首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased flavonoid concentrations were found to correlate with the elevated levels of leaf phenolic compounds occurring in blight-induced zinc-deficient citrus. In orange (Citrus sinensis L.) leaves, the increases occurred primarily in hesperidin and diosmin, whereas in grapefruit (C. paradisi Macf.) the largest increases occurred in naringin and rhoifolin. Zinc-deficiency occurring in the blighted citrus leaves appeared to be the important contributing factor to the increased flavonoid content. Although the leaves from trees with blight were typically smaller than leaves from unaffected trees, the increased flavonoid content was not significantly due to a concentration effect. Large differences occurred in the percent increases in concentrations of certain citrus leaf flavonoids. While large increases occurred for a number of flavanone and flavone glycosides, much smaller percent increases occurred for other minor flavone glycosides, and the polymethoxyflavone aglycones. The parallel increases occurring in the concentrations of certain flavone glycosides and their flavanone analogs provide a further indication that flavanone glycosides are precursors in the biosynthesis of flavone glycosides in citrus.  相似文献   

2.
Flavones are plant secondary metabolites that have wide pharmaceutical and nutraceutical applications. We previously constructed a recombinant flavanone pathway by expressing in Saccharomyces cerevisiae a four-step recombinant pathway that consists of cinnamate-4 hydroxylase, 4-coumaroyl:coenzyme A ligase, chalcone synthase, and chalcone isomerase. In the present work, the biosynthesis of flavones by two distinct flavone synthases was evaluated by introducing a soluble flavone synthase I (FSI) and a membrane-bound flavone synthase II (FSII) into the flavanone-producing recombinant yeast strain. The resulting recombinant strains were able to convert various phenylpropanoid acid precursors into the flavone molecules chrysin, apigenin, and luteolin, and the intermediate flavanones pinocembrin, naringenin, and eriodictyol accumulated in the medium. Improvement of flavone biosynthesis was achieved by overexpressing the yeast P450 reductase CPR1 in the FSII-expressing recombinant strain and by using acetate rather than glucose or raffinose as the carbon source. Overall, the FSI-expressing recombinant strain produced 50% more apigenin and six times less naringenin than the FSII-expressing recombinant strain when p-coumaric acid was used as a precursor phenylpropanoid acid. Further experiments indicated that unlike luteolin, the 5,7,4′-trihydroxyflavone apigenin inhibits flavanone biosynthesis in vivo in a nonlinear, dose-dependent manner.  相似文献   

3.
In this study, a flavonoid malonyltransferase (OsMaT-2) was cloned from Oryza sativa, and the recombinant protein OsMaT-2 was purified via affinity chromatography. OsMaT-2 utilized a variety of flavonoid glucosides, including flavanone glucosides, flavone glucosides, flavonol glucosides, and isoflavone glucosides as substrates, but did not utilize anthocyanin. As an acyl donor, OsMaT-2 utilized only malonyl-CoA. Based on reactions with various quercetin 3-O-sugars, we identified the probable position of malonylation as the 6″-hydroxyl group of the sugar. This is the first report, to the best of our knowledge, of the cloning of a flavonoid malonyltransferase from O. sativa.  相似文献   

4.
Two new flavanone glycosides, liquiritigenin 4′-apiosyl(1 → 2)-glucoside and liquiritigenin 7,4′-diglucoside together with a known flavone, apigenin 6,8-di-C-glucoside, have been isolated from licorice.  相似文献   

5.
《Phytochemistry》1986,25(6):1507-1508
From the seeds of Tephrosia fulvinervis a new flavone, fulvinervin C has been isolated along with the known flavanone fulvinervin A. Its structure is elucidated from chemical properties and spectral data.  相似文献   

6.
Three new flavonoids: 5-hydroxy-7-(3-methyl-2,3-epoxybutoxy)flavanone,5-hydroxy-3,8-dimethoxy 7-(3-methyl-2,3-epoxybutoxy)flavone and 4′-hydroxy-5-methoxy-7-(3-methyl-2,3-epoxybutoxy)flavone were isolated and identified from the aerial parts of Achyrocline flaccida. Tamarixetin, gnaphaliin, isognaphaliin, 5,7,8-trihydroxy-3-methoxyflavone, chrysoeriol, galangin 3-methyl ether, naringenin 5-methyl ether, caffeic acid, chlorogenic acid and isochlorogenic acid were also isolated.  相似文献   

7.
From the pods of Tephrosia fulvinervis, a new Ethiopian species, a new flavanone, fulvinervin A, and a new flavone, fulvinervin B, have been isolated and their structures elucidated from their chemical properties and spectral data.  相似文献   

8.
A new endoperoxysesquiterpene lactone, 10α-hydroxy-1α,4α-endoperoxy-guaia-2-en-12,6α-olide (1), together with a flavanone, eriodictyol (2), and two flavone glycosides, acacetin-7-O-β-d-glucopyranoside (3) and acacetin-7-O-α-l-rhamopyranoside (4), were isolated from the methanol extract of Chrysanthemum morifolium flowers by a bioassay-guided fractionation. Compound 1 showed strong inhibitory effects against α-glucosidase and lipase activities, with IC50 values of 229.3 and 161.0 μM, respectively. The flavone glycosides 3 and 4 inhibited both α-glucosidase and α-amylase, while flavanone 2 was only effective against α-amylase.  相似文献   

9.
Equisetum arvense L. (Equisetaceae-horsetail) accumulates various flavones and flavonols in infertile shoot. Enzyme assays conducted with crude extracts of the green tissue revealed chalcone synthase activity and also three further activities assigned to flavonoid biosynthesis and identified as flavone synthase I, flavanone 3β-hydroxylase and flavonol synthase. The latter three activities were characterized as soluble, 2-oxoglutarate-dependent dioxygenases by their typical cofactor requirements and peculiar inhibition. Notably, this is the first report of flavone synthase I which had been considered to be restricted solely to species of the Apiaceae from a distant plant taxon.  相似文献   

10.
Nineflavonoids: a dihydrochalcone,a flavone,four 3-methylflavonols,a flavanone, a 3-methylflavanonol and a flavan were isolated from the roots of Derris araripensis. Eight of these compounds are reported for the first time. Structures were established by spectral analysis and chemical degradation.  相似文献   

11.
Wild-type naphthalene dioxygenase (NDO) from Pseudomonas sp. strain NCIB 9816-4 transforms relatively planar flavone and isoflavone to cis-dihydrodiols. However, this enzyme cannot catalyze the transformation of flavanone and isoflavanone in which a phenyl group bonds to the stereogenic C2 or C3 of the C-ring. Protein modeling suggested that Phe224 in the substrate binding site of NDO may play a key role in substrate specificity toward flavanone and isoflavanone. Site-directed mutants of NDO with substitution of Phe224 with Tyr biotransformed only the (S)-stereoisomers of flavanone and isoflavanone, producing an 8-OH group on the A-ring. In contrast, the Phe224Cys and Phe224Gln substitutions, which used (2S)-flavanone as a substrate, and Phe224Lys, which transformed (2S)-flavanone and (3S)-isoflavanone, each showed lower activity than the Phe224Tyr substitution. The remainder of the tested mutants had no activity with flavanone and isoflavanone. Protein docking studies of flavanone and isoflavanone to the modeled mutant enzyme structures revealed that an expanded substrate binding site, due to mutation at 224, as well as appropriate hydrophobic interaction with the residue at 224, are critical for successful binding of the substrates. Results of this study also suggested that in addition to the previously known Phe352, the Phe224 site of NDO appears to be important site for expanding the substrate range of NDO and bringing regiospecific and stereospecific hydroxylation reactions to C8 of the flavanone and isoflavanone A-rings.  相似文献   

12.
Linarin (acacetin-7-O-rutinoside), isorhoifolin (apigenin-7-O-rutinoside), and diosmin (diosmetin-7-O-rutinoside) are chemically and structurally similar flavone rutinoside (FR) compounds found in Chrysanthemum L. (Anthemideae, Asteraceae) plants. However, their biosynthetic pathways remain largely unknown. In this study, we cloned and compared FRs and genes encoding rhamnosyltransferases (RhaTs) among eight accessions of Chrysanthemum polyploids. We also biochemically characterized RhaTs of Chrysanthemum plants and Citrus (Citrus sinensis and Citrus maxima). RhaTs from these two genera are substrate-promiscuous enzymes catalyzing the rhamnosylation of flavones, flavanones, and flavonols. Substrate specificity analysis revealed that Chrysanthemum 1,6RhaTs preferred flavone glucosides (e.g. acacetin-7-O-glucoside), whereas Cs1,6RhaT preferred flavanone glucosides. The nonsynonymous substitutions of RhaTs found in some cytotypes of diploids resulted in the loss of catalytic function. Phylogenetic analysis and specialized pathways responsible for the biosynthesis of major flavonoids in Chrysanthemum and Citrus revealed that rhamnosylation activity might share a common evolutionary origin. Overexpression of RhaT in hairy roots resulted in 13-, 2-, and 5-fold increases in linarin, isorhoifolin, and diosmin contents, respectively, indicating that RhaT is mainly involved in the biosynthesis of linarin. Our findings not only suggest that the substrate promiscuity of RhaTs contributes to the diversity of FRs in Chrysanthemum species but also shed light on the evolution of flavone and flavanone rutinosides in distant taxa.

The discovery of rhamnosyltransferases in eight accessions of Chrysanthemum species contributes to the biosynthesis of flavone rutinosides and evolution of glycosyltransferases in plants.  相似文献   

13.
Prokaryotic dioxygenase is known to catalyze aromatic compounds into their corresponding cis-dihydrodiols without the formation of an epoxide intermediate. Biphenyl dioxygenase from Pseudomonas pseudoalcaligenes KF707 showed novel monooxygenase activity by converting 2(R)- and 2(S)-flavanone to their corresponding epoxides (2-(7-oxabicyclo[4.1.0]hepta-2,4-dien-2-yl)-2, 3-dihydro-4H-chromen-4-one), whereby the epoxide bond was formed between C2′ and C3′ on the B ring of the flavanone. The enzyme also converted 6-hydroxyflavanone and 7-hydroxyflavanone, which do not contain a hydroxyl group on the B-ring, to their corresponding epoxides. In a previous report (S.-Y. Kim, J. Jung, Y. Lim, J.-H. Ahn, S.-I. Kim, and H.-G. Hur, Antonie Leeuwenhoek 84:261-268, 2003), however, we found that the same enzyme showed dioxygenase activity toward flavone, resulting in the production of flavone cis-2′,3′-dihydrodiol. Extensive structural identification of the metabolites of flavanone by using high-pressure liquid chromatography, liquid chromatography/mass spectrometry, and nuclear magnetic resonance confirmed the presence of an epoxide functional group on the metabolites. Epoxide formation as the initial activation step of aromatic compounds by oxygenases has been reported to occur only by eukaryotic monooxygenases. To the best of our knowledge, biphenyl dioxygenase from P. pseudoalcaligenes KF707 is the first prokaryotic enzyme detected that can produce an epoxide derivative on the aromatic ring structure of flavanone.  相似文献   

14.
Flavonoids, widespread in edible plants, have been studied extensively for their anticarcinogenic properties. However, only few studies have been done with these constituents being administered by the dietary route. In our research, the effects of feeding rats with flavone, flavanone, tangeretin, and quercetin were investigated on two steps of aflatoxin B1 (AFB1)-induced hepatocarcinogenesis (initiation and promotion). Nonpolar flavonoids such as flavone, flavanone and tangeretin administered through the initiation period, decreased the number of -gamma-glutamyl transpeptidase-preneoplastic foci. In the same conditions of administration, quercetin, a polyhydroxylated flavonoid, showed no protective effect. Moreover, feeding rats with flavanone during the phenobarbital-induced promotion step significantly reduced the areas of placental glutathione S-transferase preneoplastic foci. Quercetin, flavone, and tangeretin, administered in the same conditions, caused no significant effect. Therefore flavanone act as an anti-initiator as well as an anti-promotor. Several mechanisms were involved in the anti-initiating effects of flavone, flavanone, and tangeretin: enhancement of enzymes involved in the detoxication of AFB1 (glutathione S-transferase, UDP-glucuronyl transferase), increase of the formation of AFB1-glutathione conjugates and inhibition of the binding of AFB1 to DNA. Although the relevance of these data to the human situation remains to be demonstrated, they confirm that several flavonoids administered by the dietary route possess promising chemoprotective effects.  相似文献   

15.
We cloned a uridine-diphosphate dependent glycosyltransferase RUGT-10 from Oryza sativa. The recombinant enzyme was expressed by glutathione-S transferase gene fusion system in Escherichia coli. RUGT10 showed different regioselectivity depending on the structures of substrates (e.g. flavanone, flavonol, and flavone). Apparently, flavanone such as naringenin and eriodictyol gave one 7-O-glucoside while flavone and flavonol gave more than two products with preferential glucosylation position of hydroxyl group at C-3 position.  相似文献   

16.
A new flavanone glycoside, naringenin-7-O-β-d-glucuronopyranoside, and a new flavonol glycoside, 6-hydroxykaempferol-7-O-β-d-glucuronopyranoside were isolated together with 12 known compounds, 5 flavone glycoside; hispidulin-7-O-β-d-glucuronopyranoside, apigenin-7-O-β-d-methylglucuronopyranoside, hispidulin-7-O-β-d-methylglucuronopyranoside, hispidulin-7-O-β-d-glucopyranoside, apigenin-7-O-β-d-glucopyranoside, a flavonol; kaempferol, two flavone; apigenin, and luteolin, a flavanone glycoside; eriodictyol-7-O-β-d-glucuronopyranoside, and three phenol glycoside; arbutin, salidroside, and 3,5-dihydroxyphenethyl alcohol-3-O-β-d-glucopyranoside from Centaurea urvillei subsp. urvillei. The structure elucidation of the new compounds was achieved by a combination of one- (1H and 13C) and two-dimensional NMR techniques (G-COSY, G-HMQC, and G-HMBC) and LC-ESI-MS. The isolated compounds were tested for their antiproteasomal activity. The results indicated that kaempferol, a well known and widely distributed flavonoid in the plant kingdom, was the most active antiproteasomal agent, followed by apigenin, eriodictyol-7-O-β-d-glucuronopyranoside, 3,5-dihydroxyphenethyl alcohol-3-O-β-d-glucopyranoside, and salidroside, respectively.  相似文献   

17.
3-Formyl-2,4,6-trihydroxy-5-methyldibenzoylmethane from Unona lawii has been shown to exist in a cyclic hemiketal form whereas 3-formyl-2,6-dihydroxy-4-methoxy-5-methyldibenzoylmethane from the same plant mainly exists in the enolic ring opened form, owing to chelation of both hydroxyl groups. The flavonoid pattern of Unona lawii suggests the biogenetic scheme : flavanone → 2-hydroxyflavanone → flavone. 3-Formyl-2,4,6-trihydroxy-5-methyldibenzoylmethane has been synthesized by Baker-Venkataraman rearrangement of 3-formyl-2,4,6-tri-hydroxy-5-methylacetophenone benzoate.  相似文献   

18.
Chitosan fibres were grafted with flavonoids using tyrosinase to produce reactive o-quinones which subsequently react with primary amino groups of the chitosan. The reaction mechanism using chemically different flavonoids (flavanols, flavonols, flavone, flavanone, isoflavone) was followed by UV/vis spectroscopy and the successful grafting was demonstrated by ATR-IR spectroscopy, pH potentiometric titration and reflectance measurements. An increase of antioxidant activity of functionalized chitosan fibres using well established methods was found depending on the type of the flavonoid used. In addition, some flavonoids increased antimicrobial activity of chitosan against Bacillus subtillis and Pseudomonas aeruginosa.  相似文献   

19.
The in vitro and in vivo effects of selected natural flavonoids (flavone, flavanone, tangeretin, quercetin, chrysin) on the microsome-catalysed binding of [3H]benzo[a]pyrene to calf thymus DNA were investigated and compared with those of two synthetic flavonoids, 7,8-benzoflavone and 5,6-benzoflavone. In vitro addition of these flavonoids (0.1 mM) to an incubation system containing hepatic microsomes prepared from Aroclor 1254-pretreated rats strongly inhibited BaP-DNA adduct formation (72-89%). The incubation of BaP with hepatic microsomes prepared from animals fed 0.3% quercetin, tangeretin and 7,8-benzoflavone for 2 weeks also resulted in less effective binding of BaP metabolites to added DNA, than with microsomes from untreated rats. Other tested compounds, chrysin, flavone, flavanone and 5,6-benzoflavone showed no or little effect. The influence of flavonoid pretreatment on hepatic microsomal enzymes involved in BaP metabolism has also been examined. Aryl hydrocarbon hydroxylase activity was moderately increased (1.5-1.8-fold) in microsomes prepared from rats fed flavone, tangeretin, 7,8-benzoflavone and 5,6-benzo-flavone. Epoxide hydrolase activity was enhanced by 7,8-benzoflavone (1,6-fold), and by flavone and flavanone (5-fold). These results confirm that flavonoids, in vitro, are potent inhibitors of carcinogen-DNA binding. Oral administration of 0.3% flavonoids alters the properties of liver microsomes, resulting in the decreased ability of BaP metabolites to bind DNA.  相似文献   

20.
Molecular evolution of flavonoid dioxygenases in the family Apiaceae   总被引:4,自引:0,他引:4  
Plant species of the family Apiaceae are known to accumulate flavonoids mainly in the form of flavones and flavonols. Three 2-oxoglutarate-dependent dioxygenases, flavone synthase or flavanone 3 beta-hydroxylase and flavonol synthase are involved in the biosynthesis of these secondary metabolites. The corresponding genes were cloned recently from parsley (Petroselinum crispum) leaves. Flavone synthase I appears to be confined to the Apiaceae, and the unique occurrence as well as its high sequence similarity to flavanone 3beta-hydroxylase laid the basis for evolutionary studies. In order to examine the relationship of these two enzymes throughout the Apiaceae, RT-PCR based cloning and functional identification of flavone synthases I or flavanone 3beta-hydroxylases were accomplished from Ammi majus, Anethum graveolens, Apium graveolens, Pimpinella anisum, Conium maculatum and Daucus carota, yielding three additional synthase and three additional hydroxylase cDNAs. Molecular and phylogenetic analyses of these sequences were compatible with the phylogeny based on morphological characteristics and suggested that flavone synthase I most likely resulted from gene duplication of flavanone 3beta-hydroxylase, and functional diversification at some point during the development of the apiaceae subfamilies. Furthermore, the genomic sequences from Petroselinum crispum and Daucus carota revealed two introns in each of the synthases and a lack of introns in the hydroxylases. These results might be explained by intron losses from the hydroxylases occurring at a later stage of evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号