首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Phytochemistry》1987,26(3):779-781
Eight known diterpene acids, ent-12-oxokaur-9(11),16-dien-19-oic acid, ent-12β-hydroxykaur-9(11),16-dien-19-oic acid, ent-isokaur-15(16)-en-17,19-dioic acid, ent-15α,16-epoxy-17-hydroxykaura-19-oic acid, ent-kaura-17,19-dioic acid, ent-kaur-16-en-19-oic acid, grandifloric acid, angeloyloxygrandifloric acid, as well as a new sesquiterpene lactone, ladibranolide, were isolated from Viguiera ladibractate. The stereochemistry of the sesquiterpene lactone was established by NOE experiments.  相似文献   

2.
Two new ent-kauren-19-oic acid derivatives, ent-14S*-hydroxykaur-16-en-19-oic acid and ent-14S*,17-dihydroxykaur-15-en-19-oic acid together with eleven known compounds ent-kaur-16-en-19-oic acid, ent-kaur-16-en-19-al, ent-12β-hydroxykaur-16-en-19-oic acid, ent-12β-acetoxykaur-16-en-19-oic acid, 8R,13R-epoxylabd-14-ene, eudesm-4(15)-ene-1β,6α-diol, (?)-7-epivaleran-4-one, germacra-4(15), 5E,10(14)-trien-9β-ol, acetyl aleuritolic acid, β-amyrin, and stigmasterol were isolated from the stem bark of Croton pseudopulchellus (Euphorbiaceae). Structures were determined using spectroscopic techniques. Ent-14S*-hydroxykaur-16-en-19-oic acid, ent-kaur-16-en-19-oic acid, ent-12β-hydroxykaur-16-en-19-oic acid, ent-12β-acetoxykaur-16-en-19-oic acid and 8R,13R-epoxylabd-14-ene were tested for their effects on Semliki Forest virus replication and for cytotoxicity against human liver tumour cells (Huh-7 strain) but were found to be inactive. Ent-kaur-16-en-19-oic acid, the major constituent, showed weak activity against the Plasmodium falciparum (CQS) D10 strain.  相似文献   

3.
The plant diastereoisomeric diterpenes ent-pimara-8(14)-15-dien-19-oic acid, obtained from Viguiera arenaria, and isopimara-8(14)-15-dien-18-oic acid, isolated from Cupressus lusitanica, were distinctly functionalized by the enzymes produced in whole cell cultures of the fungus Preussia minima, isolated from surface sterilized stems of C. lusitanica. The ent-pimaradienoic acid was transformed into the known 7β-hydroxy-ent-pimara-8(14)-15-dien-19-oic acid, and into the novel diterpenes 7-oxo-8 β-hydroxy-ent-pimara-8(14)-15-dien-19-oic and 7-oxo-9β-hydroxy-ent-pimara-8(14)-15-dien-19-oic acids. Isopimara-8(14)-15-dien-18-oic acid was converted into novel diterpenes 11α-hydroxyisopimara-8(14)-15-dien-18-oic acid, 7β,11α-dihydroxyisopimara-8(14)-15-dien-18-oic acid, and 1β,11α-dihydroxyisopimara-8(14)-15-dien-18-oic acid, along with the known 7β-hydroxyisopimara-8(14)-15-dien-18-oic acid. All compounds were isolated and fully characterized by 1D and 2D NMR, especially 13C NMR. The diterpene bioproduct 7-oxo-9β-hydroxy-ent-pimara-8(14)-15-dien-19-oic acid is an isomer of sphaeropsidin C, a phytotoxin that affects cypress trees produced by Shaeropsis sapinea, one of the main phytopathogen of Cupressus. The differential metabolism of the diterpene isomers used as substrates for biotransformation was interpreted with the help of computational molecular docking calculations, considering as target enzymes those of cytochrome P450 group.  相似文献   

4.
Two new diterpenes of the beyerene type, ent-19-hydroxy-1 7-acetoxybeyer-15-ene and ent-beyer-15-en-17-oic acid, and two previously characterized kauranoids, ent-16β-hydroxy-17-acetoxykaurane and ent-16β,1 7-dihydroxy-kaurane, as well as two known flavonoids, luteolin-7,3′,4′-trimethyl ether and luteolin-7,3′-dimethyl ether, and a triterpenoid, oleanoic acid, were obtained from a chloroform extract of Petunia patagonica. The new structures were elucidated by spectral data and chemical transformations.  相似文献   

5.
Two new ent-kaurene diterpenoids, 13α,15α-dihydroxy-18-carboxy-19-nor-ent-kaur-16-ene-2β-O-(2′-angelate)-β-d-glucopyranoside (leontocin A, 1), 13α,15α-dihydroxy-18-carboxy-19-nor-ent-kaur-16-ene-2β-O-(2′-angelate-6′-acetyl)-β-d-glucopyranoside (leontocin B, 2), and one new lignan, 2,3-bis[(3,4-di-hydroxyphenyl)methylene]-monoethyl ester-butanedioic acid (leontolignan A, 3), together with three known phenolic acids (4-6) were isolated from the aerial parts of Leontopodium leontopodioides (Asteraceae). Their structures were elucidated by chemical and spectroscopic methods. All isolates were evaluated for their anti-inflammatory activities by measuring their inhibitory effects against cyclooxygenase-1 and 2 in vitro.  相似文献   

6.
《Phytochemistry》1987,26(10):2781-2784
The investigation of Aristolochia brasiliensis and A. esperanzae afforded 12 clerodane derivatives, including the following six novel ones: rel (5S, 8R, 9S, 10R)-2-oxo-ent-3-cleroden-15-oic acid, rel (5S, 8R, 9S, 10R)-2-oxo-ent-clerod-3,13-dien-15-oic acid methyl ester, (5R, 8R, 9S, 10R)-ent-3-cleroden-15-oic acid, rel (5S, 8R, 9S, 10R)-ent-clerod-3,13-dien-15-oic acid, (2S, 5R, 8R, 9S, 10R)-2-hydroperoxy-ent-3-cleroden-15-oic acid methyl ester and (2S, 5R, 8R, 9S, 10R)-2-hydroperoxy-ent-clerod-3,13-dien-15-oic acid methyl ester. The structures were assigned on the basis of spectral data and derivatization by chemical reactions. The occurrence of this type of diterpene has not previously been reported in Aristolochiaceae.  相似文献   

7.
《Phytochemistry》1987,26(9):2521-2524
The microbiological transformations of ent-7α-hydroxy-atis-15-en-19-oic acid into isoatisagibberellins A12 and A15, and of ent-19-hydroxy-atis-6,15-diene into 7β-hydroxyisoatisenolide and 7β,18-dihydroxyisoatisenolide have been demonstrated using Gibberella fujikuroi. The substrates incubated were chemically obtained from gummiferolic acid.  相似文献   

8.
The microbiological transformation by Gibberelia fujikuroi of ent-beyer-15-ene into the beyergibberellins A9 and A13, 7β-hydroxy- and 7β,18-dihydroxybeyerenolides, and of ent-beyer-15-en-19-ol into beyergibberellins A4, A7, A9, A13 and A25,and 7β-hydroxy-and 7β,18-dihydroxybeyerenolides is described. In contrast, ent-beyer-15-en-18-ol gave ent-7α, 18,19-trihydroxybeyer-15-ene, 7β,18-dihydroxybeyerenolide and ent-7α,18-dihydroxybeyer-15-en-19-oic acid again revealing the inhibitory effect of an 18-hydroxyl group on oxidative transformations at C-6β by Gibberella fujikuroi.  相似文献   

9.
Mutant B1-41a, obtained by UV-irradiation of Gibberella fujikuroi strain GF-1a, does not metabolise mevalonic acid lactone (MVL), ent-kaur-16-ene, ent-kaurenol, and ent-kaurenal to gibberellins. ent-Kaur-16-ene-19-oic acid is completely metabolised to give the same gibberellins in similar concentration as unsupplemented cultures of the parent strain. It is concluded that this mutant is blocked for gibberellin synthesis at the step from ent-kaurenal to ent-kaurenoic acid. Comparison of the incorporation of MVL into GA3 by the mutant and the parent strains indicate that the metabolic block is 97·5% effective. A method of preparing ent-kaur-16-ene, labelled at C-15 and C-17 by [2H] and [3H] is described.  相似文献   

10.
GA12-aldehyde obtained from mevalonate via ent-kaurene, ent-kaurenol, ent-kaurenoic acid and ent-7α-hydroxykaurenoic acid in a cell-free system from immature seeds of Cucurbita maxima was converted to GA12 by the same system. When Mn2+ was omitted from the system GA12-aldehyde and GA12 were converted further to several products. Among these GA15, GA24, GA36 and GA37 were conclusively identified by GC-MS. With the exception of GA37 these GAs have not previously been found in higher plants. Another biosynthetic pathway led from ent-7α-hydroxykaurenoic acid to very polar products via what was tentatively identified as ent-6α, 7α-dihydroxykaurenoic acid. An unidentified component with an MS resembling that of a dihydroxykaurenolide was also obtained from incubations with mevalonate.  相似文献   

11.
《Phytochemistry》1987,26(4):1019-1022
A new diterpenic acid, ent-kauren-15-one-18-oic acid, was isolated from the Indian liverwort Porella densifolia subsp. appendiculata together with the previously known ent-18-hydroxykauren-15-one and norpinguisone methyl ester. Further investigation of the chemical constituents of the Japanese P. densifolia var. fallax resulted in the isolation of three known ent-kaurane-type diterpenoids. P. densifolia subsp. appendiculata is chemically very close to P. densifolia var. fallax.  相似文献   

12.
The metabolism of several ring C and D-functionalized ent-kaur-16-en-19-oic acids by cultures of Gibberella fujikuroi, mutant B1-41a, to the corresponding derivatives of the normal fungal gibberellins (GAs) and ent-kaurenoids is described. A range of 12α- and 12β-hydroxyGAs and ent-kaurenoids are characterized by their mass spectra and GC Kovats retention indices. The mass spectral and GC data are used to identify the 12α-hydroxy derivatives of GA12, GA14, GA37 and GA4 (GA58), and of the 12β-hydroxy derivatives of ent-7α-hydroxy- and ent-6α, 7α-dihydroxykaurenoic acids, in seeds of Cucurbita maxima. Similarly the metabolites of GA9, formed in seeds of Pisum sativum and cultures of G.fujikuroi, mutant B1-41a, are identified as 12α-hydroxyGA9. ent-11β-Hydroxy- and ent-11-oxo-kaurenoic acids are metabolized by the fungus to the corresponding 11-oxygenated derivatives of the normal fungal ent-kaurenoids and some C20-GAs; no 11-oxygenated C19-GAs are formed. Grandiflorenic acid, 11β-hydroxygrandiflorenic acid, attractyligen and ent-15β-hydroxykaurenoic acid are metabolized to unidentified products.  相似文献   

13.
The isolation is reported of the new natural products from Viguiera quinqueradiata, acetylleptocarpin and (2R,3S-4′-hydroxy-3′,5,7-tri-O-methyl-flavan-3-ol. The diterpenes 15α-angeloyloxy-ent-kaur-16-en-19-oic acid, 15α-tigloyloxy-ent-kaur-16-en-19-oic acid and the sesquiterpene lactones leptocarpin and budlein A were also found.  相似文献   

14.
An active cell-free system, prepared from young etiolated shoots of normal Zea mays seedlings, was shown to biosynthesize the terpenoid hydrocarbons ent-kaur-16-ene, squalene and phytoene from mevalonic acid. The biosynthesis of ent-kaur-16-ene from mevalonic acid was compared using cell-free systems obtained from normal and dwarf-5 seedlings. ent-Kaur-16-ene was the predominant diterpene hydrocarbon synthesized by extracts from the normals; however, ent-kaur-15-ene was the major diterpene hydrocarbon synthesized by the dwarf-5 mutants. ent-Kaur-15-ene and ent-kaur-16-ene were also produced as minor products in the normal and dwarf-5 systems, respectively. The possible significance of the synthesis of the ‘wrong isomer’ (ent-kaur-15-ene) by the mutant is discussed.  相似文献   

15.
At least five genes of the gibberellin (GA) biosynthesis pathway are clustered on chromosome 4 of Gibberella fujikuroi; these genes encode the bifunctional ent-copalyl diphosphate synthase/ent-kaurene synthase, a GA-specific geranylgeranyl diphosphate synthase, and three cytochrome P450 monooxygenases. We now describe a fourth cytochrome P450 monooxygenase gene (P450-4). Gas chromatography-mass spectrometry analysis of extracts of mycelia and culture fluid of a P450-4 knockout mutant identified ent-kaurene as the only intermediate of the GA pathway. Incubations with radiolabeled precursors showed that the metabolism of ent-kaurene, ent-kaurenol, and ent-kaurenal was blocked in the transformants, whereas ent-kaurenoic acid was metabolized efficiently to GA4. The GA-deficient mutant strain SG139, which lacks the 30-kb GA biosynthesis gene cluster, converted ent-kaurene to ent-kaurenoic acid after transformation with P450-4. The B1-41a mutant, described as blocked between ent-kaurenal and ent-kaurenoic acid, was fully complemented by P450-4. There is a single nucleotide difference between the sequence of the B1-41a and wild-type P450-4 alleles at the 3′ consensus sequence of intron 2 in the mutant, resulting in reduced levels of active protein due to a splicing defect in the mutant. These data suggest that P450-4 encodes a multifunctional ent-kaurene oxidase catalyzing all three oxidation steps between ent-kaurene and ent-kaurenoic acid.  相似文献   

16.
Four new diterpenes have been isolated from Sideritis serata: lagascol (4, ent-8,5-friedopimar-5-ene-15S,16-diol), tobarrol (8, ent-15-beyerene-12α,17-diol), benuol (12, ent-15-beyerene-7α,17-diol) and serradiol (18, ent-16R-atis-13-ene-16,17-diol). The previously known diterpenes lagascatriol (1, ent-8,5-friedopimar-5-ene-11β,15S,16-triol), jativatriol (2, ent-15-beyerene-1β,12α,17-triol), conchitriol (3, ent-15-beyerene-7α,12α,17-triol) and sideritol (17, ent-16R-atis-13-ene-1β,16,17-triol) have also been obtained from the same source.  相似文献   

17.
Extraction of Conyza japonica gave strictic acid, ent-2β-hydroxy-15,16-epoxy-3,13(16),14-clerodatrien-18-oic acid and 5,7-dihydroxy-3,8,4′-trimethoxyflavone. Extraction of Grangea maderaspatana gave (-)-hardwickiic acid, ent-15,16-epoxy-1,3,13(16),14-clerodatetraen-18-oic acid and 3-hydroxy-8-acetoxypentadeca-1,9,14-trien-4,6-diyne. The structure of ent-2β-hydroxy-15,16-epoxy-3,13(16),14-cleroclatrien-18-oic acid was deduced by spectroscopic methods and by partial synthesis from (-)-hardwickiic acid and the stereochemistries of strictic acid and (ent-15,16-epoxy-1,3,13(16),14-clerodatraen-18-oic acid were established by correlation with ent-2β-hydroxy-15,16-epoxy-3,13(16),14-clerodatrien-18-oic acid.  相似文献   

18.
The metabolites produced by the secretory canals of the root cortex from four Smallanthus species belonging to the yacon group were identified as ent-kaurane-type diterpenes. The dichloromethane root cortex extracts of the four species were treated with diazomethane and analyzed comparatively by GC–MS using a simple and rapid procedure which is very sensitive and reproducible permitting detection of minor components. In all cases, ent-16-kauren-19-oic acid (kaurenoic acid) methyl ester was the main component, differences being observed only in the minor components. The minor components identified were grandiflorenic acid methyl ester, ent-16-kauren-19-al, 16α,17-epoxy-15α-angeloyloxy-kauran-19-oic acid methyl ester and several O-acyl derivatives at C-15 or C-18 of kaurenoic acid. One of the minor components, 18-isobutyroyloxy-ent-kaur-16-en-19-oic acid is a new kaurenoic acid derivative. Grandiflorenic acid and 15-α-angeloyloxy-16,17-α-epoxy-ent-16-kauren-19-oic acid were present only in Smallanthus sonchifolius and Smallanthus siegesbeckius which showed very similar GC traces. The different GC profile of RC diterpenes from Smallanthus connatus and Smallanthus macroscyphus supports the view that they are different taxa. Some chemotaxonomic aspects of the genus Smallanthus and the subtribe Milleriinae are briefly discussed.  相似文献   

19.
A new product obtained by incubation of [2-14C ]-mevalonic acid with a cell-free system from Cucurbita maxima endosperm was identified by GC-MS as ent-kaura-6,16-dien-19-oic acid. When this compound was reincubated with the microsomal fraction it was converted to 7β-hydroxykaurenolide and hence to 7β,12α-dihydroxykaurenolide. The dienoic acid was also obtained by incubation of ent-kaurene, ent1-kaurenol, ent-kaurenal and ent-kaurenoic acid, but not ent-7α-hydroxykaurenoic acid, with the microsomal fraction. Thus, in the C. maxima cell-free system, the kaurenolides are formed by a pathway which branches from the GA pathway at ent-kaurenoic acid and proceeds via the dienoic acid.  相似文献   

20.
The GC/MS detection is reported of over 30 compounds, in extracts of the endosperm and embryos from seeds of Cucurbita maxima. The compounds which were identified from reference spectra include: cis,trans-ABA; trans,trans-ABA; dihydrophaseic acid; IAA; GA4; GA12; GA13; GA25; GA39; GA43; GA49; ent-13-hydroxy-, ent-6α,7α-and ent-7α,13-dihydroxy-, and ent-6α,7α,13-trihydroxykaur-16-en-19-oic acids; ent-7α,16,17-trihydroxy- and ent-6α,7α,16,17-tetrahydroxy-kauran-19-oic acids, ent-6,7-seco-7-oxokauren-6,19-dioic acid and/or ent-6,7-secokauren-6,7,19-trioic acid, and 7β,12α-dihydroxykaurenolide. New compounds, the structures of which were deduced from GC/MS data, include: the 12α-hydroxy-derivatives of GA12, GA14, GA37 and GA4, and the 12β-hydroxy-derivatives of ent-7α-hydroxy- and ent-6α,7α-dihydroxykaurenoic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号