首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genomic analysis of a hyperthermophilic archaeon, Thermococcus onnurineus NA1 [1], revealed the presence of an open reading frame consisting of 1,377 bp similar to alpha-amylases from Thermococcales, encoding a 458-residue polypeptide containing a putative 25-residue signal peptide. The mature form of the alpha-amylase was cloned and the recombinant enzyme was characterized. The optimum activity of the enzyme occurred at 80 degrees C and pH 5.5. The enzyme showed a liquefying activity, hydrolyzing maltooligosaccharides, amylopectin, and starch to produce mainly maltose (G2) to maltoheptaose (G7), but not pullulan and cyclodextrin. Surprisingly, the enzyme was not highly thermostable, with half-life (t(1/2)) values of 10 min at 90 degrees C, despite the high similarity to alpha-amylases from Pyrococcus. Factors affecting the thermostability were considered to enhance the thermostability. The presence of Ca2+ seemed to be critical, significantly changing t(1/2) at 90 degrees C to 153 min by the addition of 0.5 mM Ca2+. On the other hand, the thermostability was not enhanced by the addition of Zn2+ or other divalent metals, irrespective of the concentration. The mutagenetic study showed that the recovery of zinc-binding residues (His175 and Cys189) enhanced the thermostability, indicating that the residues involved in metal binding is very critical for the thermostability.  相似文献   

2.
To expand the functionality of lipase from Rhizopus arrhizus (RAL) we have used error-prone PCR and DNA shuffling methods to create RAL mutants with improved thermostability and the optimum temperature. One desirable mutant with three amino acids substitution was obtained. The mutated lipase was purified and characterized. The optimum temperature of the mutant lipase was higher by 10 °C than that of the wild-type RAL (WT-RAL). In addition, the thermostability characteristic of the mutant was also improved as the result of directed evolution. The half-life (T1/2) at 50 °C of the mutant exceeded those of WT-RAL by 12-fold. To confirm which substitution contributed to enhance thermostability and the optimum temperature for lipase activity, three chimeric lipases: chimeric lipase 1(CL-1; A9T), chimeric lipase 2 (CL-2; E190V) and chimeric lipase 3 (CL-3; M225I) from the WT-RAL gene were constructed. Each of the chimeric enzymes was purified and characterized. Amino acid substitution at position 190 was determined to be critical for lipase thermostability and the optimum temperature, while the residue at position 9 and 225 had only marginal effect. The mutational effect is interpreted according to a simulated three-dimensional structure for the mutant lipase.  相似文献   

3.
Maltogenic amylases (MAases), a subclass of cyclodextrin (CD)-hydrolyzing enzymes belonging to glycoside hydrolase family 13, have been studied extensively, but their physiological roles in microbes and evolutionary relationships with other amylolytic enzymes remain unclear. Here, we report the biochemical properties of a thermostable archaeal MAase from Thermoplasma volcanium GSS1 (TpMA) for the first time. The primary structure and catalytic properties of TpMA were similar to those of MAases, such as possession of an extra domain at its N-terminal and preference for CD over starch. TpMA showed high thermostability and optimal activity at 75 degrees C and 80 degrees C for beta-CD and soluble starch, respectively. The recombinant TpMA exists as a high oligomer in a solution and the oligomeric TpMA was dissociated into dimer and monomer mixture by a high concentration of NaCl. The substrate preference and thermostability of TpMA were significantly dependent on the oligomeric state of the enzyme. However, TpMA exhibited distinguishable characteristics from those of bacterial MAases. The transglycosylation pattern of TpMA was opposite to that of bacterial MAases. TpMA formed more alpha-1,4-glycosidic linked transfer product than alpha-1,6-linked products. Like as alpha-amylases, notably, TpMA has a longer subsite structure than those of other CD-degrading enzymes. Our findings in this study suggest that TpMA, the archaeal MAase, shares characteristics of both bacterial MAases and alpha-amylases, and locates in the middle of the evolutionary process between alpha-amylases and bacterial MAases.  相似文献   

4.
The oligonucleotide encoding Bam HI recognition site having the structure pCGGGATC had been inserted into the recognition sites MspI of the B. amyloliquefaciens alpha-amylase gene, which was cloned in pTG29B plasmid. The alpha-amylase gene had no BamHI sites before mutagenesis. The set of pNSBamHI plasmids with BamHI site at four different positions was obtained. It was shown that all the mutant alpha-amylases possess different specific activities. One of the mutant proteins possesses reduced thermostability. The mutant alpha-amylases can be used for further experiments on protein-engineering of liquefying-type alpha-amylases.  相似文献   

5.
Summary Amino acid residues of the carboxyl-terminal region of kanamycin nucleotidyltransferase were modified using segment-directed mutagenesis. Six different mutant enzymes with single amino acid replacements were selected out of 59 clones by DNA sequence analyses. The mutant enzymes were purified and it was found that the thermostability of one mutant enzyme was identical to the wild type, whereas the other five were less thermostable at varying degrees. The data suggested that changes in the enzyme thermostability depend not only on the position but also on the species of amino acid residue replaced.  相似文献   

6.
Three different alpha-amylases from Bacillus subtilis, B. amyloliquefaciens, and B. licheniformis, were mutually compared with respect to thermal stability, pressure stability, and combined pressure-temperature stability. Measurements of residual enzyme activity and residual denaturation enthalpy showed that the alpha-amylase from B. licheniformis has by far the highest thermostability and that the two other alpha-amylases have thermostabilities of the same order of magnitude. FTIR spectroscopy showed that changes in the conformation of the alpha-amylases from B. amyloliquefaciens, B. subtilis, and B. licheniformis due to pressure occurred at about 6.5, 7.5, and 11 kbar, respectively. It seemed that, for the enzymes studied, thermal stability was correlated with pressure stability. As to the resistance under combined heat and high pressure, the alpha-amylase from B. licheniformis was much more stable than the alpha-amylases from B. amyloliquefaciens and B. subtilis, the latter two being about equally stable. It appears that under high pressure and/or temperature, B. licheniformis alpha-amylase is the most resistant among the three enzymes studied. (c) 1996 John Wiley & Sons, Inc.  相似文献   

7.
Bacillus licheniformis alpha-amylase (BLA) is a starch-degrading enzyme that is highly thermostable although it is produced by a rather mesophilic organism. Over the last decade, the origin of BLA thermal properties has been extensively investigated in both academic and industrial laboratories, yet it is poorly understood. Here, we have used structure-based mutagenesis in order to probe the role of amino acid residues previously proposed as being important for BLA thermostability. Residues involved in salt-bridges, calcium binding or potential deamidation processes have been selected and replaced with various amino acids using a site-directed mutagenesis method, based on informational suppression. A total of 175 amylase variants were created and analysed in vitro. Active amylase variants were tested for thermostability by measuring residual activities after incubation at high temperature. Out of the 15 target residues, seven (Asp121, Asn126, Asp164, Asn192, Asp200, Asp204 and Ala269) were found to be particularly intolerant to any amino acid substitutions, some of which lead to very unstable mutant enzymes. By contrast, three asparagine residues (Asn172, Asn188 and Asn190) could be replaced with amino acid residues that significantly increase the thermostability compared to the wild-type enzyme. The highest stabilization event resulted from the substitution of phenylalanine in place of asparagine at position 190, leading to a sixfold increase of the enzyme's half-life at 80 degrees C (pH 5.6, 0.1 mM CaCl(2)).These results, combined with those of previous mutational analyses, show that the structural determinants contributing to the overall thermostability of BLA concentrate in domain B and at its interface with the central A domain. This region contains a triadic Ca-Na-Ca metal-binding site that appears extremely sensitive to any modification that may alter or reinforce the network of electrostatic interactions entrapping the metal ions. In particular, a loop spanning from residue 178 to 199, which undergoes pronounced conformational changes upon removal of calcium, appears to be the key feature for maintaining the enzyme structural integrity. Outside this region, most salt-bridges that were destroyed by mutations were found to be dispensable, except for an Asp121-Arg127 salt-bridge that contributes to the enhanced thermostability of BLA compared to other homologous bacterial alpha-amylases. Finally, our studies demonstrate that the natural resistance of BLA against high temperature is not optimized and can be enhanced further through various means, including the removal of possibly deamidating residues.  相似文献   

8.
For the development of a method capable of predicting single point mutations substantially affecting protein thermostability, we studied the effect of the E85R and R82E mutations on the thermostability of thioredoxins from Escherichia coli (Trx) andBacillus acidocaldarius (BacTrx), respectively. The basic method of investigation was the molecular dynamics simulation of 3D protein models in an explicit solvent at different temperatures (300 and 373 K). Some thermolabile regions in Trx, BacTrx, and their mutants were revealed by analyzing the temperature effect on the molecular dynamics of the protein molecule. The effect of single point mutations on the temperature changes of the protein conformation flexibility in several thermolabile regions was found. The results of the simulations are in accord with experimental data indicating that the mutation E85R increases Trx thermostability, whereas the mutation R82E decreases BacTrx thermostability. The thermostability of these proteins was revealed to depend on ionic interactions between the thermolabile regions. The single point mutations change the parameters of these interactions and make them more favorable in the E85R-Trx mutant and less favorable in the R82E-BacTrx mutant.  相似文献   

9.
For the development of a method for the prediction of single point mutations substantially affecting protein thermostability, we studied the effect of the E85R and R82E mutations on the thermostability of thioredoxins from Escherichia coli (Trx) and Bacillus acidocaldarius (BacTrx), respectively. The basic method of investigation was the molecular dynamics simulation of 3D protein models in a particular solvent at different temperatures (300 and 373 K). Some thermolabile regions in Trx, BacTrx, and their mutants were revealed by analyzing the temperature effect on the molecular dynamics of the protein molecule. The effect of single point mutations on the temperature changes of the protein conformation mobility in several thermolabile regions was found. The results of the calculations are in accord with the experimental data indicating that the mutation E85R increases Trx thermostability, whereas the mutation R82E decreases BacTrx thermostability. The thermostability of these proteins was revealed to depend on ionic interactions between the thermolabile regions. The single point mutations change the parameters of these interactions and make them more favorable in the E85R-Trx mutant and less favorable in the R82E-BacTrx mutant. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 5; see also http: // www.maik.ru.  相似文献   

10.
The genes encoding the thermostable alpha-amylases of Bacillus stearothermophilus and B. licheniformis were cloned in Escherichia coli, and their DNA sequences were determined. The coding and deduced polypeptide sequences are 59 and 62% homologous to each other, respectively. The B. stearothermophilus protein differs most significantly from that of B. licheniformis in that it possesses a 32-residue COOH-terminal tail. Transformation of E. coli with vectors containing either gene resulted in the synthesis and secretion of active enzymes similar to those produced by the parental organisms. A plasmid was constructed in which the promoter and the NH2-terminal two-thirds of the B. stearothermophilus coding sequence was fused out of frame to the entire mature coding sequence of the B. licheniformis gene. Approximately 1 in 5,000 colonies transformed with this plasmid was found to secrete an active amylase. Hybridization analysis of plasmids isolated from these amylase-positive colonies indicated that the parental coding sequences had recombined by homologous recombination. DNA sequence analysis of selected hybrid genes revealed symmetrical, nonrandom distribution of loci at which the crossovers had resolved. Several purified hybrid alpha-amylases were characterized and found to differ with respect to thermostability and specific activity.  相似文献   

11.
Buettner K  Hertel TC  Pietzsch M 《Amino acids》2012,42(2-3):987-996
The thermostability of microbial transglutaminase (MTG) of Streptomyces mobaraensis was further improved by saturation mutagenesis and DNA-shuffling. High-throughput screening was used to identify clones with increased thermostability at 55°C. Saturation mutagenesis was performed at seven "hot spots", previously evolved by random mutagenesis. Mutations at four positions (2, 23, 269, and 294) led to higher thermostability. The variants with single amino acid exchanges comprising the highest thermostabilities were combined by DNA-shuffling. A library of 1,500 clones was screened and variants showing the highest ratio of activities after incubation for 30 min at 55°C relative to a control at 37°C were selected. 116 mutants of this library showed an increased thermostability and 2 clones per deep well plate were sequenced (35 clones). 13 clones showed only the desired sites without additional point mutations and eight variants were purified and characterized. The most thermostable mutant (triple mutant S23V-Y24N-K294L) exhibited a 12-fold higher half-life at 60°C and a 10-fold higher half-life at 50°C compared to the unmodified recombinant wild-type enzyme. From the characterization of different triple mutants differing only in one amino acid residue, it can be concluded that position 294 is especially important for thermostabilization. The simultaneous exchange of amino acids at sites 23, 24, 269 and 289 resulted in a MTG-variant with nearly twofold higher specific activity and a temperature optimum of 55°C. A triple mutant with amino acid substitutions at sites 2, 289 and 294 exhibits a temperature optimum of 60°C, which is 10°C higher than that of the wild-type enzyme.  相似文献   

12.
Thermostability can be increased by introducing prolines at suitable sites in target proteins. Two single (G138P, G247D) mutants and one double (G138P/G247D) mutant of xylose isomerase from Streptomyces diastaticus No.7, strain M1033 have been constructed by site-directed mutagenesis. With respect to the wild-type enzyme, G138P showed about a 100% increase in thermostability, and G247D showed an increased catalytic activity. Significantly, the double mutant, G138P/G247D displayed even higher activity than G247D and better heat stability than G138P. Its half life was about 2.5-fold greater than the wild-type enzyme, using xylose as a substrate. Molecular modelling suggested that the introduction of a proline residue in the turn of a random coil may cause the surrounding conformation to be tightened by reducing the backbone flexibility. The change in thermostability can, therefore, be explained based on changes in the molecular rigidity. Furthermore, the improvements in the properties of the double mutant indicated that the advantages of two single mutants can be combined effectively.  相似文献   

13.
Kim TJ  Park CS  Cho HY  Cha SS  Kim JS  Lee SB  Moon TW  Kim JW  Oh BH  Park KH 《Biochemistry》2000,39(23):6773-6780
A sequence alignment shows that residue 332 is conserved as glutamate in maltogenic amylases (MAases) and in other related enzymes such as cyclodextrinase and neopullulanase, while the corresponding position is conserved as histidine in alpha-amylases. We analyzed the role of Glu332 in the hydrolysis and the transglycosylation activity of Thermus MAase (ThMA) by site-directed mutagenesis. Replacing Glu332 with histidine reduced transglycosylation activity significantly, but enhanced hydrolysis activity on alpha-(1,3)-, alpha-(1,4)-, and alpha-(1,6)-glycosidic bonds relative to the wild-type (WT) enzyme. The mutant Glu332Asp had catalytic properties similar to those of the WT enzyme, but the mutant Glu332Gln resulted in significantly decreased transglycosylation activity. These results suggest that an acidic side chain at position 332 of MAase plays an important role in the formation and accumulation of transfer products by modulating the relative rates of hydrolysis and transglycosylation. From the structure, we propose that an acidic side chain at position 332, which is located in a pocket, is involved in aligning the acceptor molecule to compete with water molecules in the nucleophilic attack of the glycosyl-enzyme intermediate.  相似文献   

14.
We have obtained two types of thermostable mutant lactate oxidase - one that exhibited an E-to-G point mutation at position 160 (E160G) through error-prone PCR-based random mutagenesis, and another that exhibited an E-to-G mutation at position 160 and a V-to-I mutation at position 198 (E160G/V198I) through DNA shuffling-based random mutagenesis - both of which we have previously reported. Our molecular modeling of lactate oxidase suggests that the substitution of G for E at position 160 reduces the electrostatic repulsion between the negative charges of E160 and E130 in the (beta/alpha)8 barrel structure, but a thermal-inactivation experiment on the five kinds of single-mutant lactate oxidase at position 160 (E160A, E160Q, E160H, E160R, and E160K) showed that the side-chain volume of the amino acid at position 160 mainly contributes to the thermostability of lactate oxidase. We also produced V198I single-mutant lactate oxidase through site-directed mutagenesis, and analysed the thermostability of wild-type, V198I, E160G, and E160G/V198I lactate oxidase enzymes. The half-life of E160G/V198I lactate oxidase at 70 degrees C was about three times longer than that of E160G lactate oxidase, and was about 20 times longer than that of wild-type lactate oxidase. In contrast, the thermostability of the V198I lactate oxidase was almost identical to that of wild-type lactate oxidase. This indicates that the V198I mutation alone does not affect lactate oxidase thermostability, but does affect it when combined with the E160G mutation.  相似文献   

15.
A lysate-based thermostability and activity profile is described for chloramphenicol acetyltransferase (CAT) expressed in trifluoroleucine, T (CAT T). CAT and 13 single-isoleucine CAT mutants were expressed in medium supplemented with T and assayed for thermostability on cell lysates. Although fluorinated mutants, L82I T and L208I T, showed losses in thermostability, the L158I T fluorinated mutant demonstrated an enhanced thermostability relative to CAT T. Further characterization of L158I T suggested that T at position 158 contributed to a portion of the observed loss in thermostability upon global fluorination.  相似文献   

16.
An aromatic amino acid at position 115 (tryptophan residue; subsite S2) in thermolysin is known to be essential for proteolytic activity of thermolysin. Mutant enzymes substituted by phenylalanine (W115F) and tyrosine (W115Y) at position 115 were expressed at similar levels as the wild type (WT) enzyme in Bacillus subtilis . The thermostability of the W115Y mutant enzyme was equal to that of the WT. However, that of the W115F mutant enzyme was significantly lower than the WT. Enzymatic kcat/Km values of W115F increased to about twice those of the WT, but W115F also seemed to promote increased autodegradation compared with the WT and W115Y enzymes.  相似文献   

17.
为了进一步揭示蛋白质的耐热机制,对含有耐热碱性磷酸酯酶(FD-TAP)的表达质粒pTAP503F进行了随机诱变,用菌落原位显色法从约5000个转化子中筛选到4个耐热性下降的突变型克隆,并对其中1克隆(TAPM3)进行了部分酶学性质、DNA和氨基酸序列的研究。酶学性质研究表明,与野生型相比,该突变型酶的耐热性有较大幅度的下降,而热激活性无明显改变。DNA序列分析表明在1239位TAPM3发生G→A转  相似文献   

18.
A thermostability screening assay was developed using an Escherichia coli expression system to express Streptomyces lividans xylanase A (XlnA). The screening system was tested using mutants randomized at position 49 of the S. lividans XlnA gene, a position previously shown to confer thermostability with a I49P point mutation. The library was cloned into an E. coli expression vector and transformed into XL1-blue bacteria. The resulting clones were screened for increased thermostability with respect to wild-type XlnA. Using this assay, we isolated the I49P mutant previously shown to be thermostable, as well as novel I49A and I49C mutants. The I49A and I49C mutants were shown to have 2.8- to 8-fold increase in thermostability over that of wild-type XlnA. The results show that the screening assay can selectively enrich for clones with increased thermostability and is suitable for screening small- to medium-sized libraries of 5000–20,000 clones. Journal of Industrial Microbiology & Biotechnology (2000) 25, 310–314. Received 18 May 2000/ Accepted in revised form 19 September 2000  相似文献   

19.
20.
Differential scanning calorimetry (DSC) was used as a tool for rapid assay of the thermostability of two Bacillus sp. alpha-amylases and horseradish peroxidase as a function of the concentration of glycerol, sorbitol, and sucrose. In this screening study, the DSC peak temperature proved to be a good measure of protein thermostability. By means of isothermal heating experiments, the kinetics of heat decay of B. amyloliquefaciens alpha-amylase were studied by following the course of the DSC peak area (heat exchange (DeltaH/wt)) as a function of time. The high stability of this enzyme in the presence of polyolic alcohols or carbohydrates allowed working at temperatures as high as 127 degrees C. The results of this study can have particular relevance with regard to research on and development of protein-based time-temperature integrators (TTls) for evaluating heat pasteurization or sterilization treatments of foods or pharmaceutical products. The use of the DSC peak area (DeltaH.wt) as TTI-response was validated in experiments with a time-variable temperature profile. Finally, it was shown how the results of such non-isothermal experiments can even be used for (re-) estimation of the protein decay kinetic parameters (k, E(A)). (c) 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号