首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Best's vitelliform macular degeneration has been genetically linked to chromosome 11. Subsequently, the disease locus has been refined to an interval between D11S903 and PYGM and, more recently, between D11S986 and D11S480. The gene encoding ROM1, a photoreceptor-specific membrane protein, has been independently mapped within the Best's disease region and has thus become a strong candidate for the Best's disease gene. In this study, we have mapped ROM1 relative to Best's disease and the loci D11S986, UGB (uteroglobin), and PYGM (human muscle glycogen phosphorylase) in recombinant Best's disease chromosomes. We demonstrate that UGB is localized proximal to ROM1 and that both UGB and ROM1 recombine with the disease phenotype. Thus, this analysis excluded ROM1 as the Best's disease gene.  相似文献   

2.
3.
One hundred twenty-eight blood samples were drawn from members of a single family with atypical vitelliform macular dystrophy (VMD-1) characterized by variable expressivity in affected members of at least 5 generations. Because of the late onset of detectable retinal lesions in most family members, phenotype data from only 93 individuals who were at least 14 years of age were analyzed for linkage. Phenotype data from the remaining 35 members of the family who were under age 14 were excluded from the analysis. Maximum-likelihood analysis for linkage between VMD-1 and 13 biochemical and serological markers in the family demonstrated linkage between VMD-1 and the soluble glutamate pyruvate transaminase (GPT1) locus, which has been tentatively assigned to the short arm of chromosome 16. A maximum lod score of Z = 4.34 (odds favoring linkage of approximately 22,000 to 1) was obtained at a recombination fraction of theta = .05.  相似文献   

4.
Best vitelliform macular dystrophy (VMD2) has previously been linked to several microsatellite markers from chromosome 11. Subsequently, additional genetic studies have refined the Best disease region to a 3.7-cM interval flanked by markers at D11S903 and PYGM. To further narrow the interval containing the Best disease gene and to obtain an estimate of the physical size of the minimal candidate region, we used a combination of high-resolution PCR hybrid mapping and analysis of recombinant Best disease chromosomes. We identified six markers from within the D11S903-PYGM interval that show no recombination with the defective gene in three multigeneration Best disease pedigrees. Our hybrid panel localizes these markers on either side of the centromere on chromosome 11. The closest markers flanking the disease gene are at D11S986 in band p12-11.22 on the short arm and at D11S480 in band q13.2-13.3 on the proximal long arm. This study demonstrates that the physical size of the Best disease region is exceedingly larger than previously estimated from the genetic data, because of the proximity of the defective gene to the centromere of chromosome 11.  相似文献   

5.
6.
7.
Linkage of a gene for macular corneal dystrophy to chromosome 16.   总被引:5,自引:1,他引:4       下载免费PDF全文
Autosomal recessive macular corneal dystrophy (MCD) is a heterogeneous disorder leading to visual impairment. Sixteen American and Icelandic families (11 type I and 5 type II) were analyzed for linkage, by use of 208 polymorphic microsatellite markers. A significant maximum LOD score Zmax of 7.82 at a maximum recombination fraction (thetamax) of .06 was found with the 16q22 locus D16S518 for MCD type I. In addition, a peak LOD score of 2.50 at a recombination fraction of .00 was obtained for the MCD type II families, by use of the identical marker. These findings raise the possibility that MCD type II may be due to the same genetic locus that is involved in MCD type I.  相似文献   

8.
Fundus flavimaculatus with macular dystrophy is an autosomal recessive disease responsible for a progressive loss of visual acuity in adulthood, with pigmentary changes of the macula, perimacular flecks, and atrophy of the retinal pigmentary epithelium. Since this condition shares several clinical features with Stargardt disease, which has been mapped to chromosome 1p21-p13, we tested the disease for linkage to chromosome 1p. We report here the mapping of the disease locus to chromosome 1p13-p21, in the genetic interval defined by loci D1S435 and D1S415, in four multiplex families (maximum lod score 4.79 at recombination fraction 0 for probe AFM217zb2 at locus D1S435). Thus, despite differences in the age at onset, clinical course, and severity, fundus flavimaculatus with macular dystrophy and Stargardt disease are probably allelic disorders. This result supports the view that allelic mutations produce a continuum of macular dystrophies, with onset in early childhood to late adulthood.  相似文献   

9.
Generalised progressive retinal atrophy (gPRA) is a heterogeneous group of hereditary diseases causing degeneration of the retina in dogs and other animals. The genetic origin is unknown in most cases. We have screened the coding sequence of the ROM1 gene for disease causing mutations in Tibetan Terriers, Miniature Poodles, Dachshunds and Chesapeake Bay Retrievers by single strand conformation polymorphism analysis (SSCP). Two polymorphisms have been identified by sequencing, one in exon 1 in all examined breeds (position 210: G→A; Gly40Arg and position 252: G→T; Ala53Ser). Another polymorphism was present in exon 2 (position 1150: C→T and position 1195: C→T) segregating in Miniature Poodles. None of these polymorphisms were cosegregating with gPRA rendering a disease causing mutation in the ROM1 gene unlikely.  相似文献   

10.
The myotonic dystrophy (DM) gene maps to the long arm of human chromosome 19 and is flanked by markers ERCC1 and D19S51. Also mapping to this region is the polio virus receptor gene (PVS). To produce more markers for this interval, we have constructed radiation-reduced hybrids by selecting for the retention of ERCC1 and for the loss of PVS. One of the cell lines produced has been characterized extensively and contains about 2 Mb of human DNA derived exclusively from chromosome 19, and includes ERCC1 and D19S51. Phage libraries constructed from DNA of this cell line have been screened and several new markers identified, including two for which cDNAs have been isolated. These represent candidate genes for DM. The new markers have also been used to extend the long-range restriction map of this region.  相似文献   

11.

Streptozotocin (STZ) has been widely used to induce diabetes in rodents. Strain-dependent variation in susceptibility to STZ has been reported; however, the gene(s) responsible for STZ susceptibility has not been identified. Here, we utilized the A/J-11SM consomic strain and a set of chromosome 11 (Chr. 11) congenic strains developed from A/J-11SM to identify a candidate STZ-induced diabetes susceptibility gene. The A/J strain exhibited significantly higher susceptibility to STZ-induced diabetes than the A/J-11SM strain, confirming the existence of a susceptibility locus on Chr. 11. We named this locus Stzds1 (STZ-induced diabetes susceptibility 1). Congenic mapping using the Chr. 11 congenic strains indicated that the Stzds1 locus was located between D11Mit163 (27.72 Mb) and D11Mit51 (36.39 Mb). The Mpg gene, which encodes N-methylpurine DNA glycosylase (MPG), a ubiquitous DNA repair enzyme responsible for the removal of alkylated base lesions in DNA, is located within the Stzds1 region. There is a close relationship between DNA alkylation at an early stage of STZ action and the function of MPG. A Sanger sequence analysis of the Mpg gene revealed five polymorphic sites in the A/J genome. One variant, p.Ala132Ser, was located in a highly conserved region among rodent species and in the minimal region for retained enzyme activity of MPG. It is likely that structural alteration of MPG caused by the p.Ala132Ser mutation elicits increased recognition and excision of alkylated base lesions in DNA by STZ.

  相似文献   

12.
tctex-1: a candidate gene family for a mouse t complex sterility locus   总被引:4,自引:0,他引:4  
E Lader  H S Ha  M O'Neill  K Artzt  D Bennett 《Cell》1989,58(5):969-979
  相似文献   

13.
14.
15.
The gonadoblastoma locus on the Y chromosome (GBY) predisposes the dysgenetic gonads of XY females to develop in situ tumors. It has been mapped to a critical interval on the short arm and adjacent centromeric region on the Y chromosome. Currently there are five functional genes identified on the GBY critical region, thereby providing likely candidates for this cancer predisposition locus. To evaluate the candidacy of one of these five genes, testis-specific protein Y-encoded (TSPY), as the gene for GBY, expression patterns of TSPY in four gonadoblastoma from three patients were analyzed by immunohistochemistry using a TSPY specific antibody. Results from this study showed that TSPY was preferentially expressed in tumor germ cells of all gonadoblastoma specimens. Additional study on two cases of testicular seminoma demonstrated that TSPY was also abundantly expressed in all stages of these germ cell tumors. The present observations suggest that TSPY may either be involved in the oncogenesis of or be a useful marker for both types of germ cell tumors.  相似文献   

16.
A candidate gene for human U1 RNA.   总被引:9,自引:3,他引:6       下载免费PDF全文
Clones containing sequences complementary to the small nuclear RNA U1 were isolated from the human DNA library of Lawn et al. (1978). Three clones were studied by hybridization and restriction enzyme cleavage. The results showed that the inserts in all three clones were different and that each clone contains one single copy of a sequence which hybridizes to U1 RNA. The results revealed moreover that only one of the three clones contains all the cleavage sites which can be predicted from the known sequence of human U1 RNA, suggesting that the three clones comprise one candidate U1 gene and two pseudogenes. A fragment from the recombinant with the candidate U1 gene was subcloned in the pPR322 plasmid and part of its sequence was determined. The results showed that the subclone contains a sequence which matches that of the human U1 RNA perfectly. The sequence "TATAT" which often is found adjacent to RNA polymerase II start sites, was identified 33-37 base pairs upstream from the beginning of the U1 sequence. Two ten base pairs long, nearly perfect, direct repeats were also identified in the vicinity of the U1 sequence and an imperfect inverted repeat follows immediately after the U1 gene.  相似文献   

17.

Background

The 12q24 locus entails at least one gene responsible for hypercholesterolemia. Within the 12q24 locus lies the gene of proteasome modulator 9 (PSMD9). PSMD9 is in linkage with type 2 diabetes (T2D), T2D-nephropathy and macrovascular pathology in Italian families and PSMD9 rare mutations contribute to T2D.

Aims

In the present study, we aimed at determining whether the PSMD9 T2D risk single nucleotide polymorphisms (SNPs) IVS3 + nt460 A > G, IVS3 + nt437 T > C and E197G A > G are linked to hypercholesterolemia in 200 T2D Italian families.

Methods

We characterized 200 Italian families for presence and/or absence of hypercholesterolemia characterized by LDL levels ≥ 100 mg/dl in drug-naïve patients and/or presence of a diagnosis of hypercholesterolemia in a patient treated with statin medication. The phenotypes were described as unknown in all cases in which the diagnosis was either unclear or the data were missing. We tested in the 200 Italians families for evidence of linkage of the PSMD9 SNPs with hypercholesterolemia. The non-parametric linkage analysis was performed for the qualitative phenotype by using the Merlin software; the Lod score and correspondent P-value were calculated. For the significant linkage score, 1000 replicates were performed to calculate the empirical P-value.

Results

The PSMD9 gene SNPs studied show linkage to hypercholesterolemia. The results are not due to random chance.

Conclusions

PSMD9 should be tested in all populations reporting linkage to hypercholesterolemia within the chromosome 12q24 locus. The impact of this gene on hypercholesterolemia and contribution to cardio- and cerebrovascular events may be high.  相似文献   

18.
19.
We have studied three families each containing a male with Duchenne or Becker muscular dystrophy. Southern blot analysis using both genomic and cDNA probes revealed that an exon-containing segment of DNA within the gene is duplicated in the probands, their mothers, and, in two cases, their sisters. The grandpaternal origin of the duplication has been demonstrated in these families by RFLP and duplication analysis. The results suggest that unequal sister-chromatid exchange, which most likely occurred in the germ cell lineage of the proband's grandfather, is responsible for generating these duplications and that this type of intrachromosomal rearrangement, although rarely reported in humans, is not uncommon in the muscular dystrophy gene.  相似文献   

20.
Mammalian Genome - Pathogenic variants in SCN1A result in a spectrum of phenotypes ranging from mild febrile seizures to Dravet syndrome, a severe infant-onset epileptic encephalopathy. Individuals...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号