首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A graphical method is described which allows determination of kinetic parameters when substrate, inhibitor or activator concentrations must be in the vicinity of the enzyme concentration and a significant fraction of ligand is bound. Velocity is measured at several ligand: enzyme ratios at two or more enzyme concentrations. Results are obtained in terms of free and bound ligand corresponding to particular velocities. The relationship between velocity and bound and free ligand may then be analysed by any desired plotting technique. Preknowledge of the reaction mechanism or experimental determination of Vmax. is not required. The relationship between ligand bound and enzyme activity need not be linear and the method is equally suitable for analysing co-operative as well as simple kinetics. Application of the method is demonstrated by analysis of the inhibition of fructose, 1,6-bisphosphatase by AMP.  相似文献   

2.
The most widely used rate expression for single-substrate enzyme catalyzed reactions, namely the Michaelis-Menten kinetics is based upon the assumption that enzyme concentration is in excess of the substrate in the medium and the rate is mainly limited by the substrate concentration according to saturation kinetics. However, this is only a special case and the actual rate expression varies depending on the initial enzyme/substrate ratio (E0/S0). When the substrate concentration exceeds the enzyme concentration the limitation is due to low enzyme concentration and the rate increases with the enzyme concentration according to saturation kinetics. The maximum rate is obtained when the initial concentrations of the enzyme and the substrate are equal. A generalized rate equation was developed in this study and special cases were discussed for enzyme catalyzed reactions.  相似文献   

3.
The entomopathogenic fungus Beauveria bassiana produces at least three distinct single-cell propagules, aerial conidia, vegetative cells termed blastospores, and submerged conidia, which can be isolated from agar plates, from rich broth liquid cultures, and under nutrient limitation conditions in submerged cultures, respectively. Fluorescently labeled fungal cells were used to quantify the kinetics of adhesion of these cell types to surfaces having various hydrophobic or hydrophilic properties. Aerial conidia adhered poorly to weakly polar surfaces and rapidly to both hydrophobic and hydrophilic surfaces but could be readily washed off the latter surfaces. In contrast, blastospores bound poorly to hydrophobic surfaces, forming small aggregates, bound rapidly to hydrophilic surfaces, and required a longer incubation time to bind to weakly polar surfaces than to hydrophilic surfaces. Submerged conidia displayed the broadest binding specificity, adhering to hydrophobic, weakly polar, and hydrophilic surfaces. The adhesion of the B. bassiana cell types also differed in sensitivity to glycosidase and protease treatments, pH, and addition of various carbohydrate competitors and detergents. The outer cell wall layer of aerial conidia contained sodium dodecyl sulfate-insoluble, trifluoroacetic acid-soluble proteins (presumably hydrophobins) that were not present on either blastospores or submerged conidia. The variations in the cell surface properties leading to the different adhesion qualities of B. bassiana aerial conidia, blastospores, and submerged conidia could lead to rational design decisions for improving the efficacy and possibly the specificity of entomopathogenic fungi for host targets.  相似文献   

4.
When an enzyme is bound to an insoluble polyelectrolyte it may acquire novel kinetic properties generated by Donnan effects. It the enzyme is homogeneously distributed within the matrix, a variation of the electrostatic partition coefficient, when substrate concentration is varied, mimics either positive or negative co-operativity. This type of non-hyperbolic behaviour may be distinguished from true co-operativity by an analysis of the Hill plots. If the enzyme is heterogeneously distributed within the polyelectrolyte matrix, an apparent negative co-operativity occurs, even if the electrostatic partition coefficient does not vary when substrate concentration is varied in the bulk phase. If the partition coefficient varies, mixed positive and negative co-operativities may occur. All these effects must be suppressed by raising the ionic strength in the bulk phase. Attraction of cations by fixed negative charges of the polyanionic matrix may be associated with a significant decrease of the local pH. The magnitude of this effect is controlled by the pK of the fixed charges groups of the Donnan phase. The local pH cannot be much lower than the value of this pK. This effect may be considered as a regulatory device of the local pH. Acid phosphatase of sycamore (Acer pseudoplatanus) cell walls is a monomeric enzyme that displays classical Michaelis-Menten kinetics in free solution. However, when bound to small cell-wall fragments or to intact cells, it has an apparent negative co-operativity at low ionic strength. Moreover a slight increase of ionic strength apparently activates the bound enzymes and tends to suppress the apparent co-operativity. At I0.1, or higher, the bound enzyme has a kinetic behavior indistinguishable from that of the purified enzyme in free solution. These results are interpreted in the light of the Donnan theory. Owing to the repulsion of the substrate by the negative charges of cell-wall polygalacturonates, the local substrate concentration in the vicinity of the bound enzyme is smaller than the corresponding concentration in bulk solution. The kinetic results obtained are consistent with the view that there exist at least three populations of bound enzyme with different ionic environments: a first population with enzyme molecules not submitted to electrostatic effects, and two other populations with molecules differently submitted to these effects. The theory allows one to estimate the proportions of enzyme belonging to these populations, as well as the local pH values and the partition coefficients within the cell walls.  相似文献   

5.
We found that the histidine chemical modification of tyrosinase conspicuously inactivated enzyme activity. The substrate reactions with diethylpyridinecarbamate showed slow-binding inhibition kinetics (K(I) = 0.24 +/- 0.03 mM). Bromoacetate, as another histidine modifier, was also applied in order to study inhibition kinetics. The bromoacetate directly induced the exposures of hydrophobic surfaces following by complete inactivation via ligand binding. For further insights, we predicted the 3D structure of tyrosinase and simulated the docking between tyrosinase and diethylpyridinecarbamate. The docking simulation was shown to the significant binding energy scores (-3.77 kcal/mol by AutoDock4 and -25.26 kcal/mol by Dock6). The computational prediction was informative to elucidate the role of free histidine residues at the active site, which are related to substrate accessibility during tyrosinase catalysis.  相似文献   

6.
α-Chymotrypsin (α-CT) activity was tested in aqueous media with the following cetyltrialkylammonium bromide surfactants in the series methyl, ethyl, propyl and butyl, different in the head group size, and for the sake of comparison also with the anionic sodium n-dodecyl sulfate and the zwitterionic myristyldimethylammonium propanesulfonate. N-glutaryl-l-phenylalanine p-nitroanilide hydrolysis rate was monitored at surfactant concentration above the critical micellar one. Only some cationic surfactants gave superactivity and the head group size had a major weight. The highest superactivity was measured in the presence of cetyltributylammonium bromide. The effect of both nature and concentration of three different buffers was also investigated. There is a dependence of enzyme superactivity on buffer type. Michaelis–Menten kinetics were found. The binding constants of substrate with micellar aggregates were determined in the used buffers and the effective improvement of reaction rate (at the same free substrate concentration in the medium) was calculated. kcat significantly increased while Km was little changed after correction to free substrate concentration. The ratio of kcat to Km was between 12 and 35 times higher than in pure buffer, depending on buffer and surfactant concentrations. The increase of α-CT activity (30%) was less important in the presence of 1×10−2 M tetrabutylammonium bromide, a very hydrophobic salt, unable to micellise. Fluorescence spectra showed differences of enzyme conformation in the presence of various surfactants.  相似文献   

7.
In order to characterize the active site of yeast dipeptidase in more detail, kinetic studies with a variety of dipeptide substrates and substrate analogs were performed. To analyze kinetic data, computer programs were developed which first calculate initial velocities from progress curves and then evaluate the kinetic parameters by nonlinear regression analysis. A free carboxyl group is a prerequisite for binding of dipeptidase substrates; its position relative to the peptide bond must not deviate from the normal L-dipeptide conformation. The spatial arrangement of the terminal ammonium ion seems to be less crucial. The enzyme's substrate specificity clearly reflects the interactions of the substrate amino acid side chains with complementary dipeptidase subsites. The domain of the enzyme in contact with the C-terminal substrate side chain seems to be an open structure of moderately hydrophobic character. In contrast, the binding site for the amino-terminal side chain is a more strongly hydrophobic "pocket" of limited dimensions. The kinetics of inhibition by free amino acids points to an ordered release of products from the enzyme.  相似文献   

8.
We report the cocrystal structures of a computationally designed and experimentally optimized retro-aldol enzyme with covalently bound substrate analogs. The structure with a covalently bound mechanism-based inhibitor is similar to, but not identical with, the design model, with an RMSD of 1.4 Å over active-site residues and equivalent substrate atoms. As in the design model, the binding pocket orients the substrate through hydrophobic interactions with the naphthyl moiety such that the oxygen atoms analogous to the carbinolamine and β-hydroxyl oxygens are positioned near a network of bound waters. However, there are differences between the design model and the structure: the orientation of the naphthyl group and the conformation of the catalytic lysine are slightly different; the bound water network appears to be more extensive; and the bound substrate analog exhibits more conformational heterogeneity than typical native enzyme–inhibitor complexes. Alanine scanning of the active-site residues shows that both the catalytic lysine and the residues around the binding pocket for the substrate naphthyl group make critical contributions to catalysis. Mutating the set of water-coordinating residues also significantly reduces catalytic activity. The crystal structure of the enzyme with a smaller substrate analog that lacks naphthyl ring shows the catalytic lysine to be more flexible than in the naphthyl–substrate complex; increased preorganization of the active site would likely improve catalysis. The covalently bound complex structures and mutagenesis data highlight the strengths and weaknesses of the de novo enzyme design strategy.  相似文献   

9.
10.
1. The effect of the interaction between the charged matrix and substrate on the kinetic behaviour of bound enzymes was investigated theoretically. 2. Simple expression is derived for the apparent Km. 3. The apparent Km can only be used for the characterization of the electrostatic effect of the ionic strength does not vary with the substrate concentration. 4. The deviations from Michaelis-Menton kinetics are graphically illustrated for cases when the ionic strength varies with the substrate concentration. 5. The inhibition of the bound enzyme by a charged inhibitor at constant ionic strength is characterized by an apparent Ki. 6. When both the inhibitor concentration and the ionic strength change there is no apparent Ki, and the inhibition profile is graphically illustrated for this case. 7. Under certain conditions the electrostatic effects manifest thenselves in a sigmoidal dependence of the enzyme activity on the concentration of the substrate or inhibitor.  相似文献   

11.
A model for the interfacial orientation and the mode of action of lipase is proposed. Lipase is oriented so that its active site is near the oil-water boundary. This orientation is achieved by oil-enzyme bonding at the “hydrophobic head” of the enzyme, a region free of electric charges and relatively resistant to unfolding. The measured KM is a complex constant including the dissociation constant of this oil-enzyme “complex”. The interfacial orientation of lipase is further aided by hydrophilic negative charges on the “back” of the enzyme and by a hydrophilic carbohydrate “tail”.It is suggested that similar hydrophobic heads and hydrophilic tails and asymmetric charge distributions establish the orientation of many enzymes which act at interfaces. Many phospholipases, for instance, appear to be charge-oriented, and the carbohydrate residues of ribonucleases and many other glycoproteins may be hydrophilic tails.Lipase is probably a serine enzyme with a catalytic center similar to that of chymotrypsin, but more hindered, perhaps owing to the presence of a leucine residue, and there is no binding of substrate lipid chains in the “active complex”. The substrate molecule is fixated on the enzyme in a two-dimensional orientation, because its leaving alkoxy group must be received by the serine hydroxyl hydrogen which is directed towards the imidazol ring of the reactive histidine through a hydrogen bond. The high turnover rate of lipolysis, 5 × 105/min, exceptional even for an enzyme, results from the extremely high substrate concentration near the active site, and from an almost complete extrusion of water because of the hydrophobicity of both the active site and the substrate. In addition, both substrate and enzyme, because of their polarity, are already so favorably positioned at the interface that the formation of the “active complex” requires only a proper two-dimensional alignment, perhaps with partial extraction of the substrate molecule from the lipid phase.  相似文献   

12.
Phospholipase A2 at the bilayer interface.   总被引:2,自引:0,他引:2  
F Ramirez  M K Jain 《Proteins》1991,9(4):229-239
Interfacial catalysis is a necessary consequence for all enzymes that act on amphipathic substrates with a strong tendency to form aggregates in aqueous dispersions. In such cases the catalytic event occurs at the interface of the aggregated substrate, the overall turnover at the interface is processive, and it is influenced the molecular organization and dynamics of the interface. Such enzymes can access the substrate only at the interface because the concentration of solitary monomers of the substrate in the aqueous phase is very low. Moreover, the microinterface between the bound enzyme and the organized substrate not only facilitates formation of the enzyme-substrate complex, but a longer residence time of the enzyme at the substrate interface also promotes high catalytic processivity. Binding of the enzyme to the substrate interface as an additional step in the overall catalytic turnover permits adaptation of the Michaelis-Menten formalism as a basis to account for the kinetics of interfacial catalysis. As shown for the action of phospholipase A2 on bilayer vesicles, binding equilibrium has two extreme kinetic consequences. During catalysis in the scooting mode the enzyme does not leave the surface of the vesicle to which it is bound. On the other hand, in the hopping mode the absorption and desorption steps are a part of the catalytic turnover. In this minireview we elaborate on the factors that control binding of pig pancreatic phospholipase A2 to the bilayer interface. Binding of PLA2 to the interface occurs through ionic interactions and is further promoted by hydrophobic interactions which probably occur along a face of the enzyme, with a hydrophobic collar and a ring of cationic residues, through which the catalytic site is accessible to substrate molecules in the bilayer. An enzyme molecule binds to the surface occupied by about 35 lipid molecules with an apparent dissociation constant of less than 0.1 pM for the enzyme on anionic vesicles compared to 10 mM on zwitterionic vesicles. Results at hand also show that aggregation or acylation of the protein is not required for the high affinity binding or catalytic interaction at the interface.  相似文献   

13.
J Rogers  B Z Yu  M K Jain 《Biochemistry》1992,31(26):6056-6062
The effect of four specific competitive inhibitors on the kinetics of hydrolysis of short-chain diacyl-sn-glycero-3-phosphocholines below their critical micelle concentrations was examined. The kinetics of hydrolysis of short-chain substrates dispersed as solitary monomers were generally consistent with the classical Michaelis-Menten formalism; i.e., hydrolysis began without any latency period, the steady-state rate was observed at higher substrate concentrations, the steady-state initial rate showed a linear dependence on the enzyme concentration, and the hyperbolic dependence of the initial rate on the substrate concentration could be described in terms of KM and Vmax parameters. The competitive nature of the inhibitors used in this study has been established by a variety of techniques, and the equilibrium dissociation constants for the inhibitors bound to the enzyme were measured by the protection method [Jain et al. (1991) Biochemistry 30, 7306-7317]. The kinetics of hydrolysis in the presence of competitive inhibitors could be described by a single dissociation constant. However, the value of the dissociation constant obtained under the kinetic conditions was comparable to that obtained by the protection method for the inhibitor-enzyme complex bound to a neutral diluent, rather than to the value of the dissociation constant obtained with solitary monomeric inhibitors and the enzyme in the aqueous phase. Spectroscopic methods showed that the effectively lower dissociation constant of an inhibitor bound to PLA2 at the interface is due to the stabilization of the enzyme-inhibitor complex by interaction with other amphiphiles present in the reaction mixture.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
《FEBS letters》2014,588(9):1616-1622
A putative haloalkane dehalogenase has been identified in a marine Rhodobacteraceae and subsequently cloned and over-expressed in Escherichia coli. The enzyme has highest activity towards the substrates 1,6-dichlorohexane, 1-bromooctane, 1,3-dibromopropane and 1-bromohexane. The crystal structures of the enzyme in the native and product bound forms reveal a large hydrophobic active site cavity. A deeper substrate binding pocket defines the enzyme preference towards substrates with longer carbon chains. Arg136 at the bottom of the substrate pocket is positioned to bind the distal halogen group of extended di-halogenated substrates.  相似文献   

15.
Endothia parasitica protease hydrolyzes l-leucyl-l-leucine amide and l-leucyl-l-phenylalanine amide at the peptide bond. l-Phenylalanyl-l-leticine amide, N-carbobenzoxy-l-leucyl-l-phenylalanine amide, N-carbobenzoxy-l-leucyl-l-pheml-alanine, N-carbobenzoxy-l-phenylalanyl-l-valine amide, and l-leucyl-β-naphthyl-amide are not hydrolyzed. In contrast to the kinetics of hydrolysis of casein and oxidized B-chain of insulin and activation of trypsinogen by Endothia parasitica protease which are normal, reaction progress curves for hydrolysis of l-leucyl-l-leucine amide and l-leucyl-l-phenylalanine amide are sigrnoidal. Initially, the reaction rates were of the order of 0.5–2.5% of the maximum rates eventually attained. With increasing time of incubation the reaction rates became faster and faster until maximum rates were achieved. This abnormal behavior was not eliminated by recrystallization of substrate or by incubation of enzyme alone or with products of the reaction prior to addition of substrate. Addition of a new aliquot of substrate, vizl-leucyl-l-leucine amide, to the reaction prior to complete hydrolysis of all of a previous aliquot of the same substrate, or reactions containing a mixture of oxidized B chain of insulin and l-leucyl-l-leucine amide, gave normal reaction progress curves. The duration of abnormal behavior before a maximum rate was attained was a function of enzyme concentration and temperature but not of substrate concentration even though substrate was in less than saturating amounts. The reaction data follow second-order autocatalytic kinetics with respect to enzyme concentration. It is proposed that most of the enzyme is in an inactive form in absence of substrate but is rapidly converted to the active form on combination with a good substrate such as trypsinogen, casein, or oxidized B chain of insulin. However, with a poor substrate such as l-leucyl-l-leucine amide, conversion to active enzyme is mediated through formation of an active enzyme-inactive enzyme complex followed by combination with substrate and hydrolysis.  相似文献   

16.
Time-resolved fluorescence studies were carried out on the FAD bound to p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. The transient fluorescence exhibits complex decay kinetics with at least a short lifetime component in the 50-500-ps time region and a longer one in the range 1.5-3.5 ns. The shorter-lifetime component has a larger contribution in the presence of substrate (p-hydroxybenzoate) or inhibitor (p-aminobenzoate). The quenching of the fluorescence is both static and dynamic in nature. The decay of fluorescence anisotropy shows that the FAD environment is both flexible and rigid. The FAD mobility can be enhanced by dilution of the enzyme, by raising the temperature, or by the binding of substrate or inhibitors. The anisotropy results are interpreted in part in terms of a monomer-dimer equilibrium, whereby the FAD in the monomer contains much more flexibility. The above-mentioned effects induce a shift of the equilibrium to the monomeric side. From a constrained parameter fitting the dissociation constant is estimated to be about 1 microM for the free enzyme and somewhat higher for the binary complexes between the enzyme and substrate or inhibitor. pH variation has only a slight effect on fluorescence or anisotropy decay parameters, while dimethylsulfoxide appears to promote dissociation into monomers by weakening hydrophobic interaction between the subunits. The results are discussed in the light of newly developed insights into the functional role of rapid structural fluctuations in enzyme catalysis.  相似文献   

17.
Little is known about techniques for applying untreated microbial cells containing enzymes directly to industrial processes as a biocatalyst. The kinetic behavior of alpha-galactosidase-containing spherical pellets which are formed naturally under given conditions in a submerged culture of Mortierella vinacea was studied on the hydrolysis of PNPG (p-nitrophenyl-alpha-D-galactopyranoside). The effect on intraparticle diffusion on the overall reaction rate was assessed by the use of an effectiveness factor, which was calculated by the approximate solution to the equation derived from the mass balance within a pellet. The experimental effectiveness factors were found to be represented as a single function of the modified Thiele modulus, including such parameters as pellet size, enzyme concentration in the pellet, and substrate concentration. As the diffusional effect became more significant, the marked substrate inhibition as seen for a free enzyme disappeared gradually. The effect of product inhibition on the pellets was much weaker than that for a free enzyme at a given substrate concentration. In the region of diffusion controlled reaction, it was found that the rate is proportional to the square root of the enzyme concentration in the pellet. In addition, similarly to what was reported previously for a free enzyme,the reaction in a batch system was found to be approximately representable as simple first-order kinetics in which the rate constant was dependent on the initial substrate concentration.  相似文献   

18.
The inhibition of alkaline phosphatase from green crab (Scylla serrata) by L-cysteine has been studied. The results show that L-cysteine gives a mixed-type inhibition. The progress-of-substrate-reaction method previously described by Tsou [(1988), Adv. Enzymol. Related Areas Mol. Biol. 61, 391–436] was used to study the inactivation kinetics of the enzyme by L-cysteine. The microscopic rate constants were determined for reaction of the inhibitor with the free enzyme and the enzyme–substrate complex (ES) The results show that inactivation of the enzyme by L-cysteine is a slow, reversible reaction. Comparison of the inactivation rate constants of free enzyme and ES suggests that the presence of the substrate offers marked protection of this enzyme against inactivation by L-cysteine.  相似文献   

19.
The inversion of sucrose with β-d-fructofuranosidase (EC 3.2.1.26) immobilized by an ionic bond on bead cellulose containing weak basic N,N-diethylamino-2-hydroxypropyl groups has been investigated. The immobilized enzyme is strongly bound at an ionic strength up to 0.1 M in the pH range 3–6. The amount adsorbed is proportional to porosity and to the exchange capacity of the ion exchange cellulose, reaching values up to 200 mg/g dry carrier, with an activity in 10% sucrose solution at 30°C, pH 5, >8000 μmol min?1 g?1. The inversion of sucrose with immobilized β-d-fructofuranosidase was carried out in a stirred reactor. The dependence of activity on pH (3–7), temperature (0–70°C) and concentration of the substrate (2–64 wt%) were determined, and the inversion was compared with that obtained using non-immobilized enzyme under similar conditions. The rate of inversion at low substrate concentration (2–19 wt%) was described by Michaelis-Menten kinetics.  相似文献   

20.
The X-ray crystal structure of the vanadium bromoperoxidase from the red algae Corallina pilulifera has been solved in the presence of the known substrates, phenol red and phloroglucinol. A putative substrate binding site has been observed in the active site channel of the enzyme. In addition bromide has been soaked into the crystals and it has been shown to bind unambiguously within the enzyme active site by using the technique of single anomalous dispersion. A specific leucine amino acid is seen to move towards the bromide ion in the wild-type enzyme to produce a hydrophobic environment within the active site. A mutant of the enzyme where arginine 397 has been changed to tryptophan, shows a different behaviour on bromide binding. These results have increased our understanding of the mechanism of the vanadium bromoperoxidases and have demonstrated that the substrate and bromide are specifically bound to the enzyme active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号