首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous in vitro and in vivo studies on biological activities of phytostilbenes have brought to the fore the remarkable properties of these compounds and their derivatives, making them a top storyline in natural product research fields. However, getting stilbenes in sufficient amounts for routine biological activity studies and make them available for pharmaceutical and/or nutraceutical industry applications, is hampered by the difficulty to source them through synthetic chemistry-based pathways or extraction from the native plants. Hence, microbial cell cultures have rapidly became potent workhorse factories for stilbene production. In this review, we present the combined efforts made during the past 15?years to engineer stilbene metabolic pathways in microbial cells, mainly the Saccharomyces cerevisiae baker yeast, the Escherichia coli and the Corynebacterium glutamicum bacteria. Rationalized approaches to the heterologous expression of the partial or the entire stilbene biosynthetic routes are presented to allow the identification and/or bypassing of the major bottlenecks in the endogenous microbial cell metabolism as well as potential regulations of the genes involved in these metabolic pathways. The contributions of bioinformatics to synthetic biology are developed to highlight their tremendous help in predicting which target genes are likely to be up-regulated or deleted for controlling the dynamics of precursor flows in the tailored microbial cells. Further insight is given to the metabolic engineering of microbial cells with “decorating” enzymes, such as methyl and glycosyltransferases or hydroxylases, which can act sequentially on the stilbene core structure. Altogether, the cellular optimization of stilbene biosynthetic pathways integrating more and more complex constructs up to twelve genetic modifications has led to stilbene titers ranging from hundreds of milligrams to the gram-scale yields from various carbon sources. Through this review, the microbial production of stilbenes is analyzed, stressing both the engineering dynamic regulation of biosynthetic pathways and the endogenous control of stilbene precursors.  相似文献   

2.
This work probes the relationship between stilbene functional group and biological activity. The biological activity of synthesized stilbenes (E)-4,4′-dicyanostilbene, (E)-4,4′-diacetylstilbene, (E)-4,4′-diaminostilbene, a novel stilbene, 1,1′-(vinylenedi-p-phenylene)diethanol, and (E)-stilbene was assessed at biologically relevant nanomolar concentrations using the MTS cell viability assay in differentiated PC-12 cells under optimal culture conditions and conditions of oxidative stress. Under optimal culture conditions the synthesized stilbene derivatives were found to be non-toxic to cells at concentrations up to 10 μg/ml. To mimic oxidative stress, the activity of these stilbene derivatives in the presence of 0.03% H2O2 was investigated. Stilbene derivatives with electron-withdrawing functional groups were 2–3 times more toxic than the H2O2 control, indicating that they may form toxic metabolites in the presence of H2O2. Fluorescence data supported that stilbene derivatives with electron-withdrawing functional groups, (E)-4,4′-dicyanostilbene and (E)-4,4′-diacetylstilbene, may react with H2O2. In contrast, the stilbene derivative with a strong electron-donating functional group, (E)-4,4′-diaminostilbene, rescued neurons from H2O2-induced toxicity. The DPPH assay confirmed that (E)-4,4′-diaminostilbene is able to scavenge free radicals. These data indicate that the Hammett value of the functional group correlates with the biological activity of (E)-4,4′-disubstituted stilbenes in differentiated PC-12 cells.  相似文献   

3.
Formation of the stilbenes pinosylvin and pinosylvin 3-methyl ether, as well as the activity of the biosynthetic enzyme stilbene synthase (pinosylvin-forming), were induced several hundred- to thousandfold in primary needles of 6-week-old pine (Pinus sylvestris L.) seedlings upon exposure to a single pulse of ozone of at least 0.15 microliters per liter. The seedlings required 4 hours of exposure as a minimum for the induction of stilbene biosynthesis when exposed to 0.2 microliters per liter ozone. Both stilbene synthase activity and stilbene accumulation increased with the duration of ozone treatment. The activity of phenylalanine ammonia-lyase and the activity of chalcone synthase, a key enzyme of the flavonoid pathway that uses the same substrates as stilbene synthase, were also stimulated about twofold by ozone. Stilbene biosynthesis appears to represent the first example of a dose-dependent biochemical response to ozone in a conifer species and may serve as a useful biomarker to study stress impacts on pine trees.  相似文献   

4.
An inducible antifungal compound in grapevine leaves (Vitis vinifera L., cv Cabernet-Sauvignon) has been identified as trans-pterostilbene (3,5-dimethoxy-4′-hydroxy stilbene). It is only a minor component of the phytoalexin response of V. vinifera but its antifungal activity is relatively high by comparison with resveratrol and the viniferins, stress metabolites which have been identified previously in grapevine. Methods for the quantitative analysis of pterostilbene, resveratrol, ε- and α-viniferins by HPLC are described.  相似文献   

5.
Microbial fermentations and bioconversion promise to revolutionize the conventional extraction of resveratrol from natural plant sources. However, the development of efficient and feasible microbial processes remains challenging. Current fermentation strategies often require supplementation of expensive phenylpropanoic precursors and two separate fermentation protocols, which are significantly more difficult and expensive to undertake when migrating to large-scale fermentation processes. In this study, an Escherichia coli fermentation system, consisting of tyrosine ammonia lyase (TAL), 4-coumarate:CoA ligase (4CL), stilbene synthase (STS), malonate synthetase, and malonate carrier protein, was developed to produce resveratrol from l-tyrosine. Multivariate modular metabolic engineering, which redefined the overall pathway as a collection of distinct modules, was employed to assess and alleviate pathway bottlenecks. Using this strategy, the optimum strain was capable of producing 35.02 mg/L of resveratrol from l-tyrosine in a single medium. The strategy described here paves the way to the development of a simple and economical process for microbial production of resveratrol and other similar stilbene chemicals.  相似文献   

6.
Gnetin, a new stilbene isolated from Gnetum ula is assigned the structure 3,4-methylenedioxy-4′-methoxy-trans-stilbene, 3 on the basis of spectroscopic data and synthesis. The structure 3,3′,4-trihydroxy-2-methoxy-trans-stilbene, 1a earlier assigned to a trihydroxymonomethoxy stilbene is now revised to 3,4,5′-trihydroxy-3′-methoxy-trans-stilbene, 1b.  相似文献   

7.
Rolfs CH  Kindl H 《Plant physiology》1984,75(2):489-492
Cultured cells of Picea excelsa capable of forming stilbenes and flavanoids have been established. Unlike needles of intact plants containing piceatannol (3,3′,4′,5-tetrahydroxystilbene) and stilbene glycosides the cultured cells converted phenylalanine and p-coumaric acid primarily into resveratrol monomethyl ether (3,4′-dihydroxy-5-methoxystilbene) and naringenin. Partially purified enzyme preparations were assayed for chalcone synthase as well as for stilbene synthase activity converting malonyl-CoA plus p-coumaroyl-CoA into 3,4′,5-trihydroxystilbene (resveratrol).

Although stilbene synthase and chalcone synthase use the same substrates and exhibit similar molecular properties, i.e. molecular weight and subunit molecular weight, they are two different proteins. This difference was demonstrated by gel electrophoresis and by means of monospecific antibodies.

  相似文献   

8.
Twenty-three major components were detected in the methanol extractives of the heartwood of Eucalyptus sideroxylon. The components identified include resveratrol, resveratrol-β-glucoside, 3,3′-di- and 3,3′,4-tri-o-methylellagic acids and their glucosides. The 3,3′-di-o-methylellagic acid 4′-glucoside isolated had properties significantly different from those previously reported for this compound. Also present were gailic acid, catechin, ellagic acid, an unidentified stilbene, the ellagitannins D-6 and D-13, polymerized leucocyanidin and an oily material. The sapwood contained gailic acid, small amounts of ellagitannins and ellagic acids and traces of other components. The heartwood extractives of related eucalypt species were also examined.  相似文献   

9.
The fungus-inoculated leaflets of 55 Trifolium species have been examined for the presence of isoflavonoid and non-flavonoid phytoalexins. Isoflavonoid derivatives belonging to the pterocarpan (medicarpin, maackiain and 4-methoxymaackiain) and isoflavan (vestitol, isovestitol, sativan, isosativan and arvensan) classes were isolated from 50 species whilst T. campestre and T. dubium accumulated the trihydroxy stilbene, transresveratrol. Three other species (T. badium, T. scutatum and T. spadiceum) apparently did not produce phytoalexins in response to fungal inoculation. The distribution and biosynthetic relationship of Trifolium phytoalexins is discussed and the genus compared with others belonging to the Trifolieae and related tribes.  相似文献   

10.
11.
Microtubules are dynamic polymers that occur in eukaryotic cells and play important roles in cell division, motility, transport and signaling. They form during the process of polymerization of α- and β-tubulin dimers. Tubulin is a significant and heavily researched molecular target for anticancer drugs. Combretastatins are natural cis-stilbenes that exhibit cytotoxic properties in cultured cancer cells in vitro. Combretastatin A-4 (3′-hydroxy-3,4,4′, 5-tetramethoxy-cis-stilbene; CA-4) is a potent cytotoxic cis-stilbene that binds to β-tubulin at the colchicine-binding site and inhibits tubulin polymerization. The prodrug CA-4 phosphate is currently in clinical trials as a chemotherapeutic agent for cancer treatment. Numerous series of stilbene analogs have been studied in search of potent cytotoxic agents with the requisite tubulin-interactive properties. Microtubule-interfering agents include numerous CA-4 and transresveratrol analogs and other synthetic stilbene derivatives. Importantly, these agents are active in both tumor cells and immature endothelial cells of tumor blood vessels, where they inhibit the process of angiogenesis. Recently, computer-aided virtual screening was used to select potent tubulin-interactive compounds. This review covers the role of stilbene derivatives as a class of antitumor agents that act by targeting microtubule assembly dynamics. Additionally, we present the results of molecular modeling of their binding to specific sites on the α- and β-tubulin heterodimer. This has enabled the elucidation of the mechanism of stilbene cytotoxicity and is useful in the design of novel agents with improved anti-mitotic activity. Tubulin-interactive agents are believed to have the potential to play a significant role in the fight against cancer.  相似文献   

12.
The isolation of bergenin, 2-hydroxy-4-benzyloxyacetophenone and the related dimer and stilbene from Gnetum ula is reported.  相似文献   

13.
Synthesis of stilbene-fused chalcones and flavanones were successfully completed. Molecules were designed in a way to mimic the structural features of both “stilbene and chalcones” or “stilbene and flavanones” at the same time, and synthesized by three steps. Heck reactions of 3-bromobenzaldehyde with styrene derivatives gave corresponding (E)-stilbenes, which were reacted with acetophenones to furnish stilbene-fused 2′-hydroxychalcones under basic conditions. Finally, intramolecular cyclization reactions were performed to produce stilbene-fused flavanones.  相似文献   

14.
15.
Two new stilbene dimers (arahypin-8 and arahypin-9) and one monomeric stilbene derivative arahypin-10 were isolated for the first time from wounded peanut seeds challenged by a Rhizopus oligoporus strain, a starter culture for soybean fermentation in Southeast Asia. The structures of the three new compounds were elucidated on the basis of HRESIMS, UV, 1D and 2D NMR spectroscopy and the plausible mechanism of their formation was proposed. In addition, these compounds showed insulin sensitizing effect by enhancing insulin-stimulated glucose uptake in differentiated 3T3-L1 adipocytes.  相似文献   

16.
Two new stilbene glycoside gallates proanthocyanidins have been isolated from Polygonum multiflorum. The stilbenes were shown to be 2″-3″-O-monogalloyl esters of 2,3,5,4′-tetrahydroxystilbene 2-O-β-d-glucopyranoside.  相似文献   

17.
《Phytochemistry》1986,25(10):2425-2427
Sitosterol, three 3-aryl-4-hydroxycoumarins, one isoflavone and one stilbene were isolated from the roots of Derris spruceana. Structures were established through chemical and spectral means.  相似文献   

18.
Two low-spin Fe(III) dicyano-dicarboxamido complexes have been prepared from N,N-bis(8-quinolyl)malonamide derivatives. Crystal structures show that the four nitrogen donors available to complex the metal are arranged in the equatorial plane with the two cyanides trans to each other in the axial positions when the malonyl moiety is disubstituted. In contrast, the unsubstituted malonyl results in only three nitrogens in the equatorial plane with the fourth in an apical position and the two cyanides occupying cis sites, one equatorial and the other axial. NMR analyses show that the solid state structure of both complexes is retained in solution. Both types of configurational complexes catalyze cyclic olefin oxidations with H2O2 but only the cis-dicyano complex catalyzes stilbene oxidation with formation of epoxides, diols and benzaldehyde.  相似文献   

19.
The fresh bark of Picea sitchensis contains astringin as the major stilbene; isorhapontin and piceid are present in minor amounts. The aglycones astringenin, isorhaponhgenin and resveratrol are absent in samples of fresh bark. Prenylation reactions on 5,3′,4′-tri-O-methylastringenin are described.  相似文献   

20.
This study aimed to develop viable enzymes for bioconversion of resveratrol-glucoside into resveratrol. Out of 13 bacterial strains tested, Lactobacillus kimchi JB301 could completely convert polydatin into resveratrol. The purified enzyme had an optimum temperature of 30–40 °C and optimum pH of pH 5.0 against polydatin. This enzyme showed high substrate specificities towards different substrates in the following order: isorhaponticin >> polydatin >> mulberroside A > oxyresveratrol-3-O-glucoside. Additionally, it rarely hydrolyzed astringin and desoxyrhaponticin. Based on these catalytic specificities, we suggest this enzyme be named stilbene glucoside-specific β-glucosidase. Furthermore, polydatin extracts from Polygonum cuspidatum were successfully converted to resveratrol with a high yield (of over 99%). Stilbene glucoside-specific β-glucosidase is the first enzyme isolated from lactic acid bacteria capable of bio-converting various stilbene glucosides into stilbene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号