首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The new diterpenoid ent-3β-acetoxy-7α,18-dihydroxy-15β,16-epoxykaurane has been isolated from Sideritis biflora. Twelve previously known ent-kaurane derivatives have also been obtained from the same source.  相似文献   

2.
Four new diterpenes have been isolated from Sideritis serata: lagascol (4, ent-8,5-friedopimar-5-ene-15S,16-diol), tobarrol (8, ent-15-beyerene-12α,17-diol), benuol (12, ent-15-beyerene-7α,17-diol) and serradiol (18, ent-16R-atis-13-ene-16,17-diol). The previously known diterpenes lagascatriol (1, ent-8,5-friedopimar-5-ene-11β,15S,16-triol), jativatriol (2, ent-15-beyerene-1β,12α,17-triol), conchitriol (3, ent-15-beyerene-7α,12α,17-triol) and sideritol (17, ent-16R-atis-13-ene-1β,16,17-triol) have also been obtained from the same source.  相似文献   

3.
《Phytochemistry》1986,25(5):1235-1237
Incubation of candidiol, ent-15β,18-dihydroxy-kaur-16-ene, with Gibberella fujikuroi affords ent-11α,15β,18-trihydroxy-kaur-16-ene. Its structure was determined by X-ray analysis.  相似文献   

4.
The microbiological transformation by Gibberelia fujikuroi of ent-beyer-15-ene into the beyergibberellins A9 and A13, 7β-hydroxy- and 7β,18-dihydroxybeyerenolides, and of ent-beyer-15-en-19-ol into beyergibberellins A4, A7, A9, A13 and A25,and 7β-hydroxy-and 7β,18-dihydroxybeyerenolides is described. In contrast, ent-beyer-15-en-18-ol gave ent-7α, 18,19-trihydroxybeyer-15-ene, 7β,18-dihydroxybeyerenolide and ent-7α,18-dihydroxybeyer-15-en-19-oic acid again revealing the inhibitory effect of an 18-hydroxyl group on oxidative transformations at C-6β by Gibberella fujikuroi.  相似文献   

5.
The plant diastereoisomeric diterpenes ent-pimara-8(14)-15-dien-19-oic acid, obtained from Viguiera arenaria, and isopimara-8(14)-15-dien-18-oic acid, isolated from Cupressus lusitanica, were distinctly functionalized by the enzymes produced in whole cell cultures of the fungus Preussia minima, isolated from surface sterilized stems of C. lusitanica. The ent-pimaradienoic acid was transformed into the known 7β-hydroxy-ent-pimara-8(14)-15-dien-19-oic acid, and into the novel diterpenes 7-oxo-8 β-hydroxy-ent-pimara-8(14)-15-dien-19-oic and 7-oxo-9β-hydroxy-ent-pimara-8(14)-15-dien-19-oic acids. Isopimara-8(14)-15-dien-18-oic acid was converted into novel diterpenes 11α-hydroxyisopimara-8(14)-15-dien-18-oic acid, 7β,11α-dihydroxyisopimara-8(14)-15-dien-18-oic acid, and 1β,11α-dihydroxyisopimara-8(14)-15-dien-18-oic acid, along with the known 7β-hydroxyisopimara-8(14)-15-dien-18-oic acid. All compounds were isolated and fully characterized by 1D and 2D NMR, especially 13C NMR. The diterpene bioproduct 7-oxo-9β-hydroxy-ent-pimara-8(14)-15-dien-19-oic acid is an isomer of sphaeropsidin C, a phytotoxin that affects cypress trees produced by Shaeropsis sapinea, one of the main phytopathogen of Cupressus. The differential metabolism of the diterpene isomers used as substrates for biotransformation was interpreted with the help of computational molecular docking calculations, considering as target enzymes those of cytochrome P450 group.  相似文献   

6.
《Phytochemistry》1987,26(9):2521-2524
The microbiological transformations of ent-7α-hydroxy-atis-15-en-19-oic acid into isoatisagibberellins A12 and A15, and of ent-19-hydroxy-atis-6,15-diene into 7β-hydroxyisoatisenolide and 7β,18-dihydroxyisoatisenolide have been demonstrated using Gibberella fujikuroi. The substrates incubated were chemically obtained from gummiferolic acid.  相似文献   

7.
The microbiological transformation of 7α,19-dihydroxy-ent-atis-16-ene by the fungus Gibberella fujikuroi gave 19-hydroxy-7-oxo-ent-atis-16-ene, 13(R),19-dihydroxy-7-oxo-ent-atis-16-ene, 7α,11β,19-trihydroxy-ent-atis-16-ene and 7α,16β,19-trihydroxy-ent-atis-16-ene, while the incubation of 19-hydroxy-7-oxo-ent-atis-16-ene afforded 13(R),19-dihydroxy-7-oxo-ent-atis-16-ene and 16β,17-dihydroxy-7-oxo-ent-atisan-19-al. The biotransformation of 7-oxo-ent-atis-16-en-19-oic acid gave 6β-hydroxy-7-oxo-ent-atis-16-en-19-oic acid, 6β,16β,17-trihydroxy-7-oxo-19-nor-ent-atis-4(18)-ene and 3β,7α-dihydroxy-6-oxo-ent-atis-16-en-19-oic acid.  相似文献   

8.
Paul Gaskin 《Phytochemistry》1975,14(7):1575-1578
C-α and C-β, previously isolated from seed of Phaseolus coccineus, are shown respectively to be the bis-O-isopropylidene and the 16,17-mono-O-isopropylidene derivatives of ent-6α,7α,16β,17-tetrahydroxykauranoic acid. By GC-MS characterization of the products of acidic, basic and enzymatic hydrolysis, water soluble conjugates of the following compounds have been shown to occur in P. coccineus seed: GA8, GA17, GA20, GA28, ent-6α,7α,13-trihydroxykaurenoic acid, ent-6α,7α,17-trihydroxy-16β-kauranoic acid, ent-6α,7α,16β,17-tetrahydroxykauranoic acid, 7β,13-dihydroxykaurenolide and abscisic acid.  相似文献   

9.
The microbiological transformation of ent-trachylobane, ent-7α-hydroxytrachylobane and ent-19-hydroxytrachylobane into trachylobagibberellins A7, A9, A13, A25, A40 and A47 by Gibberella fujikuroi is described. Whereas 7β-hydroxy- and 7β,18-dihydroxytrachylobanolides were obtained from ent-trachylobane and ent-trachyloban- 19-ol, the presence of a 7β-hydroxyl group directed metabolism exclusively into the gibberellin pathway. An 18-hydroxyl group as in ent-7α,18-dihydroxytrachylobane inhibited oxidation at C-6 affording ent-7α,18,19-trihydroxytrachylobane as the major metabolite.  相似文献   

10.
Two new ent-kauren-19-oic acid derivatives, ent-14S*-hydroxykaur-16-en-19-oic acid and ent-14S*,17-dihydroxykaur-15-en-19-oic acid together with eleven known compounds ent-kaur-16-en-19-oic acid, ent-kaur-16-en-19-al, ent-12β-hydroxykaur-16-en-19-oic acid, ent-12β-acetoxykaur-16-en-19-oic acid, 8R,13R-epoxylabd-14-ene, eudesm-4(15)-ene-1β,6α-diol, (?)-7-epivaleran-4-one, germacra-4(15), 5E,10(14)-trien-9β-ol, acetyl aleuritolic acid, β-amyrin, and stigmasterol were isolated from the stem bark of Croton pseudopulchellus (Euphorbiaceae). Structures were determined using spectroscopic techniques. Ent-14S*-hydroxykaur-16-en-19-oic acid, ent-kaur-16-en-19-oic acid, ent-12β-hydroxykaur-16-en-19-oic acid, ent-12β-acetoxykaur-16-en-19-oic acid and 8R,13R-epoxylabd-14-ene were tested for their effects on Semliki Forest virus replication and for cytotoxicity against human liver tumour cells (Huh-7 strain) but were found to be inactive. Ent-kaur-16-en-19-oic acid, the major constituent, showed weak activity against the Plasmodium falciparum (CQS) D10 strain.  相似文献   

11.
Three new ent-kaurene diterpenes have been isolated from the roots and stem of Vellozia caput-ardeae. Their structures were elucidated by spectroscopic methods as ent-9β-hydroxy kaur-16-ene, ent-11α-hydroxy kaur-16-ene and ent-9β,11α-dihydroxy kaur-16-ene.  相似文献   

12.
The preparation of ent-3β-hydroxykaur-16-ene from linearol and of ent -3β,18-dihydroxykaur-16-ene from foliol is described. The microbiological transformation of these and of foliol by Gibberella fujikuroi has been studied. A 3α-hydroxyl group appears to exert an inhibitory effect on transformations involving oxidation at C-19.  相似文献   

13.
Several ent-labda-13(16),14-dienes, ent-13-epi-manoyl oxides and the new natural products ent-6α,8α-dihydroxylabda-13(16),14-diene, ent-18-hydroxy-15(16)peroxylabd-13-ene,ent-16,18-dihydroxymanoyl oxide, ent-13-epi-16,18-dihydroxymanoyl oxide and ent-6α16,18-trihydroxymanoyl oxide have been isolated from Sideritis arborescens subsp. paulii. The structures of these compounds have been established by spectroscopic means and chemical correlations.  相似文献   

14.
Bioassay-guided fractionation of the ethanol extract from the branches of Erythroxylum suberosum, which was toxic to brine shrimp larvae, afforded five diterpenes bearing abietane and ent-kaurane-type skeletons from an active fraction. From these, four were new, 7-oxo-16-hydroxy-abiet-15(17)-en-19-al, 16-hydroxyabiet-15(17)-en-7-one, 7α,16-dihydroxy-abiet-15(17)-en-19-al and ent-12α-hydroxy-kaur-16-en-19-al, while methyl ent-7α,15β-dihydroxy-kaur-16-en-19-oate is reported for the first time as a natural product. This is also the first reported occurrence of abietane-type diterpenes in the genus Erythroxylum. The flavonoid ombuin-3-rutinoside was isolated from an inactive fraction, while rutin (quercetin-3-rutinoside) was obtained from the non-toxic ethanol extract of the leaves. The structures of the new and known compounds were established by analyses of 1D- and 2D-NMR and mass spectrometry data.  相似文献   

15.
Incubation of ent-7α,18-dihydroxykaur-16-ene with Gibberella fujikuroi affords ent-7α,18,19-trihydroxykaur-16-ene and ent-7α,18-dihydroxykaur-16-en-19-oic acid. There was no transformation into 7,18-dihydroxykaurenolide.  相似文献   

16.
Two new ent-kaurene diterpenoids, 13α,15α-dihydroxy-18-carboxy-19-nor-ent-kaur-16-ene-2β-O-(2′-angelate)-β-d-glucopyranoside (leontocin A, 1), 13α,15α-dihydroxy-18-carboxy-19-nor-ent-kaur-16-ene-2β-O-(2′-angelate-6′-acetyl)-β-d-glucopyranoside (leontocin B, 2), and one new lignan, 2,3-bis[(3,4-di-hydroxyphenyl)methylene]-monoethyl ester-butanedioic acid (leontolignan A, 3), together with three known phenolic acids (4-6) were isolated from the aerial parts of Leontopodium leontopodioides (Asteraceae). Their structures were elucidated by chemical and spectroscopic methods. All isolates were evaluated for their anti-inflammatory activities by measuring their inhibitory effects against cyclooxygenase-1 and 2 in vitro.  相似文献   

17.
From the aerial parts of Sideritis foetens, the previously known ent-13(16),14-labdadiene-6α,8α,18-triol (andalusol) has been isolated. In addition, two new natural andalusol monoacetates and the novel ent-6α-acetoxy-13(16),14-labdadiene-3β,8α-diol have also been obtained from the same source. The structures of these new diterpenoids have been established by chemical and spectroscopic means.  相似文献   

18.
15β-Hydroxy-18(43)-abeo-ent-kaur-4(19),16-diene (4) was biotransformed by the fungus Fusarium fujikuroi into 3α,11β,15β-trihydroxy-18(43)-abeo-ent-kaur-4(19),16-diene (5). The hydroxylation at C-3(α) in this diterpene reminds a similar reaction that occurs at C-13 in the biosynthesis of gibberellic acid in this fungus. The presence of the 15β-alcohol in the substrate directs the second hydroxylation at C-11(β), which had been observed in the incubation of ent-kaur-16-ene derivatives with this fungus when the C-19 hydroxylation was inhibited by the existence in the molecule of a 3α-OH or 3-oxo group. We also show that the angelate of the substrate is an undescribed natural product now identified as a component of the plant Distichoselinum tenuifolium.  相似文献   

19.
Two new diterpenoids, ent-7α-acetoxy-15-beyeren-18-oic acid and (13S,15S)-6β,7α,12α,19-tetrahydroxy-13β,16-cyclo-8-abietene-11,14-dione, have been isolated from Plectranthus saccatus and Plectranthus porcatus, respectively, and their structures were established by 1D and 2D NMR spectroscopic studies. The new diterpenes showed no activity against Gram-negative bacteria and Candida albicans (yeast strain). Among Gram-positive bacteria, the lower MIC value was 62.50 μg/ml for the abietane derivative against Staphylococcus aureus ATCC 6538.  相似文献   

20.
The GC/MS detection is reported of over 30 compounds, in extracts of the endosperm and embryos from seeds of Cucurbita maxima. The compounds which were identified from reference spectra include: cis,trans-ABA; trans,trans-ABA; dihydrophaseic acid; IAA; GA4; GA12; GA13; GA25; GA39; GA43; GA49; ent-13-hydroxy-, ent-6α,7α-and ent-7α,13-dihydroxy-, and ent-6α,7α,13-trihydroxykaur-16-en-19-oic acids; ent-7α,16,17-trihydroxy- and ent-6α,7α,16,17-tetrahydroxy-kauran-19-oic acids, ent-6,7-seco-7-oxokauren-6,19-dioic acid and/or ent-6,7-secokauren-6,7,19-trioic acid, and 7β,12α-dihydroxykaurenolide. New compounds, the structures of which were deduced from GC/MS data, include: the 12α-hydroxy-derivatives of GA12, GA14, GA37 and GA4, and the 12β-hydroxy-derivatives of ent-7α-hydroxy- and ent-6α,7α-dihydroxykaurenoic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号