activity for various though not all of the erythrocyte species when grown in brain heart infusion broth.Data suggest thatA. hydrophila produces multiple haemolysins with specificities for erythrocytes of different animals. This was confirmed for trout and horse erythrocyte targeted haemolysins, by using iso-electric focussing separation and by measuring the effect of addition of ammonium sulphate to the growth medium. 相似文献
7.
A new fermentation strategy using cell recycle membrane system was developed for the efficient production of poly(3-hydroxybutyrate) (PHB) from whey by recombinant Escherichia coli strain CGSC 4401 harboring the Alcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes. By cell recycle, fed-batch cultivation employing an external membrane module, the working volume of fermentation could be constantly maintained at 2.3 l. The final cell concentration, PHB concentration and PHB content of 194 g l–1, 168 g l–1 and 87%, respectively, were obtained in 36.5 h by the pH-stat cell recycle fed-batch culture using whey solution concentrated to contain 280 g lactose l–1 as a feeding solution, resulting in a high productivity of 4.6 g PHB l–1 h–1. 相似文献
8.
Preusting H van Houten R Hoefs A van Langenberghe EK Favre-Bulle O Witholt B 《Biotechnology and bioengineering》1993,41(5):550-556
Pseudomonas oleovorans is able to accumulate poly(3-hydroxyalkanoates) (PHAs) under conditions of excess n-alkanes, which serve as sole energy and carbon source, and limitation of an essential nutrient such as ammonium. In this study we aimed at an efficient production of these PHAs by growing P. oleovorans to high cell densities in fed-batch cultures.To examine the efficiency of our reactor system, P. oleovorans was first grown in batch cultures using n-octane as growth substrate and ammonia water for pH regulation to prevent ammonium limiting conditions. When cell growth ceased due to oxygen limiting conditions, a maximum cell density of 27 g .L(-1) dry weight was obtained. When the growth temperature was decreased from the optimal temperature of 30 degrees -18 degrees C, cell growth continued to a final cell density of 35 g . L(-1) due to a lower oxygen demand of the cells at this lower incubation temperature.To quantify mass transfer rates in our reactor system, the volumetric oxygen transfer coefficient (k(L)a) was determined during growth of P. oleovorans on n-octane. Since the stirrer speed and airflow were increased during growth of the organism, the k(L)a also increased, reaching a constant value of 0.49 s(-1) at maximum airflow and stirrer speed of 2 L . min(-1) and 2500 rpm, respectively. This k(L)a value suggests that oxygen transfer is very efficient in our stirred tank reactor.Using these conditions of high oxygen transfer rates, PHA production by P. oleovorans in fed-batch cultures was studied. The cells were first grown batchwise to a density of 6 g . L(-1), after which a nutrient feed, consisting of (NH(4))(2)SO(4) and MgSO(4), was started. The limiting nutrient ammonium was added at a constant rate of 0.23 g NH(4) (+) per hour, and when after 38 h the feed was stopped, a biomass concentration of 37.1 g . L(-1) was obtained. The Cellular PHA content was 33% (w/w), which is equal to a final PHA yield of 12.1 g . L(-1) and an overall PHA productivity of 0.25 g PHA produced per liter medium per hour. (c) 1993 John Wiley & Sons, Inc. 相似文献
9.
Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control 总被引:1,自引:0,他引:1
Alcaligenes eutrophus NCIMB 11599 was cultivated to produce poly(3-hydroxybutyric acid) (PHB) from glucose by the automatic fed-batch culture technique. The glucose concentration of the culture broth was controlled at 10 to 20 g/L by two methods: using exit gas data obtained from a mass spectrometer and using an on-line glucose analyzer. The effect of ammonium limitation on PHB synthesis at different culture phases was studied. The final cell concentration, PHB concentration, and PHB productivity increased as ammonia feeding was stopped at a higher cell concentration. High concentrations of PHB (121 g/L) and total cells (164 g/L) were obtained in 50 h when ammonia feeding was stopped at the cell concentration of 70 g/L. The maximum PHB content reached 76% of dry cell weight and the productivity was 2.42 g/L h with the yield of 0.3 g PHB/g glucose. 相似文献
10.
Palm kernel oil, palm olein, crude palm oil and palm acid oil were used for the synthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] by a mutant strain of Wautersia eutropha (formerly Ralstonia eutropha) harboring the Aeromonas caviae polyhydroxyalkanoate (PHA) synthase gene. Palm kernel oil was an excellent carbon source for the production of cell biomass
and P(3HB-co-3HHx). About 87% (w/w) of the cell dry weight as P(3HB-co-3HHx) was obtained using 5 g palm kernel oil/l. Gravimetric and microscopic analyses further confirmed the high PHA content
in the recombinant cells. The molar fraction of 3HHx remained constant at 5 mol % regardless of the type and concentration
of palm oil products used. The small amount of 3HHx units was confirmed by 13C NMR analysis. The number average molecular weight (Mn) of the PHA copolymer produced from the various palm oil products ranged from 27 0000 to 46 0000 Da. The polydispersity was
in the range of 2.6–3.9. 相似文献
11.
A marine Streptomyces sp. SNG9 was characterized by its ability to utilize poly(3-hydroxybutyrate) (PHB) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate P (3HB-co-HV). The bacterium grew efficiently in a simple mineral liquid medium enriched with 0.1% poly(3-hydroxybutyrate) powder as the sole carbon source. Cells excreted PHB depolymerase and degraded the polymer particles to complete clarity in 4 days. The degradation activity was detectable by the formation of a clear zone around the colony (petri plates) or a clear depth under the colony (test tubes). The expression of PHB depolymerase was repressed by the presence of simple soluble carbon sources. Bacterial degradation of the naturally occurring sheets of poly(3-hydroxybutyrate) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was observed by scanning electron microscopy (SEM). Morphological alterations of the polymers sheets were evidence for bacterial hydrolysis. 相似文献
12.
Villamón E Villalba V Nogueras MM Tomás JM Gozalbo D Gil ML 《Antonie van Leeuwenhoek》2003,84(1):31-38
This is the first report describing the glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), as a protein
associated with the cell envelope of a gram-negative bacterium (Aeromonas hydrophila). Dose-dependent GAPDH activity was detected in whole bacterial cells from exponentially growing cultures, indicating that
an active form of GAPDH is located outside the plasma membrane. This activity represents roughly 10–20% of total cell activity,
and it is not reduced by pretreatment of the cells with trypsin. Assays with soluble GAPDH indicate that the activity measured
in intact cells does not originate by rebinding to intact cells of cytosolic enzyme released following cell lysis. GAPDH activity
levels detected in intact cells varied during the growth phase. The relationship between GAPDH activity and cell culture density
was not linear, showing this activity as a major peak in the late-logarithmic phase (A600 = 1.1–1.3), and a decrease when cells entered the stationary phase. The late exponential growing cells showed a GAPDH activity
3 to 4-fold higher than early growing or stationary cells. No activity was detected in culture supernatants. Enzymatic and
Western-immunoblotting analysis of subcellular fractions (cytosol, whole and outer membranes, and periplasm) showed that GAPDH
is located in the cytosol, as expected, and also in the periplasm. These results place the periplasmic GAPDH of A. hydrophila into the family of multifunctional microbial cell wall-associated GAPDHs which retain their catalytic activity.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
13.
Ralstonia eutropha NCIMB 11599 and ATCC 17699 were grown, and their productions of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] compared. In flask cultures ofR. eutropha NCIMB 11599, cell concentration, P(3HB-co-4HB) concentration and polymer content decreased considerably with increases in the γ-butyrolactone concentration, and the
4HB fraction was also very low (maximum 1.74 mol%). In fed-batch cultures ofR. eutropha NCIMB 11599, glucose and γ-butyrolactone were fed as the carbon sources, under a phosphate limitation strategy. When glucose
was fed as the sole carbon source, with its concentration controlled using an on-line glucose analyzer, 86% of the P(3HB)
homopolymer was obtained from 201 g/L of cells. In a two-stage fed-batch culture, where the cell concentration was increased
to 104 g/L, with glucose fed in the first step and constant feeding of γ-butyrolactone, at 6 g/h, in the second, final cell
concentration at 67 h was 106 g/L, with a polymer content of 82%, while the 4HB fraction was only 0.7 mol%. When the same
feeding strategy was applied to the fedbatch culture ofR. eutropha ATCC 17699, where the cell concentration was increased to 42 g/L, by feeding fructose in the first step and γ-butyrolactone
(1.5 g/h) in the second, the final cell concentration, polymer content and 4HB fraction at 74 h were 51 g/L, 35% and 32 mol%,
respectively. In summary,R. eutropha ATCC 17699 was better thanR. eutropha NCIMB 11599 in terms of P(3HB-co-4HB) production with various 4HB fractions. 相似文献
14.
Aeromonas hydrophila strain AO1 isolated from an infected fish was found to be resistant to several quinolones. A plasmid isolated from the strain AO1, termed pBRST7.6, was cloned and sequenced and shown to be 7621 bp in length with a GC content of 60%. Further analysis confirmed that it contained a gene with 100% identity to qnrS2 genes described in plasmids associated with other Aeromonas species, the product of which usually confers increased resistance to quinolones. The plasmid backbone contained a replication initiation module (repA repC) belonging to the IncQ-family and two genes (mobC and mobB), the products of which are putatively involved in plasmid mobilization. Putative iteron-based origin of replication and characteristic oriT like sequences were also present in the plasmid. The result suggests that Aeromonas spp. carrying plasmids with quinolone resistance genes are potential reservoirs of antimicrobial resistance determinants in the environment. 相似文献
15.
Helmut Brandl Richard A. Gross Robert W. Lenz Ramona Lloyd R. Clinton Fuller 《Archives of microbiology》1991,155(4):337-340
In recent years industrial interest has been focussed on the evaluation of poly(3-hydroxyalkanoates) (PHA) as potentially biodegradable plastics for a wide range of technical applications. Studies have been carried out in order to optimize growth and culture conditions for the intracellular formation of PHA in the phototrophic, purple, non-sulfur bacterium Rhodobacter sphaeroides. Its potential to produce polyesters other than poly(3-hydroxybutyrate) (PHB) was investigated. On an industrial scale, the use of photosynthetic bacteria could harness sunlight as an energy source for the production of these materials. R. sphaeroides was grown anaerobically in the light on different carbon sources. Under nitrogenlimiting conditions a PHA content of up to 60 to 70% of the cellular dry weight was detected. In all of the cases studied, the storage polymer contained approximately 98 mol% of 3-hydroxybutyrate (HB) and 2 mol% 3-hydroxyvalerate (HV) monomer units. Decreasing light intensities did not stimulate PHA formation. Compared to Rhodospirillum rubrum (another member of the family of Rhodospirillaceae), R. sphaeroides showed a limited flexibility in its ability to form PHA with varying monomer unit compositions. 相似文献
16.
A O Ejiofor Y Chisti M Moo-Young 《Journal of industrial microbiology & biotechnology》1996,16(2):102-109
A fermentation medium based on millet (Pennisetum typhoides) flour hydrolysate and a four-phase feeding strategy for fed-batch production of baker's yeast,Saccharomyces cerevisiae, are presented. Millet flour was prepared by dry-milling and sieving of whole grain. A 25% (w/v) flour mash was liquefied with a thermostable 1,4--d-glucanohydrolase (EC 3.2.1.1) in the presence of 100 ppm Ca2+, at 80°C, pH 6.1–6.3, for 1 h. The liquefied mash was saccharified with 1,4--d-glucan glucohydrolase (EC 3.2.1.3) at 55°C, pH 5.5, for 2 h. An average of 75% of the flour was hydrolysed and about 82% of the hydrolysate was glucose. The feeding profile, which was based on a model with desired specific growth rate range of 0.18–0.23 h–1, biomass yield coefficient of 0.5 g g–1 and feed substrate concentration of 200 g L–1, was implemented manually using the millet flour hydrolysate in test experiments and glucose feed in control experiments. The fermentation off-gas was analyzed on-line by mass spectrometry for the calculation of carbon dioxide production rate, oxygen up-take rate and the respiratory quotient. Off-line determination of biomass, ethanol and glucose were done, respectively, by dry weight, gas chromatography and spectrophotometry. Cell mass concentrations of 49.9–51.9 g L–1 were achieved in all experiments within 27 h of which the last 15 h were in the fedbatch mode. The average biomass yields for the millet flour and glucose media were 0.48 and 0.49 g g–1, respectively. No significant differences were observed between the dough-leavening activities of the products of the test and the control media and a commercial preparation of instant active dry yeast. Millet flour hydrolysate was established to be a satisfactory low cost replacement for glucose in the production of baking quality yeast.Nomenclature
C
ox
Dissolved oxygen concentration (mg L–1)
-
CPR
Carbon dioxide production rate (mmol h–1)
-
C
s0
Glucose concentration in the feed (g L–1)
-
C
s
Substrate concentration in the fermenter (g L–1)
-
C
s.crit
Critical substrate concentration (g L–1)
-
E
Ethanol concentration (g L–1)
-
F
s
Substrate flow rate (g h–1)
-
i
Sample number (–)
-
K
e
Constant in Equation 6 (g L–1)
-
K
o
Constant in Equation 7 (mg L–1)
-
K
s
Constant in Equation 5 (g L–1)
-
m
Specific maintenance term (h–1)
-
OUR
Oxygen up-take rate (mmol h–1)
-
q
ox
Specific oxygen up-take rate (h–1)
-
q
ox.max
Maximum specific oxygen up-take rate (h–1)
-
q
p
Specific product formation rate (h–1)
-
q
s
Specific substrate up-take rate (g g–1 h–1)
-
q
s.max
Maximum specific substrate up-take rate (g g–1 h–1)
-
RQ
Respiratory quotient (–)
-
S
Total substrate in the fermenter at timet (g)
-
S
0
Substrate mass fraction in the feed (g g–1)
-
t
Fermentation time (h)
-
V
Instantaneous volume of the broth in the fermenter (L)
-
V
0
Starting volume in the fermenter (L)
-
V
si
Volume of samplei (L)
-
x
Biomass concentration in the fermenter (g L–1)
-
X
0
Total amount of initial biomass (g)
-
X
t
Total amount of biomass at timet (g)
-
Y
p/s
Product yield coefficient on substrate (–)
-
Y
x/e
Biomass yield coefficient on ethanol (–)
-
Y
x/s
Biomass yield coefficient on substrate (–)
Greek letters
Moles of carbon per mole of yeast (–)
-
Moles of hydrogen atom per mole of yeast (–)
-
Moles of oxygen atom per mole of yeast (–)
-
Moles of nitrogen atom per mole of yeast (–)
-
Specific growth rate (h–1)
- crit
Critical specific growth rate (h–1)
-
E
Specific ethanol up-take rate (h–1)
- max.E
Maximum specific ethanol up-take rate (h–1) 相似文献
17.
Production of poly(3-hydroxybutyrate) [P(3HB)] from wheyby fed-batch culture of recombinant Escherichia coli CGSC 4401 harboring a plasmid containing the Alcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes was examined in a 30 l fermenter supplying air only. With lactose below 2 g l–1, cells grew to 12 g dry cell l–1 with 9% (w/w) P(3HB) content. Accumulation of P(3HB) could be triggered by increasing lactose to 20 g l–1. By employing this strategy, 51 g dry cell l–1 was obtained with a 70% (w/w) P(3HB) content after 26 h. The productivity was 1.35 g P(3HB) l–1 h–1. The same fermentation strategy was used in a 300 l fermenter, and 30 g dry cell l–1 with 67% (w/w) P(3HB) content was obtained in 20 h. 相似文献
18.
Recombinant Escherichia coli (ATCC:PTA-1579) harbouring poly(3-hydroxybutyrate) (PHB) synthesising genes from Streptomyces aureofaciens NRRL 2209 accumulates PHB. Effects of different carbon and nitrogen sources on PHB accumulation by recombinant E. coli were studied. Among the carbon sources used glycerol, glucose, palm oil and ethanol supported PHB accumulation. No PHB accumulated in recombinant cells when sucrose or molasses were used as carbon source. Yeast extract, peptone, a combination of yeast extract and peptone, and corn steep liquor were used as nitrogen sources. The maximum PHB accumulation (60% of cell dry weight) was measured after 48 h of cell growth at 37 degrees C in a medium with glycerol as the sole carbon source, and yeast extract and peptone as nitrogen sources. Scanning electron microscopy of the PHB granules isolated from recombinant E. coli revealed these to be spherical in shape with a diameter ranging from 0.11 to 0.35 pm with the mean value of 0.23 +/- 0.06 pm. 相似文献
19.
Metabolic engineering of Aeromonas hydrophila for the enhanced production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) 总被引:1,自引:0,他引:1
Wild-type Aeromonas hydrophila 4AK4 produced 35–45 wt.% poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) consisting of 10–15 mol% 3-hydroxyhexanoate (3HHx). To enhance PHBHHx production, vgb gene encoding Vitreoscilla haemoglobin or fadD gene encoding Escherichia coli acyl-CoA synthase was co-expressed with polyhydroxyalkanoates (PHA) synthesis-related genes including phbAB from Wautersia eutropha and phaPCJ from A. hydrophila. Expression of vgb increased PHBHHx content from 46 to 53 wt.% without affecting the polymer monomers composition, whereas fadD increased both PHBHHx content from 46 to 64 wt.% and its 3HHx fraction from 15 to 24 mol%. Co-expression of vgb or fadD gene with PHA-synthesis-related genes generally increased PHBHHx content over 60 wt.%. Co-expression of phbAB with vgb increased PHBHHx content and concentration up to about 70 wt.% and 4.0 g l−1, respectively. Fermentor study also showed that in the recombinants harboring vgb, CDW, PHBHHx concentration and productivity were significantly elevated up to 54 g l−1, 28.5 g l−1 and 0.791 g l−1 h−1, respectively, suggesting that vgb could promote PHA synthesis. In this strain, lac promoter could be used to constitutively express foreign genes such as phbA and phbB encoding β-ketothiolase and NADPH-dependent acetoacetyl-CoA reductase of W. eutropha, respectively, without use of IPTG. The results showed that combined expression of different genes was a successful strategy
to enhance PHA production, which could be useful for strain development to construct other recombinant PHA-producing strains. 相似文献
20.
Shunsaku Ueda Seiji Matsumoto Aya Takagi Tsuneo Yamane 《FEMS microbiology letters》1992,98(1-3):57-60
Abstract n -Amyl alcohol was examined as a source for the synthesis of the 3-hydroxyvalerate (3HV) unit of the biopolyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)), by Alcaligenes sp., Pseudomonas sp. and several methylotrophic bacteria. A. eutrophus and Ps. lemoignei synthesized P(3HB-co-3HV) from glucose and n -amyl alcohol under nitrogen-deficient conditions. Many of methylotrophic bacteria grown on methanol synthesized the copolyester from methanol and n -amyl alcohol under nitrogen-deficient conditions. The content and composition of the polyester varied from strain to strain. Paracoccus denitrificans differed from all others in having a higher content of 3-hydroxyvalerate units in the copolyester synthesized. 相似文献