首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

An efficient alternative which makes use of the reliable 3J1′2′. value to derive the endocyclic torsion angle constraints is proposed in this study. Based on the information embedded in the two plots, (i) the vicinal proton-proton J-couplings, 3J1′2′., 3J1′2″., 3J2′3′., 3J2”3′ and 3J3′4′ against the pseudorotation phase angle, and (ii) 3J1′2″, 3J2′3′., 3J2″3′ and 3J3′4′ against 3J1′2′; using the calculated J-couplings obtained for a range of sugar geometries of deoxyribose ring in nucleosides and nucleotides encountered along the pseudorotation itinerary [J. van Wijk, B.D. Huckriede, J.H. Ippel and C. Altona, Methods Enzymol. 211, 286–306 (1992)], it is suggested that the vicinal 3J1′2′ possesses structural information other than the vicinal torsion angle φ1′2′. This study is divided into two parts. In Part I, a correlation diagram between the endocyclic torsion angles vi (i=0,1,2,3,4) and the restrained vicinal torsion angle φ1′2′ is obtained through the use of the J-coupling restrained molecular mechanics (JrMM) protocol. The established φ1′2′.-vi correlation shows vi can be deduced from the reliable 3J1′2′. value and it forms the basis for developing an alternative protocol to derive endocyclic torsion angle constraints. In Part II of this series, extensive testing demonstrating the validity of the JrMM protocol to derive Vi for defining the sugar geometry of solution DNA molecules is presented.  相似文献   

2.
Abstract

2-Bromoadenosine-substituted analogues of 2–5A, p5′A2′p-5′A2′p5′(br2A), p5′(br2A)2′p5′A2′p5′A, and p5′(br2A)2′p5′(br2A)2′p-S′(br2A), were prepared via a modification of a lead ion-catalyzed ligation reaction and were subsequently converted into the corresponding 5′-triphosphates. Both binding and activation of human recombinant RNase L by various 2-bromoadenosine-substituted 2–5A analogues were examined. Among the 2-bromoadenosine-substituted 2–5A analogues, the analogue with 2-bromoadenosine residing in the 2′-terminal position, p5′A2′p5′A2′p-5′(br2A), showed the strongest binding affinity and was as effective as 2–5A itself as an activator of RNase L. The CD spectrum of p5′A2′p-5′A2′p5′(br2A) was superimposable on that of p5′A2′p5′A2′p5′A, indicative of an anti orientation about the base-glycoside bonds as in naturally occurring 2–5A.  相似文献   

3.
T Higashijima  T Miyazawa  M Kawai  U Nagai 《Biopolymers》1986,25(12):2295-2307
The proton nmr and CD spectra of gramicidin S (GS) cyclic-(Val1,1′-Orn2,2′-Leu3,3′-D-Phe4,4′-Pro5,5′)2 and of GS analogs—namely, [D-Ala4,4′]-GS, [Gly4,4′]-GS, and [L-Ala4,4′]-GS—were analyzed. The molecular conformation of [D-Ala4,4′]-GS is similar to that of GS, with the trans form about the D-Ala-Pro peptide bond. The molecular conformation of [Gly4,4′]-GS depends on the solvent composition of dimethylsulfoxide-d6/trifluoroethanol (DMSO)-d6/TFE and DMSO-d6/H2O as well as the solute concentration. In DMSO-d6 solution, [Gly4,4′]-GS forms the GS-type conformation of the monomer at lower concentration. At higher concentration, the GS-type conformer is converted to the other one that forms molecular aggregates. The cis form about the X-Pro peptide bonds is found for [Gly4,4′]-GS and [L-Ala4,4′]-GS in DMSO-d6 and for [L-Ala4,4′]-GS in TFE solution. The large temperature dependences of α-proton chemical shifts of [L-Ala4,4′]-GS in DMSO-d6 solution indicate that the conformer equilibrium changes with temperature. The GS-type conformation is not formed in [L-Ala4,4′]-GS. The two active peptide analogs, [D-Ala4,4′]-GS and [Gly4,4′]-GS, interact with the phospholipid membrane, taking the GS-type conformation. By contrast, an inactive analog, [L-Ala4,4′]-GS, does not interact with phospholipid membrane. The activities of GS analogs are found to correlate to the formation of the GS-type conformation upon binding with phospholipid membrane.  相似文献   

4.
J A Walmsley  B L Sagan 《Biopolymers》1986,25(11):2149-2172
1H- and 31P-nmr spectroscopy have been used to investigate the self-association of M2(5′-CMP) [M = Li+, Na+, K+, Rb+, or (CH3)4 N+; 5′-CMP = cytidine 5′-monophosphate], the self-association of Li2(5′-GMP) (5′-GMP = guanosine 5′-monophosphate), and the heteroassociation of 5′-GMP and 5′-CMP (1 : 1 mole ratio) in aqueous solution as a function of the nature of the monovalent cation. Proton spectral differences for the different 5′-CMP salts exhibit a cation-size dependence and have been ascribed to a change in the stacking geometry. An average stacking association constant of 0.63 ± 0.24M?1 at 1°C, consistent with the weak stacking interactions of the cytosine bases, was determined for the 5′-CMP salts. Heteroassociation of 5′-GMP and 5′-CMP follows the reverse of the cation order for the formation of ordered aggregates of 5′-GMP. Heteroassociation occurs in the presence of Li+, Na+, and Rb+ ions, but only self-association occurs for the K+ nucleotides. Li2(5′-GMP), which does not form ordered species, self-associates to form disordered base stacks with a stacking constant of 1.63 ± 0.11M?1 at 1°C.  相似文献   

5.
Abstract

[2′-18O]- and [3′-18O]-Adenosine and [2′-18O]- and [3′-18O]-9-(β-D-arabinofuranosyl) adenine were synthesized from?appropriate nucleoside precursors. The sites of 18O-incorporation were determined by mass spectrometry. 18O-Induced 13C NMR shifts were measured for 2′-and 3′-labeled adenosines as 1.2 and 1.6 Hz, respectively.  相似文献   

6.
Three triazole-linked nonionic xylo-nucleoside dimers TL-t-TxL, TL-t-ABzxL and TL-t-CBzxL have been synthesized for the first time by Cu(I) catalyzed azide-alkyne [3 + 2] cycloaddition reaction (CuAAC) of 1-(3′-azido-3′-deoxy-2′-O,4′-C-methylene-β-D-ribo-furanosyl)thymine with different alkynes, i.e., 1-(5′-deoxy-5′-C-ethynyl-2′-O,4′-C-methylene-β-D-xylofuranosyl)thymine, 9-(5′-deoxy-5′-C-ethynyl-2′-O,4′-C-methylene-β-D-xylo-furanosyl)-N6-benzoyladenine and 1-(5′-deoxy-5′-C-ethynyl-2′-O,4′-C-methylene-β-D-xylofuranosyl)-N4-benzoylcytosine in 90%–92% yields. Among the two Cu(I) reagents, CuSO4.5H2O-sodium ascorbate in THF:tBuOH:H2O (1:1:1) and CuBr.SMe2 in THF used for cycloaddition (click) reaction, the former one was found to be better yielding than the latter one.  相似文献   

7.
A gramicidin S analog ([Orn1,1′]GS·4HCl) containing L-oroithine in place of L-valine at the 1,1′ positions was synthesized by the conventional solution method in order to examine whether this analog had antibacterial activity toward Gram-negative bacteria. In the synthesis of [Orn1,1′]GS·4HCl, two intermediate analogs ([Orn1,1′, Orn(For)2,2′]GS·2HCl and [Orn(Z)1,1′]GS·2HCl) were obtained. [Orn1,1′]GS·4HCl and [Orn,1,1′, Orn(For)2,2′]GS·2HCl showed no activity toward either Gram-negative or Gram-positive bacteria, whereas [Orn(Z)1,1′]GS 2HCl showed appreciable activity toward only Gram-positive bacteria.  相似文献   

8.
A previous report disclosed the presence of benzodioxan and bicyclo[3.2.1]octanoid neolignans in the benzene extract of the trunk wood of an Amazonian Aniba (Lauraceae) species. The chloroform extract of the same material contains additionally two new benzodioxan neolignans [rel-(7S,8R)-Δ8′-7-hydroxy-3,4,5,5′-tetramethoxy-7.0.3′,8.0.4′-neolignan; rel-(7R,8R)-Δ7′-3,4,5,5′-tetramethoxy-9′-oxo-7.0.3′,8.0.4′-neolignan], two new bicyclo[3.2.1]-octanoid neolignans [(7R,8S,1′S,2′S,3′S,4′R)-Δ8′-2′,4′-dihydroxy-3,3′-dimethoxy-4,5-methylenedioxy-1′,2′,3′,4′,5′,6′-hexahydro-5′-oxo-7.3′,8.1′-neolignan; (7R,8S,1′R,2′S,3′S)-Δ8′-2′-hydroxy-3,3′,5′-trimethoxy-4,5-methylenedioxy-1′,2′,3′,4′-tetrahydro-4′-oxo-7.3′,8.1′-neolignan] and a hydrobenzofuranoid neolignan [(7S,8R,1′S,5′S)-Δ8′-3,3′,5′-tri-methoxy-4,5-methylenedioxy-1′,4′,5′,6′-tetrahydro-4′-oxo-7.0.2′,8.1-neolignan].  相似文献   

9.
Infrared spectra of neutral aqueous solutions of nucleoside 3′,5′-cyclic monophosphates indicate an increase in the antisymmetric phosphoryl stretching frequency to 1236 cm?1 from 1215 cm?1 in trimethylene cyclic phosphates. A further increase to 1242 cm?1 accompanies esterification of the 2′-ribose hydroxyl. The O2′-esterified and 2′-deoxy cyclic nucleotides examined display both reduced kinase binding and altered phosphoryl stretching frequencies, suggesting that modification of the phosphate ring represents a common feature in decreased kinase activation. Reversible inhibition of mitosis in thymidine-synchronized human lymphocytes by 2 mmN6,O2′-dibutyryladenosine 3′,5′-cyclic monophosphate and N6-monobutyryladenosine 3′,5′-cyclic monophosphate was observed. However, adenosine 3′,5′-cyclic monophosphate, O2′-monobutyryladenosine 3′,5′-cyclic monophosphate, butyric acid, and ethyl butyrate had no effect on mitosis when present at 2 mm concentrations during S and G2. These results are consistent with hydrolysis of O2′-monobutyryladenosine 3′,5′-cyclic monophosphate and adenosine 3′,5′-cyclic monophosphate by esterase and phosphodiesterase enzymes and suggest that modification of the N6 amino group is necessary for the antimitotic activity of N6,O2′-dibutyryladenosine 3′, 5′-cyclic monophosphate.  相似文献   

10.
Histone mRNA, labeled with 32P or 3H-methionine during the S phase of partially synchronized HeLa cells, was isolated from the polyribosomes and purified as a “9S” component by sucrose gradient sedimentation. We identified two types of 5′ terminals, m7G(5′)pppNmpN and m7G(5′)pppNm-pNmpN, in which the first methylated nucleoside is 7-methylguanosine, the second is either N6,2′-O-dimethyladenosine, 2′-O-methyladenosine, or 2′-O-methylguanosine, and the third is 2′-O-methyluridine, 2′-O-methylcytidine, or 2′-O-methyladenosine. Approximately 1.7% of the 32P label was present in the 5′ terminal structures. Assuming a similar specific radioactivity for all phosphates, this percentage corresponds to an average of one terminal per 335 nucleotides. Histone mRNA differed from bulk polyadenylylated mRNA of HeLa cells in lacking significant amounts of 2′-O-methyluridine or 2′-O-methylcytidine in the second position of the 5′ terminal oligonucleotide and in lacking N6-methyladenosine residues at internal positions.  相似文献   

11.
Abstract

2′-5′ and 3′-5′ linked 2-aminoadenylyl-2-aminoadenosines [(2′-5′)n2Apn2A (1) and (3′-5′)n2Apn2A (2)] were synthesized by condensation of 5′-O-monomethoxytrityl-N 2 N 6-dibenzoyl-2-aminoadenosine and N 2,N 6,2′,3′-O-tetrabenzoyl-2-aminoadenosine 5′-phosphate using dicyclohexylcarbodiimide (DCC). The conformational properties of these dimers 1 and 2 were examined by UV, NMR and CD spectroscopy. The results reveal that the 2′-5′-isomer 1 takes a stacked conformation, which contains a larger base-base overlap and is more stable against thermal perturbation with respect to the 3′-5′-isomer 2. Interactions of 1 and 2 with polyuridylic acid (Poly (U)) were also examined by Tm, mixing curves, UV and CD spectra. Both the dinucleoside isomers 1 and 2 formed a complex of 1 : 2 stoichiometry with poly(U), which was much more stable than that of the corresponding ApA isomer  相似文献   

12.
We describe concise and efficient synthesis of biologically very important 3′-O-tetraphosphates namely 2′-deoxyadenosine-3′-O-tetraphosphate (2′-d-3′-A4P) and 2′-deoxycytidine-3′-O-tetra-phosphate (2′-d-3′-C4P). N6-benzoyl-5′-O-levulinoyl-2′-deoxyadenosine was converted into N6-benzoyl-5′-O-levulinoyl-2′-deoxyadenosine-3′-O-tetraphosphate in 87% yield using a one-pot synthetic methodology. One-step concurrent deprotection of N6-benzoyl and 5′-O-levulinoyl groups using concentrated aqueous ammonia resulted 2′-d-3′-A4P in 74% yield. The same synthetic strategy was successfully employed to convert N4-benzoyl-5′-O-levulinoyl-2′-deoxycytidine into 2′-d-3′-C4P in 68% yield.  相似文献   

13.
Microiontophoretic injection of calcium ions or of adenosine 3′:5′-cyclic monophosphoric acid (3′:5′-cAMP) causes fertilized eggs of Ilyanassa obsoleta to form a large lobe-like protuberance near the micropipet tip within 15–30 sec. A protuberance can be induced to form anywhere on the egg surface, i.e., animal hemisphere as well as vegetal hemisphere. Injections of comparable amounts of Na+, K+, Mg2+, Hepes buffer, seawater, guanosine 2′:3′-cyclic monophosphoric acid (2′:3′-cGMP), or guanosine 3′:5′-cyclic monophosphoric acid (3′:5′-cGMP) have no effect on cell shape. Injection of 2′:3′-cAMP causes slight changes in cell shape. Injection of Ca2+ generates a shape change in spherical eggs, as well as during all phases of normal polar lobe formation, but not when polar lobes are being resorbed. Injection of Ca2+ elicits a shape change only when injection currents exceed 120 nA and only when Ca2+ also is present in the exogenous bath solution. Cell shape changes causes by injection of 3′:5′-cAMP also are dependent upon a minimum current (approximately 300 nA) and upon the presence of exogenous Ca2+. These shape changes may depend upon exogenous Ca2+ either because the injections trigger a change in membrane permeability, or because exposure of eggs to Ca2+-free seawater lowers intracellular [Ca2+] to such an extent that threshold levels of Ca2+ are not attained during injection.  相似文献   

14.

The synthesis and properties of oligonucleotides (ONs) containing 9-(2,3,4-trihydroxybutyl)adenine, A C2 and A C3, are described. The ON containing A C2 involves the 3′ → 4′ and 3′ → 5′ phosphodiester linkages in the strand, whereas that containing A C3 possesses the 3′ → 4′ and 2′ → 5′ phosphodiester linkages. It was found that incorporation of the analogs, A C2 or A C3, into ONs significantly reduces the thermal and thermodynamic stabilities of the ON/DNA duplexes, but does not largely decrease the thermal and thermodynamic stabilities of the ON/RNA duplexes as compared with the case of the ON/DNA duplexes. It was revealed that the base recognition ability of A C2 is greater than that of A C3 in the ON/RNA duplexes.  相似文献   

15.
Abstract

A convenient synthesis of the title compound in four steps from cytidine is reported. Key transformations include differentiation of the 2′ position as N4,O3′,O5′-triacetyl-2,2′-anhydrocytidine, opening to the arabino derivative, and oxidation of the 2′ position with the Dess-Martin reagent.  相似文献   

16.
ABSTRACT

The protected analogue of 2-amnio-6-chloropurine arabinoside (3b) was subjected to reaction with diethylaminosulfur trifluoride (DAST) and subsequently treated with NaOAc in Ac2O/AcOH to give N 2,O 3′,O 5′-triacetyl-2′-deoxy-2′-fluoroguanosine (5a). After deacetylation of the sugar moiety and protection of 5′-OH by a 4,4′-dimethoxytrityl group, this nucleoside component was converted to 2′-deoxy-2′-fluoroguanyl-(3′,5′)-guanosine (6c, GfpG).  相似文献   

17.
Geminal two‐bond couplings (2J) in proteins were analyzed in terms of correlation with protein secondary structure. NMR coupling constants measured and evaluated for a total six proteins comprise 3999 values of 2JCαN′, 2JC′HN, 2JHNCα, 2JC′Cα, 2JHαC′, 2JHαCα, 2JCβC′, 2JN′Hα, 2JN′Cβ, and 2JN′C′, encompassing an aggregate 969 amino‐acid residues. A seamless chain of pattern comparisons across the spectrum datasets recorded allowed the absolute signs of all 2J coupling constants studied to be retrieved. Grouped by their mediating nucleus, C′, N′ or Cα, 2J couplings related to C′ and N′ depend significantly on ?,ψ torsion‐angle combinations. β turn types I, I′, II and II′, especially, can be distinguished on the basis of relative‐value patterns of 2JCαN′, 2JHNCα, 2JC′HN, and 2JHαC′. These coupling types also depend on planar or tetrahedral bond angles, whereas such dependences seem insignificant for other types. 2JHαCβ appears to depend on amino‐acid type only, showing negligible correlation with torsion‐angle geometry. Owing to its unusual properties, 2JCαN′ can be considered a “one‐bond” rather than two‐bond interaction, the allylic analog of 1JN′Cα, as it were. Of all protein J coupling types, 2JCαN′ exhibits the strongest dependence on molecular conformation, and among the 2J types, 2JHNCα comes second in terms of significance, yet was hitherto barely attended to in protein structure work. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Cyclic nucleotide phosphodiesterase was extracted from intact chloroplasts and partially purified. Peak 1c activity from Sephadex G-200 was resolved by electrophoresis into two major bands (MWs 1.87 × 105 and 3.7 × 105). Both also possessed acid phosphatase, ribonuclease, nucleotidase and ATPase. The chloroplast peak 1c cyclic nueleotide phosphodiesterase was located in the envelope. Peak 1m cyclic nucleotide phosphodiesterase obtained from the microsomal fraction had a MW of 2.63 × 105. Electrophoresis separated 1m into two bands of cyclic nucleotide phosphodiesterase activity (MWs 2.63 × 105 and 1.28 × 105). Both contain ATPase, ribonuclease, nucleotidase, but not acid phosphatase. Peak 1c has high activity towards 3′:5′-cyclic AMP and 3′:5′-cyclic GMP but little towards 2′:3′-cyclic nucleotides. Peak 1m showed most activity towards 2′:3′-cyclic AMP, 2′:3′-cyclic GMP and 2′:3′-cyclic CMP with little activity towards 3′:5′-cyclic nucleotides. With 1c, 3′:5′-cyclic AMP and 3′:5′-cyclic GMP exhibit mixed-type inhibition towards one another. The 2′:3′-cyclic AMP phosphodiesterase 1m was competitively inhibited by 2′:3′-cyclic GMP. p-Chloromercuribenzoate inhibits 1c but not 1m. Electrophoresis after dissociation indicates that 1c and 1m are both enzyme complexes. After dissociation, the 1c complex but not that of 1m could be reassociated. The ribonuclease of the 1m complex hydrolyses RNA to yield 2′:3′-cyclic nucleotides as the main products. These results are compatible with the 1c cyclic nucleotide phosphodiesterase complex being involved in the metabolism of 3′:5′-cyclic AMP, and the 1m complex being concerned with RNA catabolism.  相似文献   

19.
Abstract

The 3′, 5′-di-O-acetyl-, 3′-, 5′-di-O-balzyl-, 3′-O-acety -5-O-trityl- and 3′-, 5′ -di-O-trityl-2′-O-triflyl-1-benzylhnosine (8c, 15, 20C, and 27, respectively) were prepared and subjected to nucleophilic reaction with TASF. Thus, 3′, 5′-O-(1, 1, 3, 3-tetraisopropyldisiloxanyl)-1-benzylinosine (5c) was triflylated, desilylated, and then acetylated to give 8c. Also, 5c was converted into the 2′-O-tetrahydropyrnyl (W) derivative 11 which was desilylated and then benzylated to give 2′-O-tetrahydropyranyl-O3′, O5′, N1-tribenzylinosine (13). Removal of the THP group from 13 followed by triflylation afforded 2′-O-triflyld-O3′,O5′ N1-tribenzylinosine (15). 3′-O-Acetyl-2′ -O-triflyl-,O5′,N1-inosine (20) was prepared frmn 5′ -O-trityl-1-benzylhh (18c) by conversion into the 2′-, 3′-O-(di-n-butylstannylene) derivative which was treated with triflyl chloride and then acetylated. Treatment of 1-benzyl-inosine (4c) with trityl chloride in pyridine containing p-dimethylamino-pyridine afforded a mixture of 2′-, 5′- and 3′-, 5′-di-O-trityl-l-benzylinosine (25 and 26, respectively). These regioiscums were chrcanato-graphically separated. Triflylation of 26 gave 2′-o-triflyl-3′-, 5′-di-O-trityl-1-benzylhoshe (27).

The triflates 8c and 15 only afforded elhination products upon treatment with TASF. However, the trif late group in 20c and 27 was displaced by fluoride with fornation of the 2′-fluoro-arabino nucleosides, 21c and 28, in 10 and 30% yield, respectively. After deprotection of 28, 9-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)hypowntkine (1, F-ara-H) was obtained in good yield. The conformational influence of the sugar protecting groups on the rate of nucleophilic substitution against elimination is discussed.  相似文献   

20.
Abstract

Oligonucleotide analogues comprised of 2′-deoxy-2′-fluoro-β-D-arabinose units joined via P3′-N5′ phosphoramidate linkages (2′F-ANA5′N) were prepared for the first time. Among the compounds prepared were a series of 2′OMe-RNA-[GAP]-2′OMe-RNA ‘chimeras’, whereby the “GAP” consisted of DNA, DNA5′N, 2′F-ANA or 2′F-ANA5′N segments. The chimeras with the 2′F-ANA and DNA gaps exhibited the highest affinity towards a complementary RNA target, followed by the 5′-amino derivatives, i.e., 2′F-ANA > DNA > 2′F-ANA5′N > DNA5′N. Importantly, hybrids between these chimeras and target RNA were all substrates of both human RNase HII and E.coli RNase HI. In terms of efficiency of the chimera in recruiting the bacterial enzyme, the following order was observed: gap DNA > 2′F-ANA > 2′F-ANA5′N > DNA5′N. The corresponding relative rates observed with the human enzyme were: gap DNA > 2′F-ANA5′N > 2′F-ANA > DNA5′N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号