首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D-氨基酸氧化酶是两步酶法制备7-氨基头孢烷酸(7-ACA)这一半合成头孢类抗生素的主要前体的关键酶.它催化的反应是需氧反应,反应体系的溶氧水平是酶活的限制因素之一.我们发现将纯化的透明颤菌血红蛋白(VHb)分别添加到三角酵母来源(TvDAO)和红酵母来源(RgDAO)的D-氨基酸氧化酶的纯酶中,可提高这两种氧化酶的活力35%和48%.细菌双杂交实验证明,透明颤菌血红蛋白与RgDAO有相互作用,而与TvDAO没有关联.这说明透明颤菌血红蛋白对氧化酶活力的促进是由于自身向氧化酶提供游离氧,而且它与氧化酶之间的相互作用可以增强这种效果.我们可以利用透明颤菌血红蛋白的这种性质把它作为氧化酶酶促反应的添加剂,提高酶促反应的效率,如果该氧化酶与之有相互作用,效果会更加显著.  相似文献   

2.
A protocol is presented for preparing Rhodotorula gracilis D-amino acid oxidase in homogeneous form and in high yield in 3 to 4 days. The method takes advantage of (a) cell rupture by alternate freeze-thawing, (b) use of DEAE-Sepharose to bind contaminants, and (c) enzyme binding to a Mono S column. The D-amino acid oxidase isolated by this means has the same spectral and catalytic properties as the enzyme previously obtained, and possesses improved long-term stability.  相似文献   

3.
The physiological role of D-amino acid oxidase was investigated by using mutant ddY/DAO- mice lacking the enzyme. Free D-amino acid concentrations in the mutant mice were significantly higher than those of control ddY/DAO+ mice in kidney, liver, lung, heart, brain, erythrocytes, serum and urine. The results suggest that the enzyme is involved in the catabolism of free D-amino acids in the body, and that free D-amino acids are also excreted into urine.  相似文献   

4.
从荧光假单胞菌TM5-2中得到一个含丙氨酸消旋酶基因的DNA片段(8.8kb),相邻的一个开读框(ORF)与甘氨酸/D-型氨基酸氧化酶基因相似。该ORF经过克隆、表达,并没有检测到甘氨酸/D-型氨基酸氧化酶的活性,推导而得的氨基酸序列与D-型氨基酸脱氢酶序列比较发现,ORF含有D-型氨基酸脱氢酶的所有重要的保守序列。经TTC培养基鉴定,其具有D-型氨基酸脱氢酶的活性,并对一系列D-型氨基酸有作用,最佳作用底物是D-组氨酸。  相似文献   

5.
Aminotransferase reacting between D-amino acids and α-keto acids was found in the germinating pea seedlings. With partial purification, it was evident that the enzyme preparation contained no racemase and L-amino acid aminotransferase and was only specific for D-amino acid transamination. Large amounts of D-alanine found in the germinating pea seedlings were assumed to be formed by this enzyme action.  相似文献   

6.
D-amino acid oxidase (DAO) is of considerable practical importance, such as bioconversion and enzymatic assay. In this study, we succeeded in obtaining a thermostable mutant DAO from porcine kidney by a single amino acid substitution. This mutant enzyme, F42C, was stable at 55 degrees C, while the wild-type enzyme was stable only up to 45 degrees C. The Km values of F42C for D-amino acids was about half of those of the wild-type enzyme. This mutant DAO with improved stability and affinity for its substrates is advantageous for the determination of D-amino acids.  相似文献   

7.
In vitro synthesis of D-amino acid oxidase [D-amino acid: O2 oxidoreductase (deaminating), EC 1.4.3.3], one of the peroxisomal flavin enzymes, was performed using a rabbit reticulocyte lysate system in order to elucidate the biosynthetic pathway of the enzyme. The apparent molecular weight of the synthesized enzyme protein was the same as that of D-amino acid oxidase purified from pig kidney. On the other hand, the enzyme protein was not detectable when a wheat germ lysate system was used for the translation. Denaturation of pig kidney poly(A)+ RNA with methylmercury hydroxide prior to the translation was found to enhance the synthesis of the enzyme protein. These results suggest a tight conformational structure of the mRNA used.  相似文献   

8.
The D-amino acid oxidase activity of Rhodosporidium toruloides CCRC 20306 was studied. The enzyme could be induced by D-alanine, and had pH and temperature optima of 8.5 and 60C, respectively. D-Amino acids with polar uncharged and/or nonpolar side chain were good substrates for the D-amino acid oxidase of CCRC 20306, whereas those with polar charged side chain were poor substrates. Benzoic acid and its derivatives were inhibitory to the enzyme activity.  相似文献   

9.
The equilibrium constants and the rate constants (binding and dissociation constants) between reduced D-amino acid oxidase and pyridine carboxylates were obtained at various pH values (from pH 6.0 to 8.3). The pH dependence of the constants is consistent with the previous conclusion from a resonance Raman study that pyridine carboxylates in the form of a cation protonated at the N atom can bind to the reduced enzyme, but those in the neutral form cannot bind, showing that the positive charge of cationic pyridine carboxylates interacts with the negative charge of the anionic reduced flavin in the reduced enzyme. The binding rate constants of picolinate and nicotinate in the cationic form for the reduced enzyme were quite similar to each other, but the dissociation rate constant of picolinate is several times smaller than that of nicotinate. Thus, it is concluded that the difference in affinity of picolinate and nicotinate for the reduced enzyme is derived from the difference of the dissociation rate constants.  相似文献   

10.
D-Amino acid oxidase (EC 1.4.3.3) activity in homogenates of Neurospora crassa strain SY7A was found to sediment with the mitochondrial fraction. Digitonin fractionation studies on purified mitochondria have indicated a matrix localization of the enzyme. Additionally, a peroxidase (EC 1.11.1.7) activity, which may remove hydrogen peroxide formed as a product of D-amino acid oxidation, was also found in the mitochondrial matrix. Partial purification (20- to 30-fold) of the mitochondrial D-amino acid oxidase was achieved. The enzyme exhibited a pH optimum between 9.0 and 9.2, temperature optimum between 20 and 30 degrees C, and a molecular weight of 118 000 +/- 6000 as determined by gel electrophoresis and 125 000 as determined by gel chromatography.  相似文献   

11.
In contrast to hog kidney D-amino acid oxidase, the v vs s plots of D-amino acid oxidase in homogenized rat kidney did not have the form of a rectangular hyperbola, and showed an apparent negative cooperativity. After subcellular fractionation of rat kidney, both of the oxidases in the supernatant fraction and the peroxisomal fraction showed Michaelis-Menten type kinetics. The Km values for D-alanine and D-proline of the peroxisomal fraction were significantly lower than those of the supernatant fraction. The partially purified enzyme from the peroxisomal fraction showed the same kinetic properties as the supernatant fraction. These facts suggest that the two types of rat kidney D-amino acid oxidase were originally identical and that some interaction between the enzyme and peroxisomes is physiologically important for the function of the enzyme.  相似文献   

12.
We report the crystal structure of an archaea-specific editing domain of threonyl-tRNA synthetase that reveals a marked structural similarity to D-amino acid deacylases found in eubacteria and eukaryotes. The domain can bind D-amino acids despite a low sequence identity to other D-amino acid deacylases. These results together indicate the presence of these deacylases in all three kingdoms of life. This underlines an important role they may have played in enforcing homochirality during translation.  相似文献   

13.
The D-amino acid amidase-producing bacterium was isolated from soil samples using an enrichment culture technique in medium broth containing D-phenylalanine amide as a sole source of nitrogen. The strain exhibiting the strongest activity was identified as Delftia acidovorans strain 16. This strain produced intracellular D-amino acid amidase constitutively. The enzyme was purified about 380-fold to homogeneity and its molecular mass was estimated to be about 50 kDa, on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme was active preferentially toward D-amino acid amides rather than their L-counterparts. It exhibited strong amino acid amidase activity toward aromatic amino acid amides including D-phenylalanine amide, D-tryptophan amide and D-tyrosine amide, yet it was not specifically active toward low-molecular-weight D-amino acid amides such as D-alanine amide, L-alanine amide and L-serine amide. Moreover, it was not specifically active toward oligopeptides. The enzyme showed maximum activity at 40 degrees C and pH 8.5 and appeared to be very stable, with 92.5% remaining activity after the reaction was performed at 45 degrees C for 30 min. However, it was mostly inactivated in the presence of phenylmethanesulfonyl fluoride or Cd2+, Ag+, Zn2+, Hg2+ and As3+ . The NH2 terminal and internal amino acid sequences of the enzyme were determined; and the gene was cloned and sequenced. The enzyme gene damA encodes a 466-amino-acid protein (molecular mass 49,860.46 Da); and the deduced amino acid sequence exhibits homology to the D-amino acid amidase from Variovorax paradoxus (67.9% identity), the amidotransferase A subunit from Burkholderia fungorum (50% identity) and other enantioselective amidases.  相似文献   

14.
D-amino acid oxidase (DAAO) is a flavoprotein that catalyzes stereospecifically the oxidative deamination of D-amino acids. The wild-type DAAO is mainly active on neutral D-amino acids, while basic D-amino acids are poor substrates and the acidic ones are virtually not oxidized. To present a comprehensive picture of how the active site residues can modulate the substrate specificity a number of mutants at position M213, Y223, Y238, R285, S335, and Q339 were prepared in the enzyme from the yeast Rhodotorula gracilis. All DAAO mutants have spectral properties similar to those of the wild-type enzyme and are catalytically active, thus excluding an essential role in catalysis; a lower activity on neutral and basic amino acids was observed. Interestingly, an increase in activity and (k(cat)/K(m))(app) ratio on D-aspartate was observed for all the mutants containing an additional charged residue in the active site. The active site of yeast DAAO appears to be a highly evolved scaffold built up through evolution to optimize the oxidative deamination of neutral D-amino acids without limiting its substrate specificity. It is noteworthy, that introduction of a sole, additional, positively charged residue in the active site is sufficient to optimize the reactivity on acidic D-amino acids, giving rise to kinetic properties similar to those of D-aspartate oxidase.  相似文献   

15.
A temperature-dependent change in the microenvironment of the coenzyme, FAD, of D-amino acid oxidase was investigated by means of steady-state and picosecond time-resolved fluorescence spectroscopy. Relative emission quantum yields from FAD bound to D-amino acid oxidase revealed the temperature transition when concentration of the enzyme was lowered. The observed fluorescence decay curves were well described with four-exponential decay functions. The amplitude of the shortest lifetime (tau 0), approximately 25 ps, was always negative, which indicates that the fluorescence of D-amino acid oxidase at approximately 520 nm appears after a metastable state of the excited isoalloxazine decays. The other components with positive amplitudes were assigned to dimer or associated forms of the enzyme, monomer, and free FAD dissociated from the enzyme. Ethalpy and entropy changes of intermediate states in the quenching processes were evaluated according to the absolute rate theory. The temperature transition was much more pronounced in the monomer than in the dimer or associated forms of the enzyme.  相似文献   

16.
D-amino acid oxidase of carp (Cyprinus carpio) hepatopancreas was overexpressed in Escherichia coli cells and purified to homogeneity for the first time in animal tissues other than pig kidney. The purified preparation had a specific activity of 293 units mg(-1) protein toward D-alanine as a substrate. It showed the highest activity toward D-alanine with a low Km of 0.23 mM and a high kcat of 190 s(-1) compared to 10 s(-1) of the pig kidney enzyme. Nonpolar and polar uncharged D-amino acids were preferable substrates to negatively or positively charged amino acids. The enzyme exhibited better thermal and pH stabilities than several yeast counterparts or the pig kidney enzyme. Secondary structure topology consisted of 11 alpha-helices and 17 beta-strands that differed slightly from pig kidney and Rhodotorula gracilis enzymes. A three-dimensional model of the carp enzyme constructed from a deduced amino acid sequence resembled that of pig kidney D-amino acid oxidase but with a shorter active site loop and a longer C-terminal loop. Judging from these characteristics, carp D-amino acid oxidase is close to the pig kidney enzyme structurally, but analogous to the R. gracilis enzyme enzymatically in turnover rate and pH and temperature stabilities.  相似文献   

17.
An enzymatic assay system of D-amino acids was established using the D-amino acid oxidase of Schizosaccharomyces pombe. In this method, the enzyme converts the D-amino acids to the corresponding α-keto acids, which are then reacted with 1,2-diamino-4,5-methylenedioxybenzene (DMB) in an organic solvent. The resultant fluorescent compounds are separated and quantified by high-performance liquid chromatography (HPLC). Use of an organic solvent following the α-keto acid modification with DMB prevents the non-enzymatic deamination of L-amino acids, which are generally present at much higher concentrations than D-amino acids in biological samples. With this method, D-Glu, D-Asn, D-Gln, D-Ala, D-Val, D-Leu, D-Phe, and D-Ile can be quantified in the order of micromolar, and other D-amino acids except D-Asp can be assayed within a sensitivity range of 50-100 μM. The established enzymatic method was used to analyze the d-amino acid contents in human urine. The concentration of D-Ser obtained using this enzymatic method (223 μM) was in good agreement with that obtained using the conventional HPLC method (198 μM). The enzymatic method also demonstrated that the human urine contained 5.45 μM of d-Ala and 0.91 μM of D-Asn. Both D-amino acids were difficult to be identified using the conventional method, because the large signals from L-amino acids masked those from d-amino acids. The enzymatic method that we have developed can circumvent this problem.  相似文献   

18.
D-Amino acid oxidase is inactivated by reaction with 1,2-cyclohexanedione in borate buffer at pH 8.8. The reaction follows pseudo-first-order kinetics. The present of benzoate, a substrate-competitive inhibitor of the enzyme, protects substantially against inactivation. Partial reactivation could be obtained by removal of borate and its substitution with phosphate buffer. The reaction of 1,2-cyclohexanedione with the enzyme at different inhibitor concentrations appears to follow a saturation kinetics, indicating the formation of an intermediate complex between enzyme and inhibitor prior to the inactivation process. The partially inactivated enzyme shows the same apparent Km but a decreased V as compared to the native D-amino acid oxidase. Similarly, the inhibited enzyme fails to bind benzoate. Amino acid analysis of the 1,2-cyclohexanedione-treated enzyme at various times of inactivation shows no loss of amino acid residues except for arginines. Analysis of the reaction data by statistical methods indicates that three arginine residues react with the inhibitor at slightly different rates, and that one of them is essential for catalytic activity. The presence of benzoate, while it prevents the loss of activity, reduces by one the number of arginine residues hit by the reagent in the reaction of 1,2-cyclohexanedione with D-amino acid oxidase.  相似文献   

19.
D-氨基酸氧化酶(D-amino acid oxidase:oxidoreductase, DAAO, EC 1.4.3.3)是一种以黄素腺嘌呤(FAD)为辅基的典型黄素蛋白酶类,可氧化D-氨基酸的氨基生成相应的酮酸和氨。在体内D-氨基酸的代谢中起着重要作用。主要介绍了D-氨基酸氧化酶的生理功能和应用、表达条件优化及通过定点突变对酶学性质的研究。  相似文献   

20.
Plasma, urine, cerebrospinal fluid (CSF), and amniotic fluid were examined to determine whether free D-amino acids were present and if so at what levels. It was found that D-amino acids exist in all physiological fluids tested, but that their level varied, considerably. The lowest levels of D-amino acids were usually found in amniotic fluid or CSF (almost always <1% of the corresponding L-amino acid). The highest levels were found in urine (usually tenth percent to low percent levels). Pipecolic acid seemed to be different from the other amino acids tested in that it was excreted primarily as the D-enantiomer (often >90%). Correspondingly high levels of D-pipecolic acid were not found in plasma. Some of the trends found in this work seemed to be analogous to those found in a recent rodent study. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号