首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lipid composition of flight muscle mitochondria was determined in adult male acclimated for 30 days at 31°C and 45°C respectively. Locusts held at 31°C showed lower levels of phosphatidylcholine and higher levels of phosphatidylethanolamine than the 45°C-acclimated insects. A trend towards an increased cholesterol:phospholipid ratio was also observed at the higher temperature. Wide angle X-ray diffraction procedures indicated a difference of 5°C in the lipid phase transition temperatures of mitochondrial preparations derived from the two groups of insects with the 45°C-acclimated samples demonstrating the higher transition temperature.  相似文献   

2.
Infrared spectra were obtained as a function of temperature for a variety of phospholipid/water bilayer assemblies (80% water by weight) in the 3000-950 cm?1 region. Spectral band-maximum frequency parameters were defined for the 2900 cm?1 hydrocarbon chain methylene symmetric and asymmetric stretching vibrations. Temperature shifts for these band-maximum frequencies provided convenient probes for monitoring the phase transition behavior of both multilamellar liposomes and small diameter single-shell vesiclesof dipalmitoyl phosphatidylcholine/water dispersions. As examples of the effects of bilayer lipid/cholesterol/water (3 : 1 mol ratio) and lipid/cholesterol/amphotericin B/water (3 : 1 : 0.1 mol ratios) vesicles were examined using the methylene stretching frequency indices. In comparison to the pure vesicle form, the transition width of the lipid/cholesterol system increased by nearly a factor of two (to 8°C) while the phase transition temperature remained approximately the same (41° C). For the lipid/cholesterol/amphotericin B system, the phase transition temperature increased by about 4.5° C (to 45.5°C) with the transition width increasing by nearly a factor of four (to ≈ 15°C) above that of the pure vesicles. The lipid/cholesterol/amphotericin B data were interpreted as reflecting the formation below 38°C of a cholesterol/amphotericin B complex whose dissociation at higher temperature (38–60°C range) significantly broades the gel-liquid crystalline phase transition.  相似文献   

3.
Raman spectroscopic frequency differences between selected carbon-carbon stretching modes of lipid hydrocarbon chains were determined as a function of temperature for use in monitoring lipid phase transition behavior and acyl chain disorder in both multilamellar and single-wall vesicles. Transition temperatues detected by this procedure for pure dipalmitoyl phosphatidylcholine and dimyristoyl phosphatidylcholine multilayers were observed at 39±1 °C and 23±1 °C, respectively. Although the phase transition for unilamellar vesicles of dipalmitoyl phosphatidylcholine occurred at nearly the same temperature as the multilayers, the crystal-liquid crystalline transition for the single-shell vesicles appeared to span a slightly broader temperature range, a characteristic consistent with irregularities in the packing arrangement of the hydrocarbon chains. Within the precision of the Raman spectroscopic method, however, the temperature behavior of both the multilamellar and the unilamellar dimyristoyl phosphatidylcholine assemblies appeared nearly identical. The temperature profile for the Raman frequency differences of an excess water sonicate of 25 mol percent cholesterol in dipalmitoyl phosphatidylcholine served as an example of the effect upon lipid phase transition characteristics of a bilayer component intercalated between the acyl chains. For this particular cholesterol-lipid system the phase transition was broadened over a 30 °C temperature range, in contrast to the narrow 5?4 °C range observed for pure multilayer and single-shell vesicle particles.  相似文献   

4.
Seasonal variations in the thermal response of liver mitochondrial membranes from Richardson's ground squirrels (Spermophilus richardsonii) were determined by measuring succinate-cytochrome c reductase activity and spin label motion over a temperature range of 2 °C to 35 °C. For seven summer animals from the field the Arrhenius-type plots for enzyme activity and spin label motion were biphasic indicating a transition in structure and function at 22 + 2.3°C and 23 ± 1.9°C, respectively; typical of homeothermic mammals. For 12 winter animals maintained at 19°C, the transition in structure and function was lowered to 12 ± 1.1°C and 13 ± 1.4°C, respectively. The transition for 5 of 11 winter animals which were kept at 4°C and maintained normal activity and body temperature was similar to animals maintained at 19°C, while for the other six the transition was further lowered to less than 4°C. The transition for seven winter animals which were in deep hibernation was less than 4°C. The results for liver mitochondria show that lowering of the transition in membrane structure and function occurs as a two-stage process of about 10 deg. C for each stage and that the lowering is a requisite for hibernation rather than a response to the low-body temperatures experienced during hibernation.  相似文献   

5.
In a previous publication, (Singer, M.A., Jain, M.K., Sable, H.Z., Pownall, H.H., Mantulin, W.W., Lister, M.D. and Hancock, A.J. (1983) Biochim. Biophys. Acta, 731, 373–377), we reported the properties of aqueous dispersions of the six diastereo-isomers of cyclopentanoid analogues of dipalmitoylphosphatidylcholine. Two of these isomers displayed unusually high enthalpies of transition, about double that of dipalmitoylphosphatidylcholine. One of the high enthalpy isomers whose configuration is all-trans has now been modified by the insertion of extra methylene residues (n = 3 through 9) between the nitrogen and phosphorus atoms of the headgroup. Vesicles were formed from these lipids and studied by 22Na permeability measurements, differential scanning calorimetry, fluorescence polarization, 31P-NMR, and freeze-fracture electron microscopy. Vesicles composed of lipids with n = 2 or 3 exhibit a sharp transition at 46°C or 49°C, respectively, and a high enthalpy with no detectable sub- or pretransitions. Lipids with n > 3 exhibit a main transition between 38 and 43°C with enthalpies < 10 kcal/mol and after prolonged cooling (more than 3 days at 4°C) a broad endotherm at about 20 ± 3°C with enthalpies > 4 kcal/mol. These same dispersions display a permeability peak at 20–25°C and a second increase in 22Na efflux in the temperature range 30–40°C. The results of 31P-NMR measurements suggest that the acyl chains in 2,3-dipalmitoylcyclopentanol-phosphocholine (n = 2) bilayers have restricted rotation below the main phase transition temperature.  相似文献   

6.
7.
The phase transition in smectic mesophases of dipalmitoyl phosphatidylcholine was studied under high pressures of helium (340 atm), nitrogen (340 atm), nitrous oxide (43 atm), cyclopropane (4.4 atm) and n-propane (8.2 atm), using a turbidimetric technique. Helium and nitrogen increased the transition temperature by 0.021 and 0.006°C/atm, respectively, compared with 0.024°C/atm for hydrostatic pressure. Nitrous oxide reduced the transition by 0.58°C/atm. The hydrocarbon gases spread the transition width and lowered the transition temperature with increasing effect at higher doses. Comparisons with other membrane probes are made and the concentration of gases in the bilayer which lower the transition temperature by 1°C are estimated, in mol%: He, 10.2; N2, 13.2; N2O, 9.04; n-C3H8, 6.3 and cyclopropane, 12.8.  相似文献   

8.
The characteristics of small unilamellar, large unilamellar and large multilamellar vesicles of dimyristoylphosphatidylcholine and their interaction with α-lactalbumin are compared at pH 4. (1) By differential scanning calorimetry and from steady-state fluorescence anisotropy data of the lipophilic probe 1,6-diphenyl-1,3,5-hexatriene it is shown that the transition characteristics of the phospholipids in the large unilamellar vesicles resemble more those of the multilamellar vesicles than of the small unilamellar vesicles. (2) The size and composition of the lipid-protein complex formed with α-lactalbumin around the transition temperature of the lipid are independent of the vesicle type used. Fluorescence anisotropy data indicate that in this complex the motions of the lipid molecules are strongly restricted in the presence of α-lactalbumin. (3) The previous data and a comparison of the enthalpy changes, ΔH, of the interaction of the three vesicle types with α-lactalbumin allow us to derive that the enthalpy state of the small unilamellar vesicles just below 24°C is about 24 kJ/mol lipid higher than the enthalpy state of both large vesicle types at the same temperature. The abrupt transition from endothermic to exothermic ΔH values around 24°C for large vesicles approximates the transition enthalpy of the pure phospholipid  相似文献   

9.
The physical state of the membrane lipids, as determined by fatty acid composition and environmental temperature, has a marked effect on both the temperature range within which Acholeplasma laidlawii B cells can grow and on growth rates within the permissible temperature ranges. The minimum growth temperature of 8 °C is not defined by the fatty acid composition of the membrane lipids when cells are enriched in fatty acids giving rise to gel to liquid-crystalline membrane lipid phase transitions occurring below this temperature. The elevated minimum growth temperatures of cells enriched in fatty acids giving rise to lipid phase transitions occurring at higher temperatures, however, are clearly defined by the fatty acid composition of the membrane lipids. The optimum and maximum growth temperatures are also influenced indirectly by the physical state of the membrane lipids, being significantly reduced for cells supplemented with lower melting, unsaturated fatty acids. The temperature coefficient of growth at temperatures near or above the midpoint of the lipid phase transition is 16 to 18 kcalmol, but this value increases abruptly to 40 to 45 kcalmol at temperatures below the phase transition midpoint. Both the absolute rates and temperature coefficients of cell growth are similar for cells whose membrane lipids exist entirely or predominantly in the liquid-crystalline state, but absolute growth rates decline rapidly and temperature coefficients increase at temperatures where more than half of the membrane lipids become solidified. Cell growth ceases when the conversion of the membrane lipid to the gel state approaches completion, but growth and replication can continue at temperatures where less than one tenth of the total lipid remains in the fluid state. An appreciable heterogeneity in the physical state of the membrane lipids can apparently be tolerated by this organism without a detectable loss of membrane function.  相似文献   

10.
The suggestion that defective thermoregulatory thermogenesis in the genetically obese (ob/ob) mouse is due to a low thermic response to noradrenaline has been investigated using both noradrenaline and the longer-acting sympathomimetic compounds, ephedrine and BRL 26830A. Below thermoneutrality (23.5°C) the metabolic rate of obese mice was lower than that of their lean littermates, whereas at a thermoneutral temperature (31°C) the metabolic rate of the obese nice was as high as that of lean mice. This confirms the view that the ob/ob mouse has defective thermoregulatory thermogenesis. However, in C57BL/6 mice, this defect is not due to a failure to respond to noradrenaline, because at 31°C the maximum thermic effects of noradrenaline, ephedrine and BRL 26830A were as high in obese as in lean mice and at 23.5°C they were higher in obese than in lean mice. Furthermore, the response of brown adipose tissue to β-adrenoceptor stimulation appears normal since noradrenaline caused a normal rise in brown adipose tissue temperature, and treatment with noradrenaline or BRL 26830A invivo caused a normal increase in GDP binding by brown adipose tissue mtiochondria. At 31°C propranolol depressed metabolic rate equally in lean and obese C57BL/6 mice, whereas at 23.5°C it depressed metabolic rate more in lean than obese mice. In contrast to C57BL/6 mice, Aston ob/ob mice showed a reduced thermic response to noradrenaline. These results suggest that defective thermoregulatory thermogenesis in the ob/ob mouse is primarily due to a reduced ability to raise sympathetic tone, but in some strains an additional failure in the thermic response to noradrenaline may develop.  相似文献   

11.
Positron lifetimes in human red cell ghost membranes have been measured as a function of temperature from 3°C to 25°C. A marked sudden change in the ortho-positronium annihilation rate was found at 16–18°C during the heating cycle and at 18–20°C in the cooling cycle. Such sudden change of microenvironment in the membranes sensed by ortho-positronium is attributed to the sudden change of water diffusion rate through the membranes which is a consequence of the sudden change in free volume, or fluidities in the lipid layers.  相似文献   

12.
The phase transition temperature (Tt) of dipalmitoyl phosphatidic acid multilamellar liposomes is depressed 10°C by the inhalation anesthetic methoxyflurane at a concentration of 100 mmol/mol lipid. Application of 100 atm of helium pressure to pure phosphatidic acid liposomes increased Tt only 1.5°C. However, application of 100 atm helium pressure to dipalmitoyl phosphatidic acid lipsomes containing 100 mmol methoxyflurane/mol lipid almost completely antagonized the effect of the anesthetic. A nonlinear pressure effect is observed. In a previous study, a concentration of 60 mmol methoxyflurane/mol dipalmitoyl phosphatidylcholine depressed Tt only 1.5°C, exhibiting a linear pressure effect. The completely different behavior in the charged membrane is best explained by extrusion of the anesthetic from the lipid phase.  相似文献   

13.
14.
Bacteriorhodopsin has been reconstituted into lipid vesicles with dipalmitoyl and dimyristoyls phosphatidylcholine. Circular dichroism (CD) measurements show that the proteins are in a monomeric state above the main lipid phase transition temperature (Tc), 41 and 23°C for dipalmitoyl and dimyristoyl phosphatidylcholine, respectively. Below Tc, the CD spectrum is the same as that found for the purple membrane. The latter result implies that the orientation of the chromophore at these temperatures is most likely the same as in the purple membrane (70° ± 5° from the normal to the membrane plane).Transient dichroism measurements show that below Tc the proteins are immobile, while above this temperature protein rotation around an axis normal to the plane of the membrane is occurring. In addition, from the data the angle of the chromophore for the rotating proteins with respect to the rotational diffusion axis can be calculated. This angle is found to be 30° ± 3° and 29° ± 4° in dimyristoyl phosphatidylcholine and dipalmitoyl phosphatidylcholine, respectively. This is considerably smaller than the value of 70° ± 5° for the natural biomembrane. A reversible reorientation of the chromophore above and below the respective main Tc transition temperature could explain the change of angle observed provided that all the molecules rotate above Tc.  相似文献   

15.
Phospho-N-acetylmuramyl-pentapeptide translocase, the initial membrane enzyme in the biosynthesis of peptidoglycan, requires a lipid microenvironment for function. n-Butanol was reversibly intercalated into membranes to perturb the hydrophobic interactions in this microenvironment in order to define further the role of lipid. In the concentration range for maximal stimulation of enzymic activity (0.12–0.18 M), n-butanol causes a 40% decrease in the fluorescence emission of the dansylated product, undecaprenyl diphosphate-(N?-dansyl)pentapeptide. Since no change in emission maximum occurs below 22°C in the presence of 0.12 M n-butanol, it is concluded that intercalation of this alkanol causes an increase in fluidity. Above 22°C this concentration of n-butanol causes both a decrease in the fluorescence emission and a red shift in the emission maximum. It is concluded that a polarity change as well as fluidity change occurs above 22°C. n-Butanol also causes a significant change in the phase transition experienced by the dansylated lipid product. Thus, it is possible with n-alkanols, e.g. n-butanol, to perturb lipid-translocase interactions resulting in an increase in fluidity in the microenvironment of the enzyme. This change in fluidity correlates with a stimulation of enzymic activity.  相似文献   

16.
The interaction of La3+ with phosphatidylserine vesicles is studied by differential scanning calorimetry, 140La binding, 31P-NMR chemical shifts and relaxation rates, carboxyfluorescein and [14C]sucrose release, X-ray diffraction and freeze-fracture electron microscopy. In the presence of La3+ concentrations above 1 mM and an incubation temperature of 38°C, i.e., at the phase transition temperature of the complex La/phosphatidylserine, the binding ratio of La/lipid exceeds a 13 ratio, reaching saturation at a 12 ratio. Analysis, employing a modified Gouy-Chapman equation, indicates a significant increase in the intrinsic binding constant of La/phosphatidylserine when the La3+ concentration exceeds the threshold concentration for leakage. The analysis illustrates that at the molecular level the binding of La3+ can be comparable to or even weaker than that of Ca2+, but that even when present at smaller concentrations La3+ competes with and partially displaces Ca2+ from membranes or other negatively charged surfaces. The results suggest that the sequence La3+>Ca2+>Mg2+ reflects both the binding strength of these cations to phosphatidylserine as well as their ability to induce leakage, enhancement of 31P spin-lattice relaxation rates, fusion and other structural changes. The leakage, fusion, and other structural changes are more pronounced at the phase transition temperature of the La/lipid complex.  相似文献   

17.
18.
The rate of pheromone emission from wild and laboratory-reared gypsy moth (Lymantria dispar) (Lepidoptera: Lymantriidae) virgin females was determined with an all-glass aeration apparatus. This device incorporated a bed of 1-mm glass beads to extract entrained pheromone from the air flowing over the protruded gland. The temporal pattern of emission was established by monitoring individual females after eclosion for 24 consecutive 2-hr intervals.At a constant 24°C, both wild and laboratory females exhibited a similar diel periodicity of pheromone emission. The mean release rate increased after onset of photophase, generally attained maximal levels between 1600 and 2200 hr and declined during scotophase. Pheromone was released continuously and the mean daily emission increased with age for both wild and laboratory moths. The mean emission rate over the 48-hr monitoring interval was 15.4 ng2 hr for wild females vs 14.7 ng2 hr for laboratory moths. The peak emission from 2-day-old laboratory moths was ca.28 ng2 hr compared with the ca.25 ng2 hr released by their wild counterparts.The calling periodicity of laboratory females was determined at a constant 24°C and under a natural temperature rhythm. At 24°C, the proportion of females calling exceeded 45% throughout the diel period, whereas under the temperature rhythm, calling was virtually eliminated by temperatures below 15°C, indicating that temperature acts as an exogenous cue to modify the expression of the calling rhythm and thus potentially the periodicity of pheromone emission.  相似文献   

19.
Using Electron Paramagnetic Resonance Spectroscopy, Al3+ was shown to produce a dramatic decrease of membrane lipid fluidity on the microorganism Thermoplasmaacidophilum at a pH > 2. The ability of Al3+ to alter lipid fluidity was enhanced with increasing pH (from 3 to 5). At pH 4, 10?2 M Al3+ increased the lower lipid phase transition by 39°C, and a detectable change was observed with AlCl3 concentrations as low as 10?5 M. The ability of Al3+ to increase the lower lipid phase transition temperature of T.acidophilum is the largest of any cation/lipid interaction yet reported.  相似文献   

20.
The phase behaviour of leaf polar lipids from three plants, varying in their sensitivity to chilling, was investigated by differential scanning calorimetry. For the lipids from mung bean (Vigna radiata L. var. Berken), a chilling-sensitive plant, a transition exotherm was detected beginning at 10 ± 2°C. No exotherm was evident above 0°C with polar lipids from wheat (Triticum aestivum cv. Falcon) or pea (Pisum sativum cv. Massey Gem), plants which are insensitive to chilling. The enthalpy for the transition in the mung bean polar lipids indicated that only about 7% w/w of the lipid was in the gel phase at ?8°C. The thermal transition of the mung bean lipids was mimicked by wheat and pea polar lipids after the addition of 1 to 2% w/w of a relatively high melting-point lipid such as dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylglycerol or dimyristoylphosphatidylcholine. Analysis of the polar lipids from the three plants showed that a dipalmitoylphosphatidylglycerol was present in mung bean (1.7% w/w) and pea (0.3% w/w) but undetected in wheat, indicating that the transition exotherm temperature of 10°C in mung bean, 0°C in pea and about ?3°C in wheat correlates with the proportion of the high melting-point disaturated component in the polar lipids. The results indicate that the transition exotherm, observed at temperatures above 0°C in the membranes of chilling-sensitive plants, could be induced by small amounts of high melting-point lipids and involves only a small proportion of the membrane polar lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号