首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possible effect of L-methionine supplements on the folate metabolism of division-synchronized Euglena gracilis (strain Z) cells has been examined. Cells receiving 1 mM L-methionine for four cell cycles were examined for folate derivatives, prior to and during cell division. Before cell division, methionine-supplemented cells contained less formylfolate but more methylfolate than unsupplemented cells. During division, both types of folates were present in lower concentrations in the supplemented cells. Growth in methionine for 10 and 34 hr also increased the levels of free aspartate, threonine, serine, cysteine and methionine relative to the controls. Methionine-supplemented cells contained ca 50% of the 10-formyltetrahydrofolate synthetase (EC 6.3.4.3) activity per cell of unsupplemented control cultures and specific enzyme activity was reduced ca 90%. Supplemented cells contained almost twice as much serine hydroxymethyltransferase (EC 2.1.2.1) activity per cell but comparable levels of glycollate dehydrogenase. Growth in methionine also reduced the incorporation of formate-14C] into serine, RNA, DNA, adenine and protein methionine. In contrast, incorporation of glycine-[2-14C] and serine-[3-14C] into folate-related products was not greatly altered by this treatment. Levels of radioactivity in these products suggested that formate was a more important C1 unit source than glycine or serine when growth occurred in unsupplemented medium. It is concluded that methionine reduces formylfolate production by an effect on the cellular levels of formyltetrahydrofolate synthetase.  相似文献   

2.
Five mutant lines of barley (Hordeum vulgare L.), which are only able to grow at elevated levels of CO2, contain less than 5% of the wild-type activity of ferredoxin-dependent glutamate synthase (EC 1.4.7.1). Two of these lines (RPr 82/1 and RPr 82/9) have been studied in detail. Leaves and roots of both lines contain normal activities of NADH-dependent glutamate synthase (EC 1.4.1.14) and the other enzymes of ammonia assimilation. Under conditions that minimise photorespiration, both mutants fix CO2 at normal rates; on transfer to air, the rates drop rapidly to 15% of the wild-type. Incorporation of 14CO2 into sugar phosphates and glycollate is increased under such conditions, whilst incorporation of radioactivity into serine, glycine, glycerate and sucrose is decreased; continuous exposure to air leads to an accumulation of 14C in malate. The concentrations of malate, glutamine, asparagine and ammonia are all high in air, whilst aspartate, alanine, glutamate, glycine and serine are low, by comparison with the wild-type parent line (cv. Maris Mink), under the same conditions. The metabolism of [14C]glutamate and [14C]glutamine by leaves of the mutants indicates a very much reduced ability to convert glutamine to glutamate. Genetic analysis has shown that the mutation in RPr 82/9 segregates as a single recessive nuclear gene.Abbreviations GDH glutamate dehydrogenase (EC 1.4.1.2) - GS glutamine synthetase (EC 6.3.1.2) - RuBP ribulose 1,5-bisphosphate  相似文献   

3.
Glycine-accumulating mutants of barley (Hordeum vulgare L.) and Amaranthus edulis (Speg.), which lack the ability to decarboxylate glycine by glycine decarboxylase (GDC; EC 2.1.2.10), were used to study the significance of an alternative photorespiratory pathway of serine formation. In the normal photorespiratory pathway, 5,10-methylenetetrahydrofolate is formed in the reaction catalysed by GDC and transferred to serine by serine hydroxymethyltransferase. In an alternative pathway, glyoxylate could be decarboxylated to formate and formate could be converted into 5,10-methylenetetrahydrofolate in the C1-tetrahydrofolate synthase pathway. In contrast to wild-type plants, the mutants showed a light-dependent accumulation of glyoxylate and formate, which was suppressed by elevated (0.7%) CO2 concentrations. After growth in air, the activity and amount of 10-formyltetrahydrofolate synthetase (FTHF synthetase; EC 6.3.4.4), the first enzyme of the conversion of formate into 5,10-methylenetetrahydrofolate, were increased in the mutants compared to the wild types. A similar increase in FTHF synthetase could be induced by incubating leaves of wild-type plants with glycine under illumination, but not in the dark. Experiments with 14C showed that the barley mutants incorporated [14C]formate and [2-14C]glycollate into serine. Together, the accumulation of glyoxylate and formate under photorespiratory conditions, the increase in FTHF synthetase and the ability to utilise formate and glycollate for the formation of serine indicate that the mutants are able partially to compensate for the lack of GDC activity by bypassing the normal photorespiratory pathway. Received: 14 August 1998 / Accepted: 30 September 1998  相似文献   

4.
The activities of enzymes catalysing glycollate oxidation, formate production and folate-dependent formate utilization were examined in the primary leaves of Hordeum vulgare cv Galt. Seedlings were grown for 6 days in darkness and then transferred to continuous light (500 μinsteins/m2 per sec) for up to 5 days. Cell-free extracts of the primary leaves contained glycollate oxidase (EC 1.1.3.1), 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5, 10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) and ability to enzymically decarboxylate glyoxylate. These activities increased during greening and at the end of the light treatment were 70–450% higher than etiolated controls. Greened primary leaves also incorporated [14C]formate at rates that were three- to four-fold higher than shown by etiolated leaves. The specific activity of 10-formyltetrahydrofolate synthetase was decreased by 20–35% when the leaves were greened in the presence of 10 mM hydroxysulphonate. This inhibitor also reduced the incorporation of [14C]formate by up to 45%. A potential flow of carbon from glycollate to 10-formyltetrahydrofolate via glyoxylate and formate was suggested by the data.  相似文献   

5.
The red seaweed Hypnea spinella (Gigartinales, Rhodophyta), was cultured at laboratory scale under three different CO2 conditions, non-enriched air (360?ppm CO2) and CO2-enriched air at two final concentrations (750 and 1,600?ppm CO2), in order to evaluate the influence of increased CO2 concentrations on growth, photosynthetic capacity, nitrogen removal efficiency, and chemical cellular composition. Average specific growth rates of H. spinella treated with 750 and 1,600?ppm CO2-enriched air increased by 85.6% and 63.2% compared with non-enriched air cultures. CO2 reduction percentages close to 12% were measured at 750?ppm CO2 with respect to 5% and 7% for cultures treated with air and 1,600?ppm CO2, respectively. Maximum photosynthetic rates were enhanced significantly for high CO2 treatments, showing P max values 1.5-fold higher than that for air-treated cultures. N–NH 4 + consumption rates were also faster for algae growing at 750 and 1,600?ppm CO2 than that for non-enriched air cultures. As a consequence of these experimental conditions, soluble carbohydrates increased and soluble protein contents decreased in algae treated with CO2-enriched air. However, internal C and N contents remained constant at the different CO2 concentrations. No significant differences in data obtained with both elevated CO2 treatments, under the assayed conditions, indicate that H. spinella is saturated at dissolved inorganic carbon concentrations close by twice the actual atmospheric levels. The results show that increased CO2 concentrations might be considered a key factor in order to improve intensively cultured H. spinella production yields and carbon and nitrogen bioremediation efficiencies.  相似文献   

6.
The linked utilization of glycollate and L-serine has been studied in peroxisomal preparations from leaves of spinach beet (Beta vulgaris L.). The generation of glycine from glycollate was found to be balanced by the production of hydroxypyruvate from serine and similarly by 2-oxoglutarate when L-glutamate was substituted for L-serine. In the presence of L-malate and catalytic quantities of NAD+, about 40% of the hydroxypyruvate was converted further to glycerate, whereas with substrate quantities of NADH, this conversion was almost quantitative. CO2 was released from the carboxyl groups of both glycollate and serine. Since the decarboxylation of both substrates was greatly in creased by the catalase inhibitor, 3-amino-1,2,4-triazole, and abolished by bovine liver catalase, it was attributed to the nonenzymic attack of H2O2, generated in glycollate oxidation, upon glyoxylate and hydroxypyruvate respectively. At 25–30° C, about 10% of the glyoxylate and hydroxypyruvate accumulated was decarboxylated, and the release of CO2 from each keto-acid was related to the amounts present. It is suggested that hydroxypyruvate decarboxylation might contribute significantly to photorespiration and provide a metabolic route for the complete oxidation of glycollate, the magnitude of this contribution depending upon the concentrations of glyoxylate and hydroxypyruvate in the peroxisomes.  相似文献   

7.
Glycollate metabolism in 5-day-old endosperm tissues of Ricinuscommunis L. was examined by feeding micromolar quantities of[2-14C]glycollate to tissue slices. It was found that glycollatecarbon was rapidly incorporated into glyoxylate, glycine, serine,and carbon dioxide. Only small amounts of 14C were incorporatedinto the sugars. Changes in the distribution of 14C with timesuggested that glyoxylate was a primary product and that glycineand serine were secondary products of glycollate metabolism.The results of feeding experiments are interpreted as indicatingthat a glycollate pathway leading to sugar biosynthesis is ofminor importance compared to the rapid utilization of glycollatefor the biosynthesis of glycine and serine. Enzymes necessaryto catalyse the incorporation of glycollate into glycine andserine have been examined in castor-bean endosperm extracts.These included: glycollic acid oxidase, gloxylic acid reductase,glyoxylate transaminase, N10 formyltetrahydrofolate synthetase,N5,N10-methylenetetrahydrofolate dehydrogenase, and serine hydroxymethyltransferase.  相似文献   

8.
Summary When Chlorella pyrenoidosa photoassimilates 3H–14C-acetate glycollic acid rapidly becomes labelled with both tritium and 14C. The 3H/14C ratio was 10 in glycollate, (compared with 4 in the acetate added) and the only other intermediates showing similar 3H/14C ratios to glycollate were glycerate and serine. This suggests a glycollate pathway for the formation of serine was operating in Chlorella pyrenoidosa during the photoassimilation of acetate. When Chlorella pyrenoidosa assimilated 3H–14C-acetate in the dark glycollate was not labelled with either 14C or tritium. Although glycerate and serine both became labelled with 14C and tritium in the dark they did not show the high 3H/14C ratios recorded in the light. When cells were aerated with unlabelled 5% CO2 during the photoassimilation of 3H–14C-acetate, the 3H/14C ratios of glycollate, glycerate and serine were slightly decreased. Similarly, under anaerobic conditions in the light the 3H/14C ratio was decreased compared with aerobic conditions.  相似文献   

9.
Procedures were devised for heterotrophic culture and autotrophic establishment of protoplast-derived cell cultures from the sat mutant of Nicotiana sylvestris Speg. et Comes lacking serine: glyoxylate aminotransferase (SGAT; EC 2.6.1.45) activity. Increasing photon flux rates (dark, 40, 80 mol quanta·m-2·s-1) enhanced the growth rate of autotrophic (no sucrose) wild-type (WT) cultures in air and 1% CO2. Mutant cultures showed a similar response to light under conditions suppressing photorespiration (1% CO2), and maintained 65% of WT chlorophyll levels. In normal air, however, sat cultures developed severe photorespiratory toxicity, displaying a negligible rate of growth and rapid loss of chlorophyll to levels below 1% of WT. Low levels of sucrose (0.3%) completely reversed photorespiratory toxicity of the mutant cells in air. Mutant cultures maintained 75% of WT chlorophyll levels in air, displayed light stimulation of growth, and fixed 14CO2 at rates identical to WT. Autotrophic sat cultures accumulated serine to levels nearly nine-fold above that of WT cultures in air. Serine accumulated to similar levels in mixotrophic (0.3% sucrose) sat cultures in air, but had no deleterious effect on fixation of 14CO2 or growth, indicating that high levels of serine are not toxic, and that toxicity of the sat mutation probably stems from depletion of intermediates of the Calvin cycle. Autotrophic sat cultures were employed in selection experiments designed to identify spontaneous reversions restoring the capacity for growth in air. From a population of 678 000 sat colonies, 23 plantlets were recovered in which sustained growth in air resulted from reacquisition of SGAT activity. Twenty-two had SGAT levels between 25 and 50% of WT, but one had less than 10% of WT SGAT activity, and eventually developed symptoms typical of the sat mutant. The utility of autotrophic sat cultures for selection of chloroplast mutations diminishing the oxygenase activity of ribulose-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) is discussed.Abbreviations Chl chlorophyll - DW dry weight - FW fresh weight - SGAT Serine:glyoxylate aminotransferase - WT wild-type  相似文献   

10.
A release of ammonium by non-nitrogen-fixing Anabaena cylindrica (grown on NH4Cl) in the presence of MSX (methionine sulfoximine) and absence of any external nitrogen source was found. In the light the release was maximal at 0.2 mM MSX, a concentration which did not affect net CO2 fixation nor the glycollate excretion, but inhibited the glutamine synthetase activity and the reassimilation of ammonium. It is suggested that the major source of the ammonium released is the photorespiratory conversion of glycine to serine as (1) the release was stimulated by increase in light intensity, (2) high CO2 (3%) lowered the release, if not given as a longer pretreatment (as CO2 or HCO 3 - ) when a stimulation was observed, (3) glyoxylate and glutamate stimulated the release, the latter compound particularly under nitrogen-deficient conditions and (4) isonicotinic acid hydrazide caused a reduced release of ammonium. Furthermore, a substantial part of the ammonium released by N2-fixing A. cylindrica in presence of MSX may thus originate from the glycollate pathway. The data show that in the light the glycine to serine conversion is active in cyanobacteria with a concomitant production of ammonium which is assimilated by glutamine synthetase.Abbreviations MSX L-methionine-Dl-sulfoximine - INH isonicotinic acid hydrazide - RuDP ribulose 1,5-diphosphate - Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - GS glutamine synthetase - GOGAT glutamate synthase - DTT Dl-dithiothreitol  相似文献   

11.
We have investigated the effect of 2-hydroxy-3-butynoic acid (HBA) and its methyl ester (MeHBA) on photosynthesis and pigment formation in Zea mays, a C4 photosynthesis-type plant. In the presence of the specific inhibitor of glycollate oxidase, assimilation of CO2 was decreased significantly. Labelling patterns showed accumulation of glycollate, though not so marked as in C3 photosynthesis-type plants, and marked decreases in incorporation into glycine, serine and particularly glycerate. This inhibition was specific for the S(+) enantiomers of HBA and MeHBA. In greening maize R,S-MeHBA inhibited formation of chloroplast pigments and this effect could be shown to be due to the S(+) enantiomer; of a range of metabolises tested only supplementations with serine or pyruvate were partly effective in restoring greening.  相似文献   

12.
Mutant strains of the facultative autotrophic bacterium Alcaligenes eutrophus blocked in glycollate utilization were isolated and characterized. One of the strains, AE161, which lacked glycollate oxidoreductase activity, excreted up to 1.2mol glycollate/mg cell protein per hour during autotrophic growth. This mutant strain was used to study the efficiency of CO2 fixation in terms of how much of the fixed carbon was excreted as glycollate under different conditions. Glycollate excretion was not detected during heterotrophic growth. Only 1% of the total CO2 fixed was excreted as glycollate in an atmosphere of 4% CO2 plus 20% O2. The rate of glycollate excretion showed a large increase and CO2 fixation decreased as the CO2 concentration was lowered. Almost half (40–50%) of the total CO2 fixed was excreted as glycollate in an atmosphere of 0.07% CO2 plus 20% O2.Abbreviations HPMS 2-pyridyl-hydroxymethane sulphonic acid - RuBP ribulose 1,5-bisphosphate To whom offprint requests are to be sent  相似文献   

13.
Investigations of the effect of 2-hydroxy-3-butynoic acid and its methyl ester on photosynthesis in Hordeum vulgare are reported. In the presence of either of these compounds the assimilation of 14CO2 was greatly decreased. The labelling patterns showed massive accumulation of glycollate and greatly reduced incorporation into sucrose and other products of photosynthesis. The inhibition was specific for the S(+) enantiomers. In greening barely the S(+) enantiomers inhibited formation of chloroplast pigments, and this was paralleled by inhibition of glycollate oxidase. This was the only enzyme of the glycollate pathway whose activity was significantly decreased after inhibitor treatments. Of a range of metabolises tested, only supplementations with glycine and glutamate or glycine, serine and succinate fully restored greening.  相似文献   

14.
Metabolic regulation in Pseudomonas oxalaticus OX1   总被引:1,自引:0,他引:1  
Diauxic growth of Pseudomonas oxalaticus was observed on a mixture of formate and oxalate in batch cultures. In the first phase of growth only formate was used. The capacity to oxidize oxalate appeared during the lag phase of 2–4 h after the exhaustion of formate and was followed by a second phase of growth on oxalate. The rate of autotrophic 14CO2 fixation measured in washed cell suspensions decreased markedly in this second growth phase on the addition of oxalate. In mixtures of formate with acetate, glyoxylate or glycollate, simultaneous utilization of both substrates was observed. During growth on acetate plus formate formate-oxidizing capacity remained low. With low acetate concentrations, sufficient formate remained after the exhaustion of acetate to support a second growth phase on formate. This phase followed a 1.5–2 h lag, during which formate-oxidizing capacity increased and the Calvin cycle enzymes were synthesized. In mixtures of formate with glyoxylate or glycollate, the formate-oxidizing capacity was high, formate was oxidized rapidly, and no second growth phase was seen. In these latter mixtures high activities of a membrane-bound, phenazine methosulphate/2,6-dichlorophenolindophenollinked formate dehydrogenase and low activities of the soluble NAD-linked formate dehydrogenase were detected. The synthesis of ribulose-1,5-diphosphate carboxylase was totally repressed during growth on formate plus glycollate and partially repressed on formate plus glyoxylate. The regulation of Calvin cyclus enzymes in Pseudomonas oxalaticus is discussed.  相似文献   

15.
Aeration of carrot storage tissue disks in water was accompanied by net folate synthesis and by changes in the specific activities of key folate-dependent enzymes. Disks aerated in 0.1 mM gibberellic acid (GA3) for 48 hr contained higher concentrations of methyltetrahydrofolates but aeration in 5 mM L-methionine reduced net folate synthesis. Gibberellic acid also increased the specific activities of 5,10-methylenetetrahydrofolate reductase (E.C. 1.1.1.68), serine hydroxymethyltransferase (E.C. 2.1.2.1) and 5-methyltetrahydrofolate: homocysteine transmethylase. The levels of these enzymes in disks aerated in L-methionine (5 mM) were comparable or slightly higher than those of disks aerated in water. Activity of the reductase and 10-formyltetrahydrofolate synthetase (E.C. 6.3.4.3) was inhibited by L-methionine in vitro. Aeration increased ability to incorporate formate [14C] into serine, glycine and methionine. Disks aerated for 36 hr in 0.1 mM GA3 incorporated greater amounts of 14C into free methionine but those aerated in L-methionine (5 mM) had less ability to metabolize formate and the specific radioactivities of free glycine, serine and methionine were low.  相似文献   

16.
G. Corduan 《Planta》1970,91(4):291-301
Summary It is possible to obtain autotrophic callus cultures by inhibiting cell respiration. During a first passage of four weeks the cultures synthesized chlorophyll on an agar-medium with a minimum of organic substances such as sugar, amino acids and vitamins. In the second passage these cultures were kept on the same medium but were aerated with a mixture of 99% N2 and 1% CO2. In the third and last passage the medium contained only mineral substances and the same mixture of N2 and CO2 was used for aeration. This pure mineral medium was supplemented with the Hoagland's solution.These autotrophic callus cultures were grown for about two years under these conditions and showed a growth quotient of ten.Three different groups of tissues were taken for the 14CO2-fixation. The first group was grown for four weeks on a heterotrophic medium and aerated with O2. This is the socalled respirating group. The second and third group were both aerated with the mixture of N2/CO2 but they were grown on different mediums. One of these groups was grown on a heterotrophic medium for four weeks: these are heterotrophic photosynthesizing tissues. The third group was grown on a pure mineral medium, and these are the autotrophic photosynthesizing callus tissues.Respirating tissues are different from photosynthesizing cultures in respect to the quantity of light-induced CO2-fixation.The thin-layer chromatograms reveal the difference between heterotrophic and autotrophic tissues. In the light dependent 14CO2-incorporation the difference is in the amounts of the labelled amino acids glycine and serine. In the dark dependent incorporation the difference is found in the amount of the labelled amino acid aspartic acid. The more autotrophic these tissues are, the higher the level of the CO2-fixation in these amino acids is.

Mit Hilfe der Deutschen Forschungsgemeinschaft.  相似文献   

17.
Eight mutants of barley (Hordeum vulgare cv Maris Mink) lacking the chloroplast isozyme of glutamine synthetase (EC 6.3.1.2.) were isolated by their inability to grow under photorespiratory conditions. The cytoplasmic isozyme of glutamine synthetase was present in the leaves of all the mutants, with activities comparable to the wild-type (10-12 nanokatals per gram fresh weight). The mutant plants developed normally and were fully fertile under conditions that minimize photorespiration. In 1% O2 the rate of CO2 fixation in leaves of one of the mutants, RPr 83/32, was the same as the wild-type, but in air this rate declined to 60% of the wild-type after 30 minutes. During this time the ammonia concentration in leaves of the mutant rose from 1 to 50 micromoles per gram fresh weight. Such ammonia accumulation in air was found in all the mutant lines. In back-crosses with the parent line, F1 plants were viable in air. In the F2 generation, nonviability in air and the lack of chloroplast glutamine synthetase co-segregated, in both the lines tested. These two lines and four others proved to be allelic; we designate them gln 2a-f. The characteristics of these mutants conclusively demonstrate the major role of chloroplast glutamine synthetase in photorespiration and its associated nitrogen recycling.  相似文献   

18.
Dark CO(2) Fixation and its Role in the Growth of Plant Tissue   总被引:9,自引:8,他引:1       下载免费PDF全文
Experiments were designed to determine the significance of dark CO2 fixation in excised maize roots, carrot slices and excised tomato roots grown in tissue culture. Bicarbonate-14C was used to determine the pathway and amounts of CO2 fixation, while leucine-14C was used to estimate protein synthesis in tissues aerated with various levels of CO2.

Organic acids were labeled from bicarbonate-14C, with malate being the major labeled acid. Only glutamate and aspartate were labeled in the amino acid fraction and these 2 amino acids comprised over 90% of the 14C label in the ethanol-water insoluble residue.

Studies with leucine-14C as an indicator of protein synthesis in carrot slices and tomato roots showed that those tissues aerated with air incorporated 33% more leucine-14C into protein than those aerated with CO2-free air. Growth of excised tomato roots aerated with air was 50% more than growth of tissue aerated with CO2-free air. These studies are consistent with the suggestion that dark fixation of CO2 is involved in the growth of plant tissues.

  相似文献   

19.
A mutant line, RPr79/2, of barley (Hordeum vulgare L. cv. Maris Mink) has been isolated that has an apparent defect in photorespiratory nitrogen metabolism. The metabolism of 14C-labelled glutamine, glutamate and 2-oxoglutarate indicates that the mutant has a greatly reduced ability to synthesise glutamate, especially in air, although in-vitro enzyme analysis indicates the presence of wild-type activities of glutamine synthetase (EC 6.3.1.2) glutamate synthase (EC 1.4.7.1 and EC 1.4.1.14) and glutamate dehydrogenase (EC 1.4.1.2). Several characteristics of RPr79/2 are very similar to those described for glutamate-synthase-deficient barley and Arabidopsis thaliana mutants, including the pattern of labelling following fixation of 14CO2, and the rapid rise in glutamine content and fall in glutamate in leaves on transfer to air. The CO2-fixation rate in RPr79/2 declines much more slowly on transfer from 1% O2 to air than do the rates in glutamate-synthase-deficient plants, and RPr79/2 plants do not die in air unless the temperature and irradiance are high. Analysis of (glutamine+NH3+2-oxoglutarate)-dependent O2 evolution by isolated chloroplasts shows that chloroplasts from RPr79/2 require a fivefold greater concentration of 2-oxoglutarate than does the wild-type for maximum activity. The levels of 2-oxoglutarate in illuminated leaves of RPr79/2 in air are sevenfold higher than in Maris Mink. It is suggested that RPr79/2 is defective in chloroplast dicarboxylate transport.  相似文献   

20.
The effects of aeration of the N-free rooting medium with elevated CO2 on (a) acetylene reduction by perlite-grown plants and (b) N2-fixation and long-term growth of nutrient solution-grown plants were determined for nodulatedAlnus glutinosa (L.) Gaertn. In the former experiments, roots of intact plants were incubated in acetylene in air in darkened glass jars for 3 hr, followed by a further 3 hr incubation period in air enriched with CO2 (0–5%). During incubation, the CO2 content of the jars increased by 0.17% per hour due to respiration of the root system, so that the CO2 content at 3 hr was 0.5%. Additional enrichment of the rooting medium gas-phase with CO2 equivalent to 1.1% and 1.75% CO2 of the gas volume significantly increased nitrogenase activity (ethylene production) by 55% and 50% respectively, while enrichment with greater than 2.5% CO2 decreased activity. In contrast, ethylene production by control plants, where CO2 was not added to the assay jars, decreased by 8% over the assay period. In long-term growth experiments, nodulated roots of intactAlnus glutinosa plants were sealed into jars containing N-free nutrient solution (pH 6.3) and aerated with air, or air containing elevated levels of CO2 (1.5% and 5%). Comparison of the appearance of CO2-treated with air treated plants suggested that 1.5% CO2 stimulated plant growth. However, at harvest after 5 or 6 weeks variability between plants masked the significance of differences in plant dry weight. A significant increase of 33% in total nitrogen of plants aerated with 1.5% CO2, compared with air-treated plants, was demonstrated, broadly in line with the short-term increase in acetylene reducing activity observed following incubations with similar CO2 concentrations. Shoot dry weight was not affected significantly by long-term exposure to 5% CO2, the main effect on growth being a 20% reduction in dry weight of the root system, possibly through inhibition of root system respiration. However, in contrast to the inhibitory effects of high CO2 on acetylene reduction there was no significant effect on the amounts of N2 fixed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号