首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the diversities of Accumulibacter phosphatis and its polyhydroxyalkanoate (PHA) synthase gene (phaC) in enhanced biological phosphorus removal (EBPR) sludge, an acetate-fed sequencing batch reactor was operated. Analysis of microbial communities using fluorescence in situ hybridization and 16S rRNA gene clone libraries showed that the population of Accumulibacter phosphatis in the EBPR sludge comprised more than 50% of total bacteria, and was clearly divided into two subgroups with about 97.5% sequence identity of the 16S rRNA genes. PAO phaC primers targeting the phaC genes of Accumulibacter phosphatis were designed and applied to retrieve fragments of putative phaC homologs of Accumulibacter phosphatis from EBPR sludge. PAO phaC primers targeting G1PAO, G2PAO, and G3PAO groups produced PCR amplicons successfully; the resulting sequences of the phaC gene homologs were diverse, and were distantly related to metagenomic phaC sequences of Accumulibacter phosphatis with 75-98% DNA sequence identities. Degenerate NPAO (non-PAO) phaC primers targeting phaC genes of non- Accumulibacter phosphatis bacteria were also designed and applied to the EBPR sludge. Twenty-four phaC homologs retrieved from NPAO phaC primers were different from the phaC gene homologs derived from Accumulibacter phosphatis, which suggests that the PAO phaC primers were specific for the amplification of phaC gene homologs of Accumulibacter phosphatis, and the putative phaC gene homologs by PAO phaC primers were derived from Accumulibacter phosphatis in the EBPR sludge. Among 24 phaC homologs, a phaC homolog (G1NPAO-2), which was dominant in the NPAO phaC clone library, showed the strongest signal in slot hybridization and shared approximately 60% nucleotide identity with the G4PAO group of Accumulibacter phosphatis, which suggests that G1NPAO-2 might be derived from Accumulibacter phosphatis. In conclusion, analyses of the 16S rRNA and phaC genes showed that Accumulibacter phosphatis might be phylogenetically and metabolically diverse.  相似文献   

2.
Two laboratory-scale sequencing batch reactors (SBRs) were operated for enhanced biological phosphorus removal (EBPR) in alternating anaerobic-aerobic or alternating anaerobic-anoxic modes, respectively. Polyphosphate-accumulating organisms (PAOs) were enriched in the anaerobic-aerobic SBR and denitrifying PAOs (DPAOs) were enriched in the anaerobic-aerobic SBR. Fluorescence in situ hybridization (FISH) demonstrated that the well-known PAO, "Candidatus Accumulibacter phosphatis" was abundant in both SBRs, and post-FISH chemical staining with 4,6-diamidino-2-phenylindol (DAPI) confirmed that they accumulated polyphosphate. When the anaerobic-anoxic SBR enriched for DPAOs was converted to anaerobic-aerobic operation, aerobic uptake of phosphorus by the resident microbial community occurred immediately. However, when the anaerobic-aerobic SBR enriched for PAOs was exposed to one cycle with anoxic rather than aerobic conditions, a 5-h lag period elapsed before phosphorus uptake proceeded. This anoxic phosphorus-uptake lag phase was not observed in the subsequent anaerobic-aerobic cycle. These results demonstrate that the PAOs that dominated the anaerobic-aerobic SBR biomass were the same organisms as the DPAOs enriched under anaerobic-anoxic conditions.  相似文献   

3.
We investigated the fine-scale population structure of the "Candidatus Accumulibacter" lineage in enhanced biological phosphorus removal (EBPR) systems using the polyphosphate kinase 1 gene (ppk1) as a genetic marker. We retrieved fragments of "Candidatus Accumulibacter" 16S rRNA and ppk1 genes from one laboratory-scale and several full-scale EBPR systems. Phylogenies reconstructed using 16S rRNA genes and ppk1 were largely congruent, with ppk1 granting higher phylogenetic resolution and clearer tree topology and thus serving as a better genetic marker than 16S rRNA for revealing population structure within the "Candidatus Accumulibacter" lineage. Sequences from at least five clades of "Candidatus Accumulibacter" were recovered by ppk1-targeted PCR, and subsequently, specific primer sets were designed to target the ppk1 gene for each clade. Quantitative real-time PCR (qPCR) assays using "Candidatus Accumulibacter"-specific 16S rRNA and "Candidatus Accumulibacter" clade-specific ppk1 primers were developed and conducted on three laboratory-scale and nine full-scale EBPR samples and two full-scale non-EBPR samples to determine the abundance of the total "Candidatus Accumulibacter" lineage and the relative distributions and abundances of the five "Candidatus Accumulibacter" clades. The qPCR-based estimation of the total "Candidatus Accumulibacter" fraction as a proportion of the bacterial community as measured using 16S rRNA genes was not significantly different from the estimation measured using ppk1, demonstrating the power of ppk1 as a genetic marker for detection of all currently defined "Candidatus Accumulibacter" clades. The relative distributions of "Candidatus Accumulibacter" clades varied among different EBPR systems and also temporally within a system. Our results suggest that the "Candidatus Accumulibacter" lineage is more diverse than previously realized and that different clades within the lineage are ecologically distinct.  相似文献   

4.
Enhanced biological phosphorus removal (EBPR) is one of the best-studied microbially mediated industrial processes because of its ecological and economic relevance. Despite this, it is not well understood at the metabolic level. Here we present a metagenomic analysis of two lab-scale EBPR sludges dominated by the uncultured bacterium, "Candidatus Accumulibacter phosphatis." The analysis sheds light on several controversies in EBPR metabolic models and provides hypotheses explaining the dominance of A. phosphatis in this habitat, its lifestyle outside EBPR and probable cultivation requirements. Comparison of the same species from different EBPR sludges highlights recent evolutionary dynamics in the A. phosphatis genome that could be linked to mechanisms for environmental adaptation. In spite of an apparent lack of phylogenetic overlap in the flanking communities of the two sludges studied, common functional themes were found, at least one of them complementary to the inferred metabolism of the dominant organism. The present study provides a much needed blueprint for a systems-level understanding of EBPR and illustrates that metagenomics enables detailed, often novel, insights into even well-studied biological systems.  相似文献   

5.
Enhanced biological phosphorus removal (EBPR) is a widely used process for achieving phosphorus removal from wastewater. A potential reason for EBPR failure is the undesirable growth of glycogen accumulating organisms (GAOs), which can compete for carbon sources with the bacterial group responsible for phosphorus removal from wastewater: the polyphosphate accumulating organisms (PAOs). This study investigates the impact of carbon source on EBPR performance and the competition between PAOs and GAOs. Two sequencing batch reactors (SBRs) were operated during a 4-6 month period and fed with a media containing acetate or propionate, respectively, as the sole carbon source. It was found that the acetate fed SBR rarely achieved a high level of phosphorus removal, and that a large portion of the microbial community was comprised of "Candidatus Competibacter phosphatis", a known GAO. The propionate fed SBR, however, achieved stable phosphorus removal throughout the study, apart from one brief disturbance. The bacterial community of the propionate fed SBR was dominated by "Candidatus Accumulibacter phosphatis", a known PAO, and did not contain Competibacter. In a separate experiment, another SBR was seeded with a mixture of PAOs and a group of alphaproteobacterial GAOs, both enriched with propionate as the sole carbon source. Stable EBPR was achieved and the PAO population increased while the GAOs appeared to be out-competed. The results of this paper suggest that propionate may provide PAOs with a selective advantage over GAOs in the PAO-GAO competition, particularly through the minimisation of Competibacter. Propionate may be a more suitable substrate than acetate for enhancing phosphorus removal in EBPR systems.  相似文献   

6.
Recently, some research in the field of enhanced biological phosphorus removal (EBPR) has been focused on studying systems where the electron donor (substrate) and the electron acceptor (nitrate or oxygen) are present simultaneously. This can occur, for example, in a full scale wastewater treatment plant during heavy rainfall periods when the anaerobic hydraulic retention time is temporarily shortened. To study this situation that could induce EBPR failure, the operation of a sequencing batch reactor (SBR) working under alternating anaerobic-aerobic conditions with an enriched EBPR population (50% Candidatus Accumulibacter phosphatis and less than 1% Candidatus Competibacter phosphatis) was shifted to strict aerobic operation. Seven cycle studies were performed during the 11 days of aerobic operation. Net P-removal was observed in this aerobic SBR during the first 4 days of operation but the system could not achieve net-P removal after this period, although the microbial composition, in terms of percentage of Accumulibacter and Competibacter, did not change significantly. The observed changes in the different compounds analysed (phosphorus, acetate, glycogen and PHB) as well as in the OUR profile indicate that metabolic changes are produced for the adaptation of PAO to aerobic conditions.  相似文献   

7.
Activated sludge communities which performed enhanced biological phosphate removal (EBPR) were phylogenetically analyzed by 16S rRNA-targeted molecular methods. Two anaerobic-aerobic sequencing batch reactors were operated with two different carbon sources (acetate vs. a complex mixture) for three years and showed anaerobic-aerobic cycles of polyhydroxybutyrate- (PHB) and phosphate-accumulation characteristic for EBPR-systems. In situ hybridization showed that the reactor fed with the acetate medium was dominated by bacteria phylogenetically related to the Rhodocyclus-group within the beta-Proteobacteria (81% of DAPI-stained cells). The reactor with the complex medium was also predominated by this phylogenetic group albeit at a lesser extent (23% of DAPI-stained cells). More detailed taxonomic information on the dominant bacteria in the acetate-reactor was obtained by constructing clone libraries of 16S rDNA fragments. Two different types of Rhodocyclus-like clones (R1 and R6) were retrieved. Type-specific in situ hybridization and direct rRNA-sequencing revealed that R6 was the type of the dominant bacteria. Staining of intracellular polyphosphate- and PHB-granules confirmed that the R6-type bacterium accumulates PHB and polyphosphate just as predicted by the metabolic models for EBPR. High similarities to 16S rDNA fragments from other EBPR-sludges suggest that R6-type organisms were present and may play an important role in EBPR in general. Although the R6-type bacterium is closely related to the genus Rhodocyclus, it did not grow phototrophically. Therefore, we propose a provisional new genus and species Candidatus Accumulibacter phosphatis.  相似文献   

8.
Propionate, a carbon substrate abundant in many prefermenters, has been shown in several previous studies to be a more favorable substrate than acetate for enhanced biological phosphorus removal (EBPR). The anaerobic metabolism of propionate by polyphosphate accumulating organisms (PAOs) is studied in this paper. A metabolic model is proposed to characterize the anaerobic biochemical transformations of propionate uptake by PAOs. The model is demonstrated to predict very well the experimental data from a PAO culture enriched in a laboratory-scale reactor with propionate as the sole carbon source. Quantitative fluorescence in-situ hybridization (FISH) analysis shows that Candidatus Accumulibacter phosphatis, the only identified PAO to date, constitute 63% of the bacterial population in this culture. Unlike the anaerobic metabolism of acetate by PAOs, which induces mainly poly-beta-hydroxybutyrate (PHB) production, the major fractions of poly-beta-hydroxyalkanoate (PHA) produced with propionate as the carbon source are poly-beta-hydroxyvalerate (PHV) and poly-beta-hydroxy-2-methylvalerate (PH2MV). PHA formation correlates very well with a selective (or nonrandom) condensation of acetyl-CoA and propionyl-CoA molecules. The maximum specific propionate uptake rate by PAOs found in this study is 0.18 C-mol/C-mol-biomass . h, which is very similar to the maximum specific acetate uptake rate reported in literature. The energy required for transporting 1 carbon-mole of propionate across the PAO cell membrane is also determined to be similar to the transportation of 1 carbon-mole of acetate. Furthermore, the experimental results suggest that PAOs possess a similar preference toward acetate and propionate uptake on a carbon-mole basis.  相似文献   

9.
Enhanced biological phosphorus removal (EBPR) performance is directly affected by the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs). This study investigates the effects of carbon source on PAO and GAO metabolism. Enriched PAO and GAO cultures were tested with the two most commonly found volatile fatty acids (VFAs) in wastewater systems, acetate and propionate. Four sequencing batch reactors (SBRs) were operated under similar conditions and influent compositions with either acetate or propionate as the sole carbon source. The stimulus for selection of the PAO and GAO phenotypes was provided only through variation of the phosphorus concentration in the feed. The abundance of PAOs and GAOs was quantified using fluorescence in situ hybridisation (FISH). In the acetate fed PAO and GAO reactors, "Candidatus Accumulibacter phosphatis" (a known PAO) and "Candidatus Competibacter phosphatis" (a known GAO) were present in abundance. A novel GAO, likely belonging to the group of Alphaproteobacteria, was found to dominate the propionate fed GAO reactor. The results clearly show that there are some very distinctive differences between PAOs and GAOs in their ability to take up acetate and propionate. PAOs enriched with acetate as the sole carbon source were immediately able to take up propionate, likely at a similar rate as acetate. However, an enrichment of GAOs with acetate as the sole carbon source took up propionate at a much slower rate (only about 5% of the rate of acetate uptake on a COD basis) during a short-term switch in carbon source. A GAO enrichment with propionate as the sole carbon source took up acetate at a rate that was less than half of the propionate uptake rate on a COD basis. These results, along with literature reports showing that PAOs fed with propionate (also dominated by Accumulibacter) can immediately switch to acetate, suggesting that PAOs are more adaptable to changes in carbon source as compared to GAOs. This study suggests that the PAO and GAO competition could be influenced in favour of PAOs through the provision of propionate in the feed or even by regularly switching the dominant VFA species in the wastewater. Further study is necessary in order to provide greater support for these hypotheses.  相似文献   

10.
The diversity of the putative polyphosphate-accumulating genus Tetrasphaera in wastewater treatment systems with enhanced biological phosphorus removal (EBPR) was investigated using the full-cycle rRNA approach combined with microautoradiography and histochemical staining. 16S rRNA actinobacterial gene sequences were retrieved from different full-scale EBPR plants, and the sequences belonging to the genus Tetrasphaera (family Intrasporangiaceae) were found to form three clades. Quantitative FISH analyses of the communities in five full-scale EBPR plants using 10 new oligonucleotide probes were carried out. The results showed that the probe-defined Tetrasphaera displayed different morphologies and constituted up to 30% of the total biomass. It was shown that active uptake of orthophosphate and formation of polyphosphate took place in most of the probe-defined Tetrasphaera populations. However, aerobic uptake of orthophosphate only took place after uptake of certain carbon sources under anaerobic conditions and these were more diverse than hitherto assumed: amino acids, glucose, and for some also acetate. Tetrasphaera seemed to occupy a slightly different ecological niche compared with 'Candidatus Accumulibacter' contributing to a functional redundancy and stability of the EBPR process.  相似文献   

11.
A laboratory scale sequencing batch reactor (SBR) operating for enhanced biological phosphorus removal (EBPR) and fed with a mixture of volatile fatty acids (VFAs) showed stable and efficient EBPR capacity over a four-year-period. Phosphorus (P), poly-beta-hydroxyalkanoate (PHA) and glycogen cycling consistent with classical anaerobic/aerobic EBPR were demonstrated with the order of anaerobic VFA uptake being propionate, acetate then butyrate. The SBR was operated without pH control and 63.67 +/- 13.86 mg P l-1 was released anaerobically. The P% of the sludge fluctuated between 6% and 10% over the operating period (average of 8.04 +/- 1.31%). Four main morphological types of floc-forming bacteria were observed in the sludge during one year of in-tensive microscopic observation. Two of them were mainly responsible for anaerobic/aerobic P and PHA transformations. Fluorescence in situ hybridization (FISH) and post-FISH chemical staining for intracellular polyphosphate and PHA were used to determine that 'Candidatus Accumulibacter phosphatis' was the most abundant polyphosphate accumulating organism (PAO), forming large clusters of coccobacilli (1.0-1.5 micro m) and comprising 53% of the sludge bacteria. Also by these methods, large coccobacillus-shaped gammaproteobacteria (2.5-3.5 micro m) from a recently described novel cluster were glycogen-accumulating organisms (GAOs) comprising 13% of the bacteria. Tetrad-forming organisms (TFOs) consistent with the 'G bacterium' morphotype were alphaproteobacteria, but not Amaricoccus spp., and comprised 25% of all bacteria. According to chemical staining, TFOs were occasionally able to store PHA anaerobically and utilize it aerobically.  相似文献   

12.
13.
The microbial selection on an enhanced biological phosphorus removal (EBPR) system was investigated in a laboratory-scale sequencing batch reactor fed exclusively with glucose as the carbon source. Fluorescence In Situ Hybridization analysis was performed to target two polyphosphate accumulating organisms (PAOs) (i.e., Candidatus Accumulibacter phosphatis and Microlunatus phosphovorus) and two glycogen accumulating organisms (GAOs) (i.e., Candidatus Competibacter phosphatis and Micropruina glycogenica). The results show that glucose might not select for Candidatus Accumulibacter phosphatis. However, Microlunatus phosphovorus, Candidatus Competibacter phosphatis, and Micropruina glycogenica might be selected. The highest percent relative abundance (% RA) of Candidatus Accumulibacter phosphatis was about 42%; this occurred at the beginning of the experimental period when phosphorus removal was efficient. However, the % RA of these bacteria decreased, reaching below 4% at the end of the run. The maximum % RA of Microlunatus phosphovorus, Candidatus Competibacter phosphatis, and Micropruina glycogenica was about 21, 37, 17%, respectively. It appears that a higher glucose concentration might be detrimental for Microlunatus phosphovorus and Micropruina glycogenica. Results also indicate a dominance of GAOs over PAOs when EBPR systems are fed with glucose. It is possible that the GAOs outcompete the PAOs at low pH values; it has been reported that at low pH, GAOs use glycogen as the energy source to uptake glucose. As a result, P-removal deteriorated. Therefore, glucose is not a strong candidate as a carbon source to supplement EBPR systems that do not contain sufficient volatile fatty acids.  相似文献   

14.
Polyphosphate kinase genes from full-scale activated sludge plants   总被引:1,自引:0,他引:1  
The performance of enhanced biological phosphorus removal (EBPR) wastewater treatment processes depends on the presence of bacteria that accumulate large quantities of polyphosphate. One such group of bacteria has been identified and named Candidatus Accumulibacter phosphatis. Accumulibacter-like bacteria are abundant in many EBPR plants, but not much is known about their community or population ecology. In this study, we used the polyphosphate kinase gene (ppk1) as a high-resolution genetic marker to study population structure in activated sludge. Ppk1 genes were amplified from samples collected from full-scale wastewater treatment plants of different configurations. Clone libraries were constructed using primers targeting highly conserved regions of ppk1, to retrieve these genes from activated sludge plants that did, and did not, perform EBPR. Comparative sequence analysis revealed that ppk1 fragments were retrieved from organisms affiliated with the Accumulibacter cluster from EBPR plants but not from a plant that did not perform EBPR. A new set of more specific primers was designed and validated to amplify a 1,100 bp ppk1 fragment from Accumulibacter-like bacteria. Our results suggest that the Accumulibacter cluster has finer-scale architecture than previously revealed by 16S ribosomal RNA-based analyses. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Enhanced biological phosphorus removal (EBPR) exploits the metabolism of polyphosphate-accumulating organisms (PAOs) to remove excess phosphorus (P) from wastewater treatment. Candidatus Accumulibacter phosphatis (Accumulibacter) is the most abundant and well-studied PAO in EBPR systems. In a previous study, we detected polyphosphates throughout peripheral bay sediments, and hypothesized that an estuary is an ideal setting to evaluate PAOs in a natural system, given that estuaries are characterized by dynamic dissolved oxygen fluctuations that potentially favour PAO metabolism. We detected nucleotide sequences attributable to Accumulibacter (16S rRNA, ppk1) in sediments within three peripheral bays of the Columbia River estuary at abundances rivalling those observed in conventional wastewater treatment plants (0.01%–2.6%). Most of the sequences attributable to Accumulibacter were Type I rather than Type II, despite the fact that the estuary does not have particularly high nutrient concentrations. The highest diversity of Accumulibacter was observed in oligohaline peripheral bays, while the greatest abundances were observed at the mouth of the estuary in mesohaline sediments in the spring and summer. In addition, an approximately 70% increase in polyphosphate concentrations observed at one of the sites between dawn and dusk suggests that PAOs may play an important role in P cycling in estuary sediments.  相似文献   

16.
Most of the genes encoding the enzymes involved in polyP synthesis and degradation and in phosphate transport have been studied in various Gram-negative bacteria. Progress has also been made in studying the biochemical mechanisms underlying the process of enhanced biological phosphorus removal (EBPR), in particular in lab-scale systems fed with acetate or acetate plus glucose as the sole carbon and energy sources. By applying 13C-NMR, previous models concerning anaerobic carbon metabolism have been advanced and the role of glycogen in providing reducing equivalents in EBPR is definitely demonstrated. The role of the citric acid cycle in supplying reducing equivalents for the conversion of acetyl-CoA into poly-beta-hydroxybutyrate and poly-beta-hydroxyvalerate has been discussed. An incomplete citric acid cycle has been proposed to provide a small part of the reducing equivalents. Polyphosphate:AMP phosphotransferase and polyphosphatase were readily detectable in EBPR sludge fed with acetate plus glucose, but polyphosphate kinase remained undetected. In a lab-scale EBPR system, fed for several months with only acetate as carbon source, a Rhodocyclus-like bacterium (R6) was highly enriched and is therefore probably responsible for EBPR in systems fed with acetate only. This R6-type bacterium was however also present in other EBPR sludges (but to a lesser extent), and may therefore play an important role in EBPR in general. This organism accumulates polyhydroxyalkanoates anaerobically and polyP under aerobic conditions. Unlike members of the genus Rhodocyclus, bacterium R6 cannot grow phototrophically. Therefore a provisional new genus Candidatus and species Accumulibacter phosphatis was proposed.  相似文献   

17.
"Candidatus Accumulibacter phosphatis" is considered a polyphosphate-accumulating organism (PAO) though it has not been isolated yet. To reveal the denitrification ability of this organism, we first concentrated this organism by flow cytometric sorting following fluorescence in situ hybridization (FISH) using specific probes for this organism. The purity of the target cells was about 97% of total cell count in the sorted sample. The PCR amplification of the nitrite reductase genes (nirK and nirS) from unsorted and sorted cells was performed. Although nirK and nirS were amplified from unsorted cells, only nirS was detected from sorted cells, indicating that "Ca. Accumulibacter phosphatis" has nirS. Furthermore, nirS fragments were cloned from unsorted (Ba clone library) and sorted (Bd clone library) cells and classified by restriction fragment length polymorphism analysis. The most dominant clone in clone library Ba, which represented 62% of the total number of clones, was not found in clone library Bd. In contrast, the most dominant clone in clone library Bd, which represented 59% of the total number of clones, represented only 2% of the total number of clones in clone library Ba, indicating that this clone could be that of "Ca. Accumulibacter phosphatis." The sequence of this nirS clone exhibited less than 90% similarity to the sequences of known denitrifying bacteria in the database. The recovery of the nirS genes makes it likely that "Ca. Accumulibacter phosphatis" behaves as a denitrifying PAO capable of utilizing nitrite instead of oxygen as an electron acceptor for phosphorus uptake.  相似文献   

18.
Laboratory-scale sequencing batch reactors (SBRs) as models for activated sludge processes were used to study enhanced biological phosphorus removal (EBPR) from wastewater. Enrichment for polyphosphate-accumulating organisms (PAOs) was achieved essentially by increasing the phosphorus concentration in the influent to the SBRs. Fluorescence in situ hybridization (FISH) using domain-, division-, and subdivision-level probes was used to assess the proportions of microorganisms in the sludges. The A sludge, a high-performance P-removing sludge containing 15.1% P in the biomass, was comprised of large clusters of polyphosphate-containing coccobacilli. By FISH, >80% of the A sludge bacteria were beta-2 Proteobacteria arranged in clusters of coccobacilli, strongly suggesting that this group contains a PAO responsible for EBPR. The second dominant group in the A sludge was the Actinobacteria. Clone libraries of PCR-amplified bacterial 16S rRNA genes from three high-performance P-removing sludges were prepared, and clones belonging to the beta-2 Proteobacteria were fully sequenced. A distinctive group of clones (sharing >/=98% sequence identity) related to Rhodocyclus spp. (94 to 97% identity) and Propionibacter pelophilus (95 to 96% identity) was identified as the most likely candidate PAOs. Three probes specific for the highly related candidate PAO group were designed from the sequence data. All three probes specifically bound to the morphologically distinctive clusters of PAOs in the A sludge, exactly coinciding with the beta-2 Proteobacteria probe. Sequential FISH and polyphosphate staining of EBPR sludges clearly demonstrated that PAO probe-binding cells contained polyphosphate. Subsequent PAO probe analyses of a number of sludges with various P removal capacities indicated a strong positive correlation between P removal from the wastewater as determined by sludge P content and number of PAO probe-binding cells. We conclude therefore that an important group of PAOs in EBPR sludges are bacteria closely related to Rhodocyclus and Propionibacter.  相似文献   

19.
20.
This study investigated the fate of enhanced biological phosphorus removal (EBPR) and changes in microbial speciation in a sequencing batch reactor (SBR) fed with aspartate and glutamate. It involved SBR operation for 288 days, batch tests for observation of metabolic functions together with microscopic and phylogenetic analyses. Polyphosphate accumulating organisms (PAOs) were observed in abundance with complete removal of phosphorus. Fluorescence in situ hybridization (FISH) combined with 4′,6-dia-midino-2-phenylindole (DAPI) staining confirmed the accumulation of polyphosphate by Rhodocyclus-related and Actinobacterial PAOs. Aspartate seemed to favor the competitive growth of Rhodocyclus-related PAOs since EBPR population used the common biochemical pathways followed by Rhodocyclus-related PAOs in the aspartate fed batch tests. In the glutamate fed batch reactors, however, Actinobacterial PAOs appeared to be competitively selected which explains the lower levels of PHA generation. Even though operational conditions did not change, effective EBPR could not be maintained during the latter part of the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号