首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 278 毫秒
1.
Cerulenin is a potent inhibitor of fatty acid synthesis from 14C-labelled acetate in leaves and developing seeds of Crambe abyssinica. The antibiotic is equally inhibitory on the elongation of [1-14C]-oleic acid to erucie acid which is the major fatty acid of the seed. There is no significant inhibition of fatty acid desaturation in either tissue. Acylation of lipids is not a primary target of cerulenin's action.  相似文献   

2.
Etiolated Cucumis sativus L. cotyledons preferentially catabolized exogenous [1-14C]oleic acid and [1-14C]linoleic acid with relatively little incorporation into complex lipids or desaturation of the 14C-labeled fatty acids. Following a 16-hour exposure to light, the greening cotyledons efficiently desaturated the exogenous 14C-labeled fatty acids. A small amount of oleate desaturation to linoleate was observed in etiolated tissue, but hardly any linoleate desaturation to α-linolenate was detected. Both oleate and linoleate desaturation showed diurnal variations with maxima at the end of light periods and minima at the end of dark periods. Illumination of etiolated tissue by flashing light, as opposed to continuous light, failed to stimulate either chlorophyll or α-linolenic acid biosynthesis, and both processes could be halted or reversed by 10 micrograms per milliliter cycloheximide. Production of polyunsaturated fatty acids from [1-14C]acetate, [1-14C]oleic acid, and [1-14C]linoleic acid, by greening cucumber cotyledons, was markedly affected by tissue integrity with finely chopped cotyledons having very little capacity for their synthesis and intact seedlings showing the highest rates.  相似文献   

3.
Lipid and fatty acid composition of chloroplast thylakoid membranes was determined in two varieties of wheat (Triticum aestivum L.), the hardy Miranovskaja and the sensitive Penjamo. Plants were grown at room temperature or under frost hardening conditions (1.5°C). Changes in lipid and fatty acid composition of the isolated thylakoids could be related to the temperature dependence of light-stimulated proton uptake. Changes in the thylakoid phospholipids upon hardening of the two varieties did not show any direct relation with low temperature tolerance of light-dependent H+ uptake; neither did changes in phospholipid fatty acid chain lengthening to 20 and 22 C-atoms in combination with increased desaturation up to 6 double bonds. Increased low temperature tolerance of light-induced H+ uptake by hardening was correlated with the following glycolipid changes: maintained glycolipid level, a proportionally increased digalactosyl diglyceride fraction, a decrease in thylakoid monogalactosyl diglyceride, increased sulfolipid fatty acid chain lengthening (20 and 22 C-atoms), and increased sulfolipid desaturation (4-6 double bonds). We suggest that the above mentioned changes in glycolipids have adaptive value for low temperature tolerance of light-dependent proton uptake.  相似文献   

4.
Exogenous [1-14C]oleic acid and [1-14C]linoleic acid were taken up and esterified to complex lipids by greening cucumber (Cucumis sativus L.) cotyledons. Both 14C-labeled fatty acids were initially esterified to phosphatidylcholine prior to eventual accumulation in triacylglycerols and galactolipids. Kinetic data suggest that esterification occurs prior to desaturation and that phosphatidylcholine is the initial site of both [14C]-oleate and [1-14C]linoleate esterification and of [1-14C]oleate desaturation to [1-14C]linoleate. [1-14C]Linoleic acid was esterified more rapidly than [14C]oleic acid and its desaturation product, [1-14C]α-linolenate, occurred mainly on monogalactosyl diacylglycerol, although some was also observed on the other major acyl lipids, including phosphatidylcholine.  相似文献   

5.
Experiments on the effects of temperature on the levels of unsaturated fatty acids and their rates of desaturation in Brassica napus leaf lipids have shown that significant differences occur in the composition of all diacylglycerols in the leaf between plants grown at high and low temperatures. In the major thylakoid diacylglycerols, monogalactosyl-diacylglycerol and digalactosyldiacylglycerol, not only is there an increase in the level of unsaturation at low temperatures, but there is a change in the balance between molecular species of chloroplastic origin (16/18C) and cytosolic origin (18/18C). Radioactivity tracer data indicate that at low temperatures there are two distinct phases of desaturation in the fatty acids of the major diacylglycerols of these leaves. A rapid phase, which appears in plants grown at low temperatures and results in the desaturation of palmitic acid to hexadecadienoic acid and oleic acid to linoleic acid may explain the high levels of unsaturated fatty acids found in the leaf diacylglycerols from plants grown at low temperatures. The appearance of this rapid phase is controlled by the temperature at which the plant is grown and is not subject to rapid variations in environmental temperature.  相似文献   

6.
  • 1.1. The fatty acid composition of the triglyceride fraction of mink milk sampled during mid-lactation (day 28 post partum) from two nursing mink was compared to that of plasma samples and to the fatty acid composition of the feed rations used.
  • 2.2. Chemical analysis of the triglyceride composition of mink milk demonstrated only minute concentrations of fatty acids with a chain length below C14.
  • 3.3. The saturated C16:0- and C18:0-unit fatty acids in mink milk made up for 24–40% of the total amount of fatty acids extracted, the remainder being represented by mono and polyunsaturated long-chain (C16-C24) fatty acids.
  • 4.4. Preliminary in vitro experiments proved the incorporation of14C-labelled glucose, acetate or palmitate into triacylglycerols in cultures of mink mammary tissue to be linear for at least 2 hr.
  • 5.5. The in vitro capacity for de novo fatty acid synthesis in mink mammary tissue using 14C-labelled glucose or acetate was low, i.e. ranging from 0.096–0.109 nmol/g (fresh tissue)/min, and amounted to only about 5% of that obtained in the case of [14C]palmitic acid incubation.
  • 6.6. Following 14C-labeIled acetic or palmitic acid incubation of mink mammary tissue neither desaturation nor chain elongation was observed.
  • 7.7. In response to long-term feeding on rations with two different sources of animal fat (F = fish oil or L = lard) the influence of compositional changes in dietary neutral lipids on the fatty acid composition of the lipids of mink milk is discussed.
  相似文献   

7.
Cyanide inhibited unesterified fatty acid synthesis but stimulated glyceride synthesis from [1-14C]acetate when Spinacia oleracea chloroplasts were incubated in basal media. Both unesterified fatty acid and glyceride accumulation were inhibited when chloroplasts were incubated in a diacylglycerol mode. Stimulation of chloroplast fatty acid synthesis by either exogenous coenzyme A or Triton X-100 was almost completely abolished in the presence of cyanide. Stearoyl-ACP desaturation is considered to be inhibited to a greater extent than is fatty acid synthesis de novo.  相似文献   

8.
After 2, 10 and 24 hr labelling with [1-14C] acetate, radioactivity incorporated into the lipids of cotton leaves is mainly found in phosphatidylcholine, phosphatidylglycerol and neutral lipids. Galactolipids are slowly synthesized and after 24 hr, account for only 10% of the total radioactivity. Under water stress, a marked decrease of precursor incorporation into leaf lipids occurs, particularly in phosphatidylcholine and galactolipids. Relative incorporation into neutral lipids, on the contrary, increases. Water deficits provoke an inhibition of the fatty acid desaturation, resulting in a sharp decrease of linoleic and linolenic acid biosynthesis. The decrease in unsaturated fatty acid biosynthesis occurs in all lipid classes, but is most pronounced in the galactolipid fractions. In the drought-resistant cotton variety (Mocosinho), the variations in lipid and fatty acid metabolism under water stress are less pronounced than in the drought-sensitive variety (Reba), and this attests a greater stability of the membrane system.  相似文献   

9.
delta5 desaturation of fatty acids in L-M cells   总被引:1,自引:0,他引:1  
L-M cells grown in a lipid-free medium containing 14C-labeled 9,12-linoleic acid incorporated most of this acid into glycerolipids as linoleic acid. Only a small amount (3%) was elongated to eicosadienoic acid. No Δ6 desaturation occurred. When the cells were incubated with 14C-labeled 8, 11, 14-eicosatrienoic acid, 22% of the activity was found in 5,8,11,14-eicosatetraenoic acid. Treatment of the cells for 24 hr with N-isopropylethanolamine, a choline analog, depressed this desaturation reaction to about 60% of control values. The identity of the tetraene product was established by two different chromatographic analyses of the fatty acid methyl esters. Location of the double bond at position C-5 was determined by ozonolysis and subsequent reduction of the ozonides to aldesters followed by gas-liquid chromatography. These results prove that L-M cells have a Δ5 desaturase and an elongation enzyme converting 18:2 to 20:2, but lack a Δ6 desaturase.  相似文献   

10.
Greening cucumber (Cucumis sativus L.) cotyledons exhibited dramatic increases in the ability to desaturate exogenously added [1-14C]oleic acid and [1-14C]linoleic acid within 2 to 3 hours of illumination. These increases were effectively inhibited by 10 micrograms per milliliter cycloheximide. Oleate desaturation remained at a high level in constant light for 5 to 6 days after induction and then declined by about 50%; when returned to the dark, the tissue showed a sharp decrease in conversion of [14C]oleate to [14C]linoleate. Linoleate desaturation reached a maximum about 15 hours after induction and declined immediately thereafter while the tissue still was in the light; after induction had peaked return of the tissue to the dark showed a dramatic fall of linoleate desaturation. The changes in desaturation were correlated with the conversion of the principal fatty acid in the etiolated cotyledons, linoleate, to α-linolenate, and with the assembly of the chlorophyll-containing photosynthetic membranes. The incorporation of [1-14C]acetate into lipids showed no significant light stimulation. The role of light in the regulation of certain aspects of plant metabolism during development is discussed.  相似文献   

11.
1. Lipogenesis in vivo has been studied in mice given a 250mg. meal of [U-14C]glucose (2·5μc) or given an intraperitoneal injection of 25μg. of [U-14C]glucose (2·0μc). 2. The ability to convert a [U-14C]glucose meal into fatty acid was not significantly depressed by 6–7hr. of starvation. In contrast, incorporation of 14C into fatty acid in the liver after the intraperitoneal dose of [14C]glucose was depressed by 80% and by more than 90% by 1 and 2hr. of starvation respectively. Carcass fatty acid synthesis from the [U-14C]glucose meal was not depressed by 12hr. of starvation, whereas from the tracer dose of [U-14C]glucose the depression in incorporation was 80% after 6hr. of starvation. 3. Re-feeding for 3 days, after 3 days' starvation, raised fatty acid synthesis and cholesterol synthesis in the liver fivefold and tenfold respectively above the levels in non-starved control mice. These increases were associated with an increased amount of both fatty acid and cholesterol in the liver. 4. After 18hr. of starvation incorporation of a [U-14C]glucose meal into carcass and liver glycogen were both increased threefold.  相似文献   

12.
Effects of dietary conjugated linoleic acid (CLA, 1% mixed isomers) on n-6 long-chain polyunsaturated fatty acid (LCPUFA) oxidation and biosynthesis were investigated in liver and brain tissues of neonatal piglets. Fatty acid β-oxidation was measured in tissue homogenates using [1-14C]linoleic acid (LA) and -arachidonic acid (ARA) substrates, while fatty acid desaturation and elongation were traced using [U-13C]LA and GC-MS. Dietary CLA had no effect on fatty acid β-oxidation, but significantly decreased n-6 LCPUFA biosynthesis by inhibition of LA elongation and desaturation. Differences were noted between our 13C tracer assessment of desaturation/elongation and simple precursor-product indices computed from fatty acid composition data, indicating that caution should be exercised when employing the later. The inhibitory effects of CLA on elongation/desaturation were more pronounced in pigs fed a low fat diet (3% fat) than a high fat diet (25% fat). Direct elongation of linoleic acid to C20:2n-6 via the alternate elongation pathway might play an important role in n-6 LCPUFA synthesis because more than 40% of the synthetic products of [U-13C]LA accumulated in [13C]20:2n-6. Overall, the data show that dietary CLA shifted the distribution of the synthetic products of [U-13C]LA between elongation and desaturation in liver and decreased the total synthetic products of [U-13C]LA in brain by inhibiting LA elongation to C20:2n-6. The impact of CLA on brain LCPUFA metabolism of the developing neonate merits consideration and further investigation.  相似文献   

13.
The in vivo incorporation of total lipid 14C from [2-14C]acetate is decreased in kidney, liver, and small intestine tissue from 3-, 6-, and 24-hr hypothermic hamsters compared to tissues from normothermic animals. The length of time in hypothermia affects hamster tissues differently; thus, 14C activity: decreases with time in kidney; increases with time in liver; and increases at 3 and 6 hr but decreases from 6 to 24 hr of hypothermia in small intestine.Tissues from hypothermic hamsters incorporated a greater percentage of [2-14C] acetate into free sterols and diglycerides and a smaller percentage into phospholipid than did corresponding tissues from normothermic hamsters.The percentage of total fatty acid 14C activity found as polyunsaturated fatty acid 14C activity increases in hypothermic kidney, liver, and small intestine with a decrease in the percentage of 14C activity measured in the saturated fatty acids. Esterification of fatty acid was inhibited in all tissues taken from hypothermic hamsters.  相似文献   

14.
The effects of temperature and salinity on fatty acid synthetic activities in the oyster protozoan parasite, Perkinsus marinus, were tested in vitro at 10, 18 and 28 °C in a salinity of 28 psu and 14, 20 and 28 psu at a temperature of 28 °C using 13C sodium acetate as a substrate. Salinity treatments exhibited few treatment effects, but temperature significantly affected cell proliferation, fatty acid content and fatty acid synthesis rates. Fatty acid synthesis rates increased approximately two-fold for every 10 °C increase in temperature; however, the predominant fatty acid synthesized differed between treatments. At 10 °C, the synthesis rate for 18:1(n−9) was not significantly different from the 18 °C treatment and weight percent of 18:1(n−9) was higher at 10 than 18 and 28 °C. In contrast, the synthesis rate for 20:4(n−6) was over five times lower at 10 than at 18 and 28 °C, and the percent fatty acid content of 20:4(n−6) was over two-fold lower at 10 than at 18 and 28 °C. Results suggest that further elongation and desaturation of 18:1(n−9) to 20 carbon polyunsaturated fatty acids may be inhibited at low temperatures. These findings may be relevant to field observations that disease progression and virulence of this parasite are correlated to high water temperatures.  相似文献   

15.
The labeling kinetics of the fatty acids of phosphatidylcholine (PC), phosphatidylglycerol (PG), monogalactosyldiglyceride (MGDG), and digalactosyldiglyceride (DGDG) were examined after 14CO2 feeding and incubation of leaf discs of Vicia faba over 72 hours in continuous light. The results indicate a rapid accumulation and turnover of radioactivity into PC and PG fatty acids (oleic acid in PC and oleic and palmitic acids in PG). Radioactivity accumulates in MGDG and DGDG fatty acids much more slowly and continuously over 72 hours. Most of this activity is found in linoleic and linolenic acids; very little activity is found in the more saturated fatty acids. Little or no desaturation occurs in situ in conjunction with the galactolipids. The results suggest that PC and PG may act as “carriers” for MGDG and DGDG fatty acid synthesis. Analyses of the labeling patterns of the molecular species of MGDG after 14CO2 and 14C-acetate feeding confirm that MGDG is formed by galactosylation of a preformed diglyceride containing predominantly unsaturated fatty acids.  相似文献   

16.
Newman DW 《Plant physiology》1971,48(3):300-302
Barley (Hordeum vulgare) leaf tissue was either (a) exposed to continuous red light or (b) exposed to red, far red, or red followed by far red light. The fatty acid composition and incorporation of acetate-2-14C into linolenate were determined. Changes occurred in the fatty acid composition of dark-grown barley leaves regardless of whether the plants were subsequently exposed to red light or whether the tissue remained in the dark. Measurements were also made of the fatty acids of the coleoptile. Red light treatment did not reduce the lag period for the synthesis of linolenate when chlorophyll synthesis was inhibited. It appears that the desaturation process per se in the synthesis of linolenate is not phytochrome-mediated but may appear to be phytochrome mediated if, possibly, galactolipid and chlorophyll syntheses occur concomitantly.  相似文献   

17.
Sparace SA  Mudd JB 《Plant physiology》1982,70(5):1260-1264
Intact chloroplasts from spinach (Spinacia oleracea L., hybrid 424) readily incorporate [14C]glycerol-3-phosphate and [14C]acetate into diacylglycerol, monoacylglycerol, diacylglycrol, free fatty acids (only when acetate is the precursor), phosphatidic acid, phosphatidylcholine, and most notably phosphatidylglycerol. The fraction of phosphatidylglycerol synthesized is greatly increased by the presence of manganese chloride in the reaction mixture. Glycerol-3-phosphate-labeled phosphatidylglycerol is equally labeled in the two glycerol moieties of the molecule. Acetate-labeled phosphatidylglycerol is equally labeled in both acyl groups. Position one contains primarily oleate, linoleate and small amounts of palmitate. Position two contains primarily palmitate. No radioactive trans3-hexadecenoate was detected. The labeling patterns indicate that the radioactive phosphatidylglycerol is the product of de novo chloroplast lipid biosynthesis and furthermore, phosphatidylglycerol may be a substrate for fatty acid desaturation.  相似文献   

18.
Lipid Composition and Metabolism of Volvox carteri   总被引:2,自引:2,他引:0       下载免费PDF全文
The membrane structural lipids of somatic cells and gonidia isolated from Volvox carteri f. nagariensis spheroids have been characterized. The principal polar lipid components of both cell types are sulfoquinovosyl diglyceride, mono- and digalactosyl diglyceride, phosphatidylglycerol, phosphatidylethanolamine, and 1(3), 2-diacylglyceryl-(3)-O-4′-(N,N,N,-trimethyl)homoserine. Light-synchronized cultures of spheroids were shown to incorporate [14C]bicarbonate, [35S]sulfate, [14C]palmitic acid, and [14C]lauric acid into complex lipids. [14C]Palmitic acid was incorporated mainly into diacylglyceryltrimethylhomoserine and was not significantly modified by elongation or desaturation. In contrast, [14C]lauric acid was incorporated into a wider variety of complex lipids and was also converted into longer chain saturated and unsaturated fatty acids. Volvox is a promising system for studying the role of membranes in algal cellular differentiation.  相似文献   

19.
Brassica napus leaves developed at low temperature display rapid in situ desaturation of monogalactosyldiacylglycerol (MGDG) fatty acids leading to the production of hexadecatrienoic/linolenic acid. This was shown by radioactivity-tracer experiments to occur via a sequence of desaturations proceeding from the initially synthesized palmitic/oleic acid molecular species to palmitic/linoleic acid, palmitoleic/linoleic acid, hexadecadienoic/linoleic acid, hexadecadienoic/linolenic acid, and finally to hexadecatrienoic/linolenic acid. The results suggest that there is increased activity in all five desaturation steps in leaves developed at low temperatures. Labeling data also indicate that there is another pool of MGDG which is more slowly desaturated before galactosylation to digalactosyldiacylglycerol (DGDG). Our data further suggest that relative rates of galactosylation of chloroplastic and cytosolic MGDG molecular species may regulate the final amounts of chloroplastic and cytosolic MGDG and DGDG in the leaf. We have proposed a model for chloroplastic biosynthesis and desaturation of galactosyldiacylglycerols in the leaves of Brassica napus, a 16:3 plant.  相似文献   

20.
We estimated the heritabilities (h2) and genetic and phenotypic correlations among individual and groups of fatty acids, as well as their correlations with six important carcass and meat-quality traits in Korean Hanwoo cattle. Meat samples were collected from the longissimus dorsi muscles of 1000 Hanwoo steers that were 30-month-old (progeny of 85 proven Hanwoo bulls) to determine intramuscular fatty acid profiles. Phenotypic data on carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), marbling score (MS), Warner–Bratzler shear force (WBSF) and intramuscular fat content (IMF) were also investigated using this half-sib population. Variance and covari.ance components were estimated using restricted maximum likelihood procedures under univariate and pairwise bivariate animal models. Oleic acid (C18:1n-9) was the most abundant fatty acid, accounting for 50.69% of all investigated fatty acids, followed by palmitic (C16:0; 27.33%) and stearic acid (C18:0; 10.96%). The contents of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) were 41.64%, 56.24% and 2.10%, respectively, and the MUFA/SFA ratio, PUFA/SFA ratio, desaturation index (DI) and elongation index (EI) were 1.36, 0.05, 0.59 and 0.66, respectively. The h2 estimates for individual fatty acids ranged from very low to high (0.03±0.14 to 0.63±0.14). The h2 estimates for SFAs, MUFAs, PUFAs, DI and EI were 0.53±0.14, 0.49±0.14, 0.23±0.10, 0.51±0.13 and 0.53±0.13, respectively. The genetic and phenotypic correlations among individual fatty acids and fatty acid classes varied widely (−0.99 to 0.99). Notably, C18:1n-9 had favourable (negative) genetic correlations with two detrimental fatty acids, C14:0 (−0.76) and C16:0 (−0.92). Genetic correlations of individual and group fatty acids with CWT, EMA, BFT, MS, WBSF and IMF ranged from low to moderate (both positive and negative) with the exception of low-concentration PUFAs. Low or near-zero phenotypic correlations reflected potential non-genetic contributions. This study provides insights on genetic variability and correlations among intramuscular fatty acids as well as correlations between fatty acids and carcass and meat-quality traits, which could be used in Hanwoo breeding programmes to improve fatty acid compositions in meat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号