首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven biflavones, amentoflavone, bilobetin, sequoiaflavone, ginkgetin, sciadopitysin, 7,4′,7′,4?-tetra-O-methylamentoflavone, and diooflavone (amentoflavone hexamethyl ether), were identified from extracts of the cycad genus Dioon. The biflavones were identified by direct comparison with authentic samples using m.m.p., co-chromatography in 3 solvents, and NMR studies of the acetates. This is the first time amentoflavone hexamethyl ether has been identified as a natural product. After surveying numerous species of the Cycadales, no evidence could be obtained for the occurrence of biflavone glycosides or of biflavones based upon any other nucleus than apigenin.  相似文献   

2.
Three 18-norspironstanol oligoglycosides partly acylated in their sugar moieties were isolated from the underground parts of Trillium tschonoskii. Their structures were characterized, as 1-O-[2″,3″,4″-tri-O-acetyl-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl]-epitrillenogenin-24-O-acetate, 1-O-[2″,3″,4″-tri-O-acetyl-α-l-rhamno-pyranosyl-(1 → 2)-α-l-arabinopyranosyl]-epitrillenogenin and 1-O-[2″,4″-di-O-acetyl-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl]-epitrillenogenin-24-O-acetate.  相似文献   

3.
The major flavonoids of Marchantia polymorpha var. polymorpha and aquatica are the 7-O-β-d-glucuronides of apigenin and luteolin, luteolin 3′-O-β-d-glucuronide, luteolin 7,3′-di-O-β-d-glucuronide, and the 7,4′-di-O-β-d-glucuronides of apigenin and luteolin. These are accompanied by minor amounts of apigenin, luteolin, luteolin 3′,4′-di-O-β-d-glucuronide and luteolin 7,3′,4′-tri-O-β-d-glucuronide. All the luteolin di- and triglucuronides except the 3′,4′-di- substituted compound are new natural products.  相似文献   

4.
On the basis of new spectroscopic evidence, structures are proposed for three amentoflavone glycosides and an apigenin di-C-glycoside previously isolated from Psilotum nudum. The major glycoside is identified as the 7,4′,4′“-tri-O-β-D-glucopyranoside, minor glycosides as the 4′,4′“-di-O-β-D-glucopyranoside and 7,4′“-di-O-β-D-glucopyranoside, and the apigenin di-C-glycoside as vicenin-2. The amentoflavone glucosides are all new natural products.  相似文献   

5.
Abiesin, a new biflavonoid, has been isolated from the leaves of Abies webbiana and identified as 5,3″,7″- trihydroxy-7,4′,4?-trimethoxy-(3′,6″)-biflavone.  相似文献   

6.
Treatment of 2,3,4,6-tetra-O-methyl-d-glucose with 10 molar equivalents ofn 30% aqueous hydrogen peroxide and 2 molar equivalents of potassium hydroxide afforded, after chromatographic separation, 2,3,4,6-tetra-O-methyl-d-gluconolactone. 1-O-formyl-2,3,5-tri-O-methyl-d-arabinose methyl hemiacetal (7), 2,3,5-tri-O-methyl-d-arabinonolactone, methyl 2,3,5-tri-O-methyl-d-arabinoside, O-(2,4-di-O-methyl-d-erythrose)-(1'→3)-2,4-di-O-methyl-d-erythronic acid, and O-(2,4-di-O-methyl-d-erythrose)-(1′→2)-3-O-methyl-d-glyceraldehyde. The proportions of the products depended on the reaction conditions, especially the time, temperature, and the presence or absence of magnesium hydroxide. Formation of the products is explained by a series of reactions beginning with the addition of hydrogen peroxide to the carbonyl form of the methylated sugar. The adduct, with the help of superoxide radical and a molecule of hydrogen peroxide, breaks up in two ways, giving 2,3,4,6-tetra-O-methyl-d-gluconic acid and 7. The formic ester, on hydrolysis, gives 2,3,5-tri-O-methyl-d-arabinose, which undergoes a similar series of reactions, affording 2,3,5-tri-O-methyl-d-arabinonic acid, and presumably, 1-O-formyl-2,4-di-O-methyl-d-erythrose methyl hemiacetal. Apparently, the latter compound, on hydrolysis, forms a dimer, which, with alkaline hydrogen peroxide, undergoes a similar series of reactions, ultimately affording O-(2,4-di-O-methyl-d-erythrose)-(1→3)-2,4-di-O-methyl-d-erythronic acid and O-(2,4-di-O-methyl-d-erythrose)-(1→2)-3-o-methyl-d-glyceraldehyde. With a larger amount of alkali, under more-severe conditions, oxidation of 2,3,4,6-tetra-O-methyl-d-glucose proceeds further, with production of up to 3 moles of formic acid per mole of methylated sugar.  相似文献   

7.
Five flavonols have been isolated from two species of Chrysosplenium; C. alternifolium contains penduletin 3,7-di-O-methylquercetagetin, 3,6,7-tri-O-methylquercetagetin and 3,3′,6,7-tetra-O-methylquercetagetin; C. oppositifolium possesses the last two compounds and 3,3′,7 tri-O-methylquercetagetin. These flavonols have been identified by chromatographic and spectral data; the taxonomic implication of this flavonoid pattern has been considered.  相似文献   

8.
O-α-d-Galactopyranosyl-(1→4)-O-α-d-glucopyranosyl-(1→4)-d-glucopyranose (12) was prepared by inversion of configuration at C-4″ of 2,3,2′,3′,6′,2″,3″-hepta-O-acetyl-1,6-anhydro-4″,6″-di-O-methylsulfonyl-β-maltotriose (7), followed by O-deacylation, acetylation, acetolysis, and de-O-acetylation. The intermediate 7 was obtained by treatment of 1,6-anhydro-β-maltotriose (2) with benzal chloride in pyridine, followed by acetylation, removal of the benzylidene group, and methane-sulfonylation. Selective tritylation of 2 and subsequent acetylation afforded 2,3,2′,3′,6′,2″,3″,4″-octa-O-acetyl-1,6-anhydro-6″-O-trityl-β-maltotriose (6), which was O-detritylated and p-toluenesulfonylated to give 2,3,2′,3′,6′,2″,3″,4″-octa-O-acetyl-1,6-anhydro-6″-O-p-tolylsulfonyl-β-maltotriose (13). Nucleophilic displacement of 13 with thioacetate, iodide, bromide, chloride, and azide ions gave 6″-S-acetyl- (14), 6″-iodo- (15), 6″-bromo- (16), 6″-chloro- (19), and 6″-azido- (20) 1,6-anhydro-β-maltotriose octaacetates, respectively. 6″Deoxy- (18) and 6″-acetamido-6″-deoxy (21) derivatives of 1,6-anhydro-β-maltotriose decaacetates were also prepared from 15 and 16, and 20, respectively. Acetolysis of 14, 15, 16, 18, 19, and 21 afforded 1,2,3,6,2′,3′,6′,2″,3″,4″-deca-O-acetyl-6″-S-acetyl (22), -6″-iodo (23), -6″-bromo (24), -6″-deoxy (25), -6″-chloro (26), and -6″-acetamido-6′-deoxy (27) derivatives of α-maltotriose, respectively. O-Deacetylation of 24, 25, and 26 furnished 6″-bromo-(28), 6″-deoxy- (29), and 6″-chloro- (30) maltotrioses, respectively, which on acetylation gave the corresponding β-decaacetates.  相似文献   

9.
The aminocyclitol antibiotic neamine has been chemically modified at the hydroxyl group on C-6 of the 2-deoxystreptamine moiety. The partially acetylated neamine derivatives, 6,3′,4′-tri-O-acetyl- (3) and 5,3′,4′-tri-O-acetyl-1,3,2′,6′-tetra-N-(ethoxycarbonyl)neamine (4), were prepared by random hydrolysis of the 5,6-O-ethoxyethylidene derivative (2), followed by chromatographic purification. Condensation of 4 and 2,3,5-tri-O-benzoyl-d-ribofuranosyl chloride led to 6-O-(β-d-ribofuranosyl)neamine (7). Analogous condensation of 4 with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl bromide or 2,3,4,6-tetra-O-acetyl-α-d-galactopyranosyl bromide afforded the corresponding 6-O-(d-hexopyranosyl)neamines.  相似文献   

10.
《Carbohydrate research》1987,162(2):199-207
The 2,1′-O-isopropylidene derivative (1) of 3-O-acetyl-4,6-O-isopropylidene-α-d-glucopyranosyl 6-O-acetyl-3,4-anhydro-β-d-lyxo-hexulofuranoside and 2,3,4-tri-O-acetyl-6-O-trityl-α-d-glucopyranosyl 3,4-anhydro-1,6-di-O-trityl-β-d-lyxo-hexulofuranoside have been synthesised and 1 has been converted into 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,6-di-O-acetyl-3,4-anhydro-β-d-lyxo-hexulofuranoside (2). The SN2 reactions of 2 with azide and chloride nucleophiles gave the corresponding 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-azido-4-deoxy-β-d-fructofuranoside (6) and 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-chloro-4-deoxy-β-d-fructofuranoside (8), respectively. The azide 6 was catalytically hydrogenated and the resulting amine was isolated as 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 4-acetamido-1,3,6-tri-O-acetyl-4-deoxy-β-d-fructofuranoside. Treatment of 5 with hydrogen bromide in glacial acetic acid followed by conventional acetylation gave 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-bromo-4-deoxy-β-d-fructofuranoside. Similar SN2 reactions with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,6-di-O-acetyl-3,4-anhydro-β-d-ribo-hexulofuranoside (12) resulted in a number of 4′-derivatives of α-d-glucopyranosyl β-d-sorbofuranoside. The regiospecific nucleophilic substitution at position 4′ in 2 and 12 has been explained on the basis of steric and polar factors.  相似文献   

11.
Two new biflavonoids, 7,4′,7″,4‴-tetramethylisochamaejasmin (1) and 2,3-dihydroochnaflavone 7″-O-methyl ether (2), together with six known flavonoids (38) were isolated from the stem bark of Ochna lanceolata. Their structures were established on the basis of spectral studies.  相似文献   

12.
Sixteen major components have been detected in woody tissues of Eucalyptus polyanthemos. The components identified include 2,3- and 4,6-(hexahydroxydiphenoyl)-glucose, a di-(hexahydroxydiphenoyl)-glucose known as pedunculagin, an ellagitannin which appears to be a cyclic di-(hexahydroxydiphenoyl)-diglucose, 3,4,3′-tri-O-methylellagic acid and its 4′-glucoside, 3,4,3′,4′-tetra-O- and 3,3′-di-O-methylellagic acids. A 3,3′-di-O-methylellagic acid glucoside and 2 gallotannins are possibly present in addition to the unidentified ellagitannin D-13. The distribution of these components in the woody tissues is discussed in relation to heartwood formation. The trimethylellagic acid glucoside was also present in the heartwood of other members of the red-box group of eucalypts.  相似文献   

13.
《Carbohydrate research》1987,166(1):113-121
A series of polar, high-molecular-weight compounds that comprise the major portion of nonvolatile constituents in the exudate from type B glandular trichomes of S. berthaultii Hawkes (PI 265857) were isolated by silica gel t.l.c. and identified by spectroscopic and chemical means as a complex of 3,3′,4,6-tetra-O-acylated sucrose esters. Two of the principal sucrose esters were resolved by reversed-phase t.l.c. and characterized as 6-O-capryl-3,3′,4-tri-O-isobutyrylsucrose and 6-O-capryl-3′-O-isobutyryl-3,4-di-O-(2-methylbutyryl)sucrose.  相似文献   

14.
A novel compound—2″,3″,4″,6″-tetra-O-acetyl-β-d-galactopyranosyl-(1→4)-2′,3′,6′-tri-O-acetyl-1-thio-β-d-glucopyranosyl-(5-nitro-2-pyridyl) sulfoxide—designated GP6 was synthesized and assayed for cytotoxicity and in vitro antiviral properties against classical swine fever virus (CSFV) in this study. We showed that the examined compound effectively arrested CSFV growth in swine kidney cells (SK6) at a 50% inhibitory concentration (IC50) of 5 ± 0.12 μg/ml without significant toxicity for mammalian cells. Moreover, GP6 reduced the viral E2 and Erns glycoproteins expression in a dose-dependent manner. We have excluded the possibility that the inhibitor acts at the replication step of virus life cycle as assessed by monitoring of RNA level in cells and culture medium of SK6 cells after single round of infection as a function of GP6 treatment. Using recombinant Erns and E2 proteins of classical swine fever virus produced in baculovirus expression system we have demonstrated that GP6 did not influence glycoprotein production and maturation in insect cells. In contrast to mammalian glycosylation pathway, insect cells support only the ER-dependent early steps of this process. Therefore, we concluded that the late steps of glycosylation process are probably the main targets of GP6. Due to the observed antiviral effect accompanied by low cytotoxicity, this inhibitor represents potential candidate for the development of antiviral agents for anti-flavivirus therapy. Further experiments are needed for investigating whether this compound can be used as a safe antiviral agent against other viruses from unrelated groups.  相似文献   

15.
The alkali-soluble polysaccharides have been surveyed in the seeds of 7 species of the Liliaceae and 2 species of the Iridaceae. All appear to contain galactoglucomannans and/or glucomannans. The structure of the water-soluble galactoglucomannan from the endosperm of Asparagus officinalis has been studied in detail. It contains residues of glucose, mannose and galactose in the ratio 43:49:7. Hydrolysis of the fully methylated polysaccharide released 2,3,4,6-tetra-O-methyl-d-hexoses (mannose and glucose), 2,3,4,6-tetra-O-methyl-d-galactose, 2,3,6-tri-O-methyl-d-mannose, 2,3,6-tri-O-methyl-d-glucose, 2,3-di-O-methyl-d-mannose and 2,3-di-O-methyl-d-glucose in the molar proportions of 1:4.5:50:41:2:1·5. The following oligosaccharides were identified on partial hydrolysis of the galactoglucomannan: mannobiose, mannotriose, mannotetraose, cellobiose, glucopyranosylmannose, mannopyranosylglucose and a trisaccharide composed of two mannosyl residues and one glucosyl residue. The galactoglucomannan consists of a linear chain of β(1 → 4)-Iinked d-mannosyl and d-glucosyl residues, to which are attached single-unit galactosyl side chains. The galactose residues are linked 1 → 6, probably α. The terminal, non-reducing residues of the main chain may be either glucosyl or mannosyl units but the former predominate.  相似文献   

16.
Synthetic 2′-hydroxy-3,4′,6′-trimethoxy-4-benzyloxychalcone (I) affords (±)-7,3′-di-O-methyleriodictyol (II) and 7,3′-di-O-methylluteolin (or velutin, VII) identical with natural samples. Similarly synthetic 2′-hydroxy-4,4′,6′-trimethoxy-3-benzyloxychalcone (X) gives natural (±)-7,4′-di-O-methyleriodictyol (XI) and 7,4′-di-O-methylluteolin (or pilloin, IX). However, attempts to partially etherify II with one mole of prenyl bromide to obtain the natural prenyl ether failed; only the corresponding diprenyloxychalcone (IV) was obtained.  相似文献   

17.
Purified, bael-gum polysaccharide containsd-galactose (71%),l-arabinose (12.5%),l-rhamnose (6.5%), andd-galacturonic acid (7%). Hydrolysis of one mole of the fully methylated polysaccharide gave: (a) from the neutral part, 2,3,4-tri-O-methyl-l-rhamnose (2 moles), 2,3,5-tri-O-methyl-l-arabinose (4 moles), 2,3,4,6-tetra-O-methyl-d-galactose (8 moles), 3,4-di-O-methyl-l-rhamnose (2 moles), 2,5-di-O-methyl-l-arabinose (1 mole), 2,4,6-tri-O-methyl-d-galactose (10 moles), 2,3-di-O-methyl-l-arabinose (1 mole), 2,4-di-O-methyl-d-galactose (14 moles), and 2-O-methyl-d-galactose (2 moles); and (b) from the acidic part, 2,3,4-tri-O-methyl-d-galacturonic acid (1 mole), 2,4,6-tri-O-methyl-3-O-(2,3,4-tri-O-methyl-d-galactopyranosyluronic acid)-d-galactose (2.6 moles), and 2,4,6-tri-O-methyl-3-O-[2,4,6-tri-O-methyl-3-O-(2,3,4-tri-O-methyl-d-galactopyranosyluronic acid)-d-galactopyranosyl]-d-galactose (1 mole). Mild hydrolysis of the whole gum yielded oligosaccharides from which 3-O-β-d-galactopyranosyl-l-arabinose, 5-O-β-d-galactopyranosyl-l-arabinose, 3-O-β-d-galactopyranosyl-d-galactose, and 6-O-β-d-galactopyranosyl-d-galactose could be isolated and characterized. The results of methylation, periodate oxidation, Smith degradation, Barry degradation, and graded hydrolysis studies were employed for the elucidation of the structure of the whole gum.  相似文献   

18.
The leaves of summer harvested Asterostigma riedelianum were found to contain the following flavonoids all of which are reported for the first time: 6,8-di-C-arabinosylapigenin 7,4′-dimethyl ether, 2″-O-glucosyl-6-C-arabinosylapigenin 7,4′-dimethyl ether and 2″-O-(caffeoyl)glucosyl-6-C-arabinosylapigenin 7,4′-dimethyl ether. Winter harvested A. riedelianum additionally contained the 7-monomethyl ethers of the mono-C-arabinosides.  相似文献   

19.
The seeds of Anthocephalus indicus contain a water-soluble polysaccharide composed of D-xylose, D-mannose, and D-glucose in the molar ratios 1:3:5. Methylation analysis afforded 2,3,4-tri-O-methyl-D-xylose, 2,3,6,-tri-O-methyl-D-mannose, 2,3,6-tri-O-methyl-D-glucose, 2,3-di-O-methyl-D-glucose, and 2,3,4,6-tetra-O-methyl-D-glucose in the molar ratios 7:21:12:15:8. Periodate oxidation and methylation data indicated 22.5% and 21.9% of end groups, respectively. The above findings, together with the results of partial hydrolysis with acid, indicate the polysaccharide to consist of a linear chain of (1→4)-linked β-D-mannosyl and β-D-glucosyl residues to which α-D-xylosyl and β-D-glucosyl groups are attached by (1→6)-linkages.  相似文献   

20.
As part of a program to synthesize the ceramide trisaccharide (1) related to Fabry's disease, methyl 4-O-(4-O-α-d-galactopyranosyl-β-d-galactopyranosyl)-β-d-glucopyranoside (12) was prepared. Methyl β-lactoside (2) was converted into methyl 4-O-(4,6-O-benzylidene-β-d-galactopyranosyl)-β-d-glucopyranoside (4). Methyl 2,3,6-tri-O-benzoyl-4-O-(2,3,6-tri-O-benzoyl-β-d-galactopyranosyl)-β-d-glucopyranoside (7) was synthesized from 4 through the intermediates methyl 2,3,6-tri-O-benzoyl-4-O-(4,6-O-benzylidene-2,3-di-O-benzoyl-β-d-galactopyranosyl)-β-d-glucopyranoside (5) and methyl 2,3,6-tri-O-benzoyl-4-O-(2,3-di-O-benzoyl-β-d-galactopyranosyl)-β-d-glucopyranoside (6). The halide-catalyzed condensation of 7 with 2,3,4,6-tetra-O-benzyl-d-galactopyranosyl bromide (8) gave methyl 2,3,6-tri-O-benzoyl-4-O-[2,3,6-tri-O-benzoyl-4-O-(2,3,4,6-tetra-O-benzyl-α-d-galactopyranosyl)- β-d-galactopyranosyl]-β-d-glucopyranoside (10). Stepwise deprotection of 10 led to 12, the methyl β-glycoside of the trisaccharide related to Fabry's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号