首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
15N kinetic labeling studies were performed on seedlings of Hordeum vulgare L. var. Golden Promise growing under steady state conditions. Patterns of label incorporation in the pools of nitrogen compounds of roots fed [15N]ammonium were compared with computer-simulated labeling curves. The data were found to be quantitatively consistent with a three-compartment model in which ammonium is assimilated solely into the amide-N of glutamine. Labeling data from roots fed [15N]nitrate were also found to be at least qualitatively consistent with the assimilation of ammonia into glutamine. Methionine sulfoximine almost completely blocked the incorporation of 15N label into the amino acid pools of barley roots fed [15N]nitrate. These observations suggest that ammonia assimilation occurs solely via the glutamine synthetase/glutamate synthase pathway in both nitrate- and ammonia-grown barley roots.  相似文献   

2.
Translocation of nitrogen in osmotically stressed wheat seedlings   总被引:2,自引:1,他引:1  
Wheat (Triticum aestivum L., cv. Drabant) seedlings were grown in a ‘split root’ system where either the whole root system or one root half was subjected to osmotic stress for 24 h, using 200 g polyethylene glycol (PEG, molecular weight 4000) dm?3 nutrient solution. 15N-Labelled nitrate was fed to one of the root compartments and total N and 15N-labelling were measured in plant material and xylem sap. Untreated plants translocated 87% of the N taken up to the shoot, and 10% of this was then retranslocated back to the root. Recalculated on a root nitrogen basis, 36% of the label recovered in the root after 24 h had passed through the shoot. Significant labelling of xylem sap collected from non-labelled roots indicated cycling of organic N through the roots. PEG-treatment of the whole root system caused significant water loss in both roots and shoots. Uptake of nitrate and retranslocation of N to roots were inhibited, whereas cycling of organic nitrogen through the root was still measurable. Treatment of half the root system with PEG had minor effects on shoot water content, but reduced the water content of the treated root part. The total uptake of nitrate by the root system was unaffected, and the effect on the treated root half was comparatively small. Nitrate reductase activity (NRA) declined in PEG-treated roots even if high nitrate uptake rates were maintained. Shoot NRA was unaffected by osmotic stress. The data indicate that the reduction in water content of the root per se has only small effects on nitrate uptake. Major inhibition of nitrate uptake was observed only after treatment of a sufficiently large portion of the root system to given an effect on shoot water content.  相似文献   

3.
Our previous work indicated that salinity caused a shift in the predominant site of nitrate reduction and assimilation from the shoot to the root in tomato plants. In the present work we tested whether an enhanced supply of dissolved inorganic carbon (DIC, CO2+ HCO3) to the root solution could increase anaplerotic provision of carbon compounds for the increased nitrogen assimilation in the root of salinity-stressed Lycopersicon esculentum (L.) Mill. cv. F144. The seedlings were grown in hydroponic culture with 0 or 100mM NaCl and aeration of the root solution with either ambient or CO2-enriched air (5000 μmol mol?1). The salinity-treated plants accumulated more dry weight and higher total N when the roots were supplied with CO2-enriched aeration than when aerated with ambient air. Plants grown with salinity and enriched DIC also had higher rates of NO?3 uptake and translocated more NO?3 and reduced N in the xylem sap than did equivalent plants grown with ambient DIC. Incorporation of DIC was measured by supplying a 1 -h pulse of H14CO?3 to the roots followed by extraction with 80% ethanol. Enriched DIC increased root incorporation of DIC 10-fold in both salinized and non-salinized plants. In salinity-stressed plants, the products of dissolved inorganic 14C were preferentially diverted into amino acid synthesis to a greater extent than in non-salinized plants in which label was accumulated in organic acids. It was concluded that enriched DIC can increase the supply of N and anaplerotic carbon for amino acid synthesis in roots of salinized plants. Thus enriched DIC could relieve the limitation of carbon supply for ammonium assimilation and thus ameliorate the influence of salinity on NO?3 uptake and assimilation as well as on plant growth.  相似文献   

4.
Barley (Hordeum vulgare L. cv. Golf) was cultured using the relative addition rate technique, where nitrogen is added in a fixed relation to the nitrogen already bound in biomass. The relative rate of total nitrogen addition was 0.09 day?1 (growth limiting by 35%), while the nitrate addition was varied by means of different nitrate: ammonium ratios. In 3- to 4-week-old plants, these ratios of nitrate to ammonium supported nitrate fluxes ranging from 0 to 22 μmol g?1 root dry weight h?1, whereas the total N flux was 21.8 ± 0.25 μmol g?1 root dry weight h?1 for all treatments. The external nitrate concentrations varied between 0.18 and 1.5 μM. The relative growth rate, root to total biomass dry weight ratios, as well as Kjeldahl nitrogen in roots and shoots were unaffected by the nitrate:ammonium ratio. Tissue nitrate concentration in roots were comparable in all treatments. Shoot nitrate concentration increased with increasing nitrate supply, indicating increased translocation of nitrate to the shoot. The apparent Vmax for net nitrate uptake increased with increased nitrate fluxes. Uptake activity was recorded also after growth at zero nitrate addition. This activity may have been induced by the small, but detectable, nitrate concentration in the medium under these conditions. In contrast, nitrate reductase (NR) activity in roots was unaffected by different nitrate fluxes, whereas NR activity in the shoot increased with increased nitrate supply. NR-mRNA was detected in roots from all cultures and showed no significant response to the nitrate flux, corroborating the data for NR activity. The data show that an extremely low amount of nitrate is required to elicit expression of NR and uptake activity. However, the uptake system and root NR respond differentially to increased nitrate flux at constant total N nutrition. It appears that root NR expression under these conditions is additionally controlled by factors related to the total N flux or the internal N status of the root and/or plant. The method used in this study may facilitate separation of nitrate-specific responses from the nutritional effect of nitrate.  相似文献   

5.
The quantities of endogenous indol-3yl-acetic acid (IAA) in endosperms and scutella of 6-day-old maize seedlings (Zea mays L. cv Giant White Horsetooth) were determined by a fluorimetric method. Endosperms were found to contain 33.4 nanograms IAA per plant, and scutella 7.5 nanograms IAA per plant. [5-3H]IAA applied to endosperms of 6-day-old seedlings moved into the roots and radioactivity accumulated at the apex of the primary root within 8 hours. Two to 7-day-old seedlings were treated simultaneously with [5-3H]IAA in the endosperm and [2-14C] IAA on the shoot apex. The patterns of transport into the root were found to change during ontogeny: in successively older plants, transport from the shoot into the roots increased relative to transport from the endosperm into the roots. The auxin required for the growth of maize roots could, therefore, partially be contributed by the shoot and endosperm. Ontogenetic changes in the relative importance of these two supplies could be of significance for the integration of growth and development between shoot and root.  相似文献   

6.
Nitrate reduction in roots and shoots of 7-day-old barley seedlings, and 9-day-old corn seedlings was investigated. The N-depleted seedlings were transferred for 24 h or 48 h of continuous light to a mixed nitrogen medium containing both nitrate and ammonium. Total nitrate reduction was determined by 15N incorporation from 15NO3, translocation of reduced 15N from the roots to the shoots was estimated with reduced 15N from 15NH4+ assimilation as tracer, and the translocation from the shoots to the roots was measured on plants grown with a split root system. A model was proposed to calculate the nitrate reduction by roots from these data. For both species, the induction phase was characterized by a high contribution of the roots which accounted for 65% of the whole plant nitrate reduction in barley, and for 70% in corn. However, during the second period of the experiment, once this induction process was finished, roots only accounted for 20% of the whole plant nitrate reduction in barley seedlings, and for 27% in corn. This reversal in nitrate reduction localization was due to both increased shoot reduction and decreased root reduction. The pattern of N exchanges between the organs showed that the cycling of reduced N through the plant was important for both species. In particular, the downward transport of reduced N increased while nitrate assimilation in roots decreased. As a result, when induction was achieved, the N feeding of the roots appeared to be highly dependent on translocation from the leaves.  相似文献   

7.
8.
The effect of salinity on nitrate influx, efflux, nitrate net uptake rate and net nitrogen translocation to the shoot was assessed in a 15N steady state labelling experiment in the halophyte Plantago maritima L. raised for 14 days on solution supplied with 50, 100 and 200 mol m–3 sodium chloride or without sodium chloride. Additionally, salinity induced changes in root morphology were determined. Specific root length increased upon exposure to elevated sodium chloride concentrations due to variations in biomass allocation and length growth of the tap root. Changes in root morphology, however, had a minor effect on nitrate fluxes when expressed on a root fresh weight basis. The decreased rate of nitrate net uptake in plants grown on elevated levels of sodium chloride was almost entirely due to a decrease in nitrate influx. Expressed as a proportion of influx, nitrate efflux remained unchanged and was even lower at the highest salinity level. At all sodium chloride concentrations applied the initial rate of nitrogen net translocation to the shoot decreased relative to the rate of nitrate net uptake. It is concluded that under steady state conditions the negative effect of sodium chloride on the rate of nitrate net uptake at non growth-limiting salinity levels was due to the interaction between sodium chloride and nitrate transporters in the root plasma membrane and/or processes mediating the translocation of nitrogen compounds, possibly nitrate, to the shoot.  相似文献   

9.
Abstract Roots of sterile-grown, intact 6-day-old seedlings of Ricinus communis possess at least two independent active amino acid uptake systems, one for neutral and one for basic amino acids. The kinetics of uptake of L-proline and L-arginine, which were taken as representative substrates for the two systems, are biphasic. At low concentrations (0.01–0.5 mol m?3) Michaelis -Menten kinetics prevail, changing to a linear concentration dependence at higher substrate concentrations (1–50 mol m?3). L-glutamate uptake velocity is linear over the whole substrate concentration range. For comparison the uptake kinetics of nitrate and ammonium were determined as well as interactions among the different nitrogen sources. The Km value for nitrate uptake was 0.4 mol m?3, and for ammonium 0.1 mol m?3. The uptake capacity for nitrate or ammonium was approximately the same as for amino acids. The interaction between the uptake systems for organic and inorganic nitrogen is small. Two hypotheses for the physiological significance of amino acid uptake by roots were considered: (i) Uptake of amino acids from the soil-determination of amino acids in soil and in soil water indicates that they might contribute 15–25% to the nitrogen nutrition of the plant. (ii) Amino acid uptake systems of root cells serve primarily as retrieval of amino acids delivered from the phloem- it was found that 14C L-glutamine, which was delivered to the cotyledon and transported to the root via the phloem, was not lost by the roots, whereas it appeared in the bathing medium if L-glutamine was applied externally to the root to compete for the uptake sites; this suggests that an apoplastic pool of amino acids in the root exists due to their efflux from the phloem.  相似文献   

10.
Barley (Hordeum vulgare L., cvs Golf and Laevigatum) was grown under nitrogen limitation, controlled by the relative rate of nitrate-N addition (RA), in solution culture. The seminal and crown root systems were kept apart, but in contact with the same nutrient solution throughout culturing. Growth, nitrate uptake, and in vitro nitrate reductase (NR) activity in the different root parts were studied at plant ages from 40 (late vegetative stage) to 110 (mid grain-filling) days. The RA was during this time interval stepwise decreased from 0.08 day–1 to 0.005 day–1. The ratio between seminal root dry weight and total plant dry weight decreased drastically during post-anthesis growth, whereas the contribution by crown roots remained unchanged. Tissue nitrogen concentrations in seminal roots did not change with time, but decreased in crown roots after day 80. The NR activity decreased with age in both seminal and crown roots. The Vmax for net nitrate uptake decreased throughout the experiment in the seminal root system, but not in the crown root system. The kinetic properties (Vmax and KM) were used to calculate the nitrate concentration required to maintain a relative rate of nitrate-N uptake that equals the relative addition rate. These concentrations (2 to 5 mmol m–3) were found to closely match actually measured nitrate concentrations in the nutrient solution (1 to 6 mmol m–3). From uptake kinetics, it was deduced that the contribution by seminal roots to total nitrate uptake at these concentrations decreased from more than 50% in vegetative plants, to about 20% just after main shoot anthesis, and to less than 5% during grain-filling. ei]Section editor: H Lambers  相似文献   

11.
The fate of nitrate and nitrogen-15 was followed during the apparent induction phase (6h) for nitrate uptake by N-depleted dwarf bean (Phaseolus vulgaris L. ev. Witte Krombek). Experiments were done with intact plants and with detached root systems. Qualitatively and quantitatively, xylem exudation from detached roots was a bad estimate of the export of NO?3 or NO?3-15N from roots of intact plants. In vivo nitrate reductase activity (NRA) agreed well with in situ reduction, calculated as the difference between uptake and accumulation in whole plants, provided NRA was assayed with merely endogenous nitrate as substrate (‘actual’ NRA). The majority (75%) of the entering nitrate remained unmetabolized. Both nitrate reduction and nitrate accumulation occurred predominantly in the root system. Some (< 25%) of the root-reduced nitrate-N was translocated to the shoot. Nitrate uptake occurred against the concentration gradient between medium and root cells, and probably against the gradient of the electro-chemical potential of nitrate. Part of the energy expended for NO?3 absorption came from the tops, since decapitation and ringing at the stem base restricted nitrate uptake.  相似文献   

12.
The inhibition of greening of illuminated etiolated maize seedlings by isonicotinyl hydrazide can be alleviated by serine or pyruvate. The similar inhibition in barley can be reversed only by pyruvate. In both plants earlier intermediates in the glycollate pathway and other related compounds were ineffective in overcoming the inhibition of greening produced by isonicotinyl hydrazide. In maize seedlings radioactivity from l-serine-[3-14C] is poorly incorporated into β-carotene, a typical chloroplast terpenoid, unless glycine and formate or, more effectively, glycine together with isonicotinyl hydrazide are supplied. These supplementations may minimize interconversion of serine and glycine, and hence dilution of radioactivity at C-3 of l-serine by unlabelled C-1 units, before incorporation into terpenoids. The results support the view that in young greening tissue the C2-3 fragment of l-serine can give rise to acetyl-CoA, an obligatory precursor of chloroplast terpenoids.  相似文献   

13.
The size of the spring barley root system was studied on the basis of its electric capacity in plants grown in nutrient solutions either lacking or containing nitrogen in the form of nitrate or ammonium. Root electric capacity changed in dependence on nutrition from Day 12 after emergence, when F values increased in the root systems of plants exposed to nitrate and ammonium salts. In plants grown in H2O, the values of electric capacity statistically significantly decreased on Days 15 to 17, in plants grown in PK solution lacking nitrogen on Day 20. Root electric capacity of plants grown in full nutrient solution gradually increased on Day 18 after emergence. Then a marked increase in root electric capacity values followed with no statistically significant differences between NH4 + and NO3 - nutrition. Nitrate nutrition of barley plants only resulted in an increased root to shoot mass ratio.  相似文献   

14.
Amino compounds (1 mM, pH 5) were given prior to, together with, or after the addition of nitrate to study their effect on nitrate uptake and in vivo nitrate reductase activity (NRA) in roots of Phaseolus vulgaris. The effect of amino compounds varied with the amino species, the nitrate status of the plant (induced vs uninduced) and the aspect of nitrate utilization. Cysteine inhibited the nitrate uptake rate and root NRA under all conditions tested. NRA in uninduced roots was stimulated by tryptophan, and arginine inhibited NRA under all conditions tested. Uptake was inhibited by aspartate and glutamate and stimulated by leucine when these amino compounds were given prior to or after completion of the apparent induction of nitrate uptake. In the presence of β-alanine and tryptophan, induction of uptake was accelerated.  相似文献   

15.
Summary Incorporation of15NO3- into amino acids was studied in 3-day-old aerobic rice seedlings (with coleoptile and root) subjected for 24h to anaerobic conditions. The incorporation of15N into glutamate, glutamine and alanine accounted for 89% and 84% of total incorporation in coleoptile and root, respectively. These findings indicate that, after the primary incorporation of15N into glutamate and glutamine, the main fate of nitrate nitrogen in rice seedlings subjected to anoxia is alanine.  相似文献   

16.
The plant growth, nitrogen absorption, and assimilation in watermelon (Citrullus lanatus [Thunb.] Mansf.) were investigated in self-grafted and grafted seedlings using the salt-tolerant bottle gourd rootstock Chaofeng Kangshengwang (Lagenaria siceraria Standl.) exposed to 100 mM NaCl for 3 d. The biomass and NO3 uptake rate were significantly increased by rootstock while these values were remarkably decreased by salt stress. However, compared with self-grafted plants, rootstock-grafted plants showed higher salt tolerance with higher biomass and NO3 uptake rate under salt stress. Salinity induced strong accumulation of nitrate, ammonium and protein contents and a significant decrease of nitrogen content and the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) in leaves of self-grafted seedlings. In contrast, salt stress caused a remarkable decrease in nitrate content and the activities of GS and GOGAT, and a significant increase of ammonium, protein, and nitrogen contents and NR activity, in leaves of rootstock-grafted seedlings. Compared with that of self-grafted seedlings, the ammonium content in leaves of rootstock-grafted seedlings was much lower under salt stress. Glutamate dehydrogenase (GDH) activity was notably enhanced in leaves of rootstock-grafted seedlings, whereas it was significantly inhibited in leaves of self-grafted seedlings, under salinity stress. Three GDH isozymes were isolated by native gel electrophoresis and their expressions were greatly enhanced in leaves of rootstock-grafted seedlings than those of self-grafted seedlings under both normal and salt-stress conditions. These results indicated that the salt tolerance of rootstock-grafted seedlings might (be enhanced) owing to the higher nitrogen absorption and the higher activities of enzymes for nitrogen assimilation induced by the rootstock. Furthermore, the detoxification of ammonium by GDH when the GS/GOGAT pathway was inhibited under salt stress might play an important role in the release of salt stress in rootstock-grafted seedlings.  相似文献   

17.
Active K+ influx was studied in apical segments from maize (Zea mays L., hybrid lines XL 342) and pea (Pisum sativum L. var Laxton superbo) seedlings pretreated with the herbicide chlorsulfuron (2-chloro-N-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl) aminocarbonyl]benzenesulfonamide).

Even though both plants were sensitive to chlorsulfuron, a strong inhibition of K+ uptake only was evident in maize root segments after 12 hours pretreatment with 10 micromolar chlorsulfuron. The inhibition was revealed only when maize root segments were washed for 2 hours before uptake measurements. This was done in order to recover K+ influx inhibited by cutting injury. Consequently, we demonstrated that roots from chlorsulfuron pretreated maize seedlings lost the capacity to recover from cutting injury by washing. By contrast, K+ influx in pea roots was not inhibited by chlorsulfuron because pea roots notoriously do not exhibit the `washing' effect.

  相似文献   

18.
19.
Humic acids (HAs) have a major effect on nutrient uptake, metabolism, growth and development in plants. Here, we evaluated the effect of HA pretreatment applied with a nutrient solution on the uptake kinetics of nitrate nitrogen (N‐NO3?) and the metabolism of nitrogen (N) in rice under conditions of high and low NO3? supply. In addition, the kinetic parameters of NO3? uptake, N metabolites, and nitrate transporters (NRTs) and the plasma membrane (PM) H+‐ATPase gene expression were examined. The plants were grown in a growth chamber with modified Hoagland and Arnon solution until 21 days after germination (DAG), and they were then transferred to a solution without N for 48 h and then to another solution without N and with and without the addition of HAs for another 48 h. After this period of N deprivation, the plants received new nutrient solutions containing 0.2 and 2.0 mM N‐NO3?. Treatment of rice plants with HA promoted the induction of the genes OsNRT2.1‐2.2/OsNAR2.1 and some isoforms PM H+‐ATPase in roots. The application of HAs differentially modified the parameters of the uptake kinetics of NO3? under both concentrations. When grown with 0.2 mM NO3?, the plants pretreated with HA had lower Km and Cmin values as well as a higher Vmax/Km ratio. When grown with 2 mM NO3?, the plants pretreated with HA had a higher Vmax value, a greater root and shoot mass, and a lower root/shoot ratio. The N fractions were also altered by pretreatment with HA, and a greater accumulation of NO3? and N‐amino was observed in the roots and shoots, respectively, of plants pretreated with HA. The results suggest that pretreatment with HA modifies root morphology and gene expression of PM H+‐ATPases and NO3? transporters, resulting in a greater efficiency of NO3? acquisition by high‐ and low‐affinity systems.  相似文献   

20.

Nitrogen uptake efficiency is an important component trait that could be targeted for improving nitrogen use efficiency of crop plants. To understand the responses of different nitrate transport systems and the influence of root system architecture on nitrate uptake under limited nitrate conditions in wheat (Triticum aestivum L.) at the seedling stage, we studied nitrate uptake, root system architecture, and expression of different nitrate transporter genes in induced and non-induced wheat seedlings. Further, effects of inclusion of sucrose and two amino acids (glutamine and asparagine) in induction medium on these parameters were also studied. We observed that the induced wheat root system took up more nitrate as compared to non-induced root system in a dose-dependent manner. Gene expression of both high- and low-affinity nitrate transporter gene showed differential expression in the induced root tissues, as compared to non-induced tissues, depending on the concentration of nitrate present in induction medium. External nutrient media containing sucrose, glutamine, and asparagine reduce nitrate concentration in both root and shoot tissues and also influence the gene expression of these transporters. Our observations indicate that upon induction with milder external nitrate concentrations, the root architecture is modulated by changing overall lateral root size and 1st order lateral root numbers along with activation of nitrate transporters which acquire and transport nitrate in roots and shoots, respectively, depending on the carbon and nitrogen source available to seedlings.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号