首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins are dynamic molecules and often undergo conformational change upon ligand binding. It is widely accepted that flexible loop regions have a critical functional role in enzymes. Lack of consideration of binding site flexibility has led to failures in predicting protein functions and in successfully docking ligands with protein receptors. Here we address the question: which sequence and structural features distinguish the structurally flexible and rigid binding sites? We analyze high-resolution crystal structures of ligand bound (holo) and free (apo) forms of 41 proteins where no conformational change takes place upon ligand binding, 35 examples with moderate conformational change, and 22 cases where a large conformational change has been observed. We find that the number of residue-residue contacts observed per-residue (contact density) does not distinguish flexible and rigid binding sites, suggesting a role for specific interactions and amino acids in modulating the conformational changes. Examination of hydrogen bonding and hydrophobic interactions reveals that cases that do not undergo conformational change have high polar interactions constituting the binding pockets. Intriguingly, the large, aromatic amino acid tryptophan has a high propensity to occur at the binding sites of examples where a large conformational change has been noted. Further, in large conformational change examples, hydrophobic-hydrophobic, aromatic-aromatic, and hydrophobic-polar residue pair interactions are dominant. Further analysis of the Ramachandran dihedral angles (phi, psi) reveals that the residues adopting disallowed conformations are found in both rigid and flexible cases. More importantly, the binding site residues adopting disallowed conformations clustered narrowly into two specific regions of the L-Ala Ramachandran map. Examination of the dihedral angles changes upon ligand binding shows that the magnitude of phi, psi changes are in general minimal, although some large changes particularly between right-handed alpha-helical and extended conformations are seen. Our work further provides an account of conformational changes in the dihedral angles space. The findings reported here are expected to assist in providing a framework for predicting protein-ligand complexes and for template-based prediction of protein function.  相似文献   

2.
3.
Tropomyosin (Tpm) is an extended α-helical coiled-coil homodimer that regulates actinomyosin interactions in muscle. Molecular simulations of four Tpms, two from the vertebrate class Mammalia (rat and pig), and two from the invertebrate class Malacostraca (shrimp and lobster), showed that despite extensive sequence and structural homology across metazoans, dynamic behavior—particularly long-range structural fluctuations—were clearly distinct. Vertebrate Tpms were more flexible and sampled complex, multi-state conformational landscapes. Invertebrate Tpms were more rigid, sampling a highly constrained harmonic landscape. Filtering of trajectories by principle component analysis into essential subspaces showed significant overlap within but not between phyla. In vertebrate Tpms, hinge-regions decoupled long-range interhelical motions and suggested distinct domains. In contrast, crustacean Tpms did not exhibit long-range dynamic correlations—behaving more like a single rigid rod on the nanosecond time scale. These observations suggest there may be divergent mechanisms for Tpm binding to actin filaments, where conformational flexibility in mammalian Tpm allows a preorganized shape complementary to the filament surface, and where rigidity in the crustacean Tpm requires concerted bending and binding.  相似文献   

4.
Ocytocin and vasopressin are two nonapeptides of the hypo thalamo-Post-hypophysary system. They are isolated and purified from dromedary post-hyphophysis, freshly collected in the meat centers of the south of Tunisia. The use of three chromatographies steps were found to be essential in obtaining high Pure hormones. These steps cousist in a sephadex G25 gel filtration and two successive High performance liquid chromatographies: H.P.L.C. The analysis of the two hormones by thin layer chromatography and Radioimmunoassays, and the identification of the amino-acid composition demonstrate that camel vasopressin is a 8 arginin vasopressin but ocytocin is identic to the other hormones isolated from different animal species.  相似文献   

5.
Cardiovascular homeostasis and blood pressure regulation are reliant, in part, on interactions between natriuretic peptide (NP) hormones and natriuretic peptide receptors (NPR). The C-type NPR (NPR-C) is responsible for clearance of NP hormones from the circulation, and displays a cross-reactivity for all NP hormones (ANP, BNP, and CNP), in contrast to other NPRs, which are more restricted in their specificity. In order to elucidate the structural determinants for the binding specificity and cross-reactivity of NPR-C with NP hormones, we have determined the crystal structures of the complexes of NPR-C with atrial natriuretic peptide (ANP), and with brain natriuretic peptide (BNP). A structural comparison of these complexes, with the previous structure of the NPR-C/CNP complex, reveals that NPR-C uses a conformationally inflexible surface to bind three different, highly flexible, NP ligands. The complex structures support a mechanism of rigid promiscuity rather than conformational plasticity by the receptor. While ANP and BNP appear to adopt similar receptor-bound conformations, the CNP structure diverges, yet shares sets of common receptor contacts with the other ligands. The degenerate versus selective hormone recognition properties of different NPRs appears to derive largely from two cavities on the receptor surfaces, pocket I and pocket II, that serve as anchoring sites for hormone side-chains and modulate receptor selectivity.  相似文献   

6.
J R Somoza  J W Brady 《Biopolymers》1988,27(6):939-956
Molecular dynamics simulations have been used to study the conformational fluctuations of the oligopeptide hormone vasopressin. Starting coordinates for these simulations were built upon the crystal structure of pressinoic acid, the cyclic ring moiety of vasopressin, recently determined by x-ray diffraction. Coordinates for the additional tripeptide “tail” of vasopressin were selected by arbitrary positioning of this segment using interactive computer graphics. Two such starting configurations were minimized to relax strains, and long dynamics simulations (20 and 40 ps) in vacuo were then conducted following extensive heating and equilibration sequences (36 ps). In these studies, vasopressin was found to undergo few substantial conformational changes at 300 K on the time scale simulated, in contrast to the results of a shorter previous simulation, but comparable structural transitions were observed during the equilibration periods. The pressinoic acid structure was found to be a reasonably stable possible conformation for vasopressin in vacuum on this time scale.  相似文献   

7.
We have used energy minimization and harmonic analysis to study the structural and thermodynamic changes which occur upon the binding of lithium ions to the cyclic pentapeptide, cyclo-(Gly-L-Pro-Gly-D-Ala-L-Pro) (GPGAP). A number of theoretically stable vacuum configurations of uncomplexed GPGAP were found, one of which is very close to the crystal conformation determined by X-ray diffraction. Stable complexes with lithium were found where the ion binds to the carbonyl oxygen atoms of three residues. Detailed conformational information is presented for both the uncomplexed and the complexed peptide, along with an analysis of the atomic interactions which stabilize the various peptide conformations.  相似文献   

8.
The circular dichroic spectra of [Arg8]vasopressin, [Mpr1, Arg8]vasopressin, [Mpr1, D-Arg8]-vasopressin, pressinamide, deaminopressinamide, tocinamide, deaminotocinamide, [Leu4, D-Arg8]-vasotocin, [Mpr1, Leu4, D-Arg8]vasotocin and [Phe2, Lys8]vasopressin have been studied. All these substances showed a characteristic positive dichroic band at about 225 nm due to the presence of tyrosine in sequence position 2. The intensity of this band was affected by interactions between the tyrosine side-chain and other structural elements in the molecule, such as the Na-amino group, the side-chain of phenylalanine in position 3 and the linear C-terminal peptide. Analysis of the response of this band to structural modifications of the molecule and change in the solvent (particularly comparing neutral aqueous solutions with hexafluoroacetone solutions) allowed some conformational conclusions. The linear C-terminal tripeptide is probably situated over the cyclic portion of the molecule both in vasopressin and oxytocin substances. Its steric interaction with the tyrosine side-chain seems to be particularly efficient in molecules containing D-arginine in position 8. In the vasopressin series the stacking interaction of neighbouring aromatic amino acid residues furthermore limits the conformational freedom of the tyrosine side-chain and also probably distorts the dihedral angles of residues 1-3 in comparison with oxytocin. The interactions of phenylalanine and arginine with tyrosine relatively decrease the conformational effects of the primary amino group. Consequently the local conformation of vasopressin in the region of the tyrosine residue is more rigid and less sensitive to changes in medium than that of oxytocin. The circular dichroic spectra did not show any basic conformational differences in the backbone peptide chain of oxytocin and vasopressin substances. A weak negative disulphide band at about 290 nm could be observed in the spectra of both series of substances.  相似文献   

9.
Numerical study on the unsteady hydrodynamic characteristics of oscillating rigid and flexible tuna-tails in viscous flow-field is performed.Investigations are conducted using Reynolds-Averaged Navier-Stokes (RANS) equations with a moving adaptive mesh.The effect of swimming speed,flapping amplitude,frequency and flexure amplitude on the propulsion performance of the rigid and flexible tuna-tails are investigated.Computational results reveal that a pair of leading edge vortices develop along the tail surface as it undergoes an oscillating motion.The propulsive efficiency has a strong correlation with various locomotive parameters.Peak propulsive efficiency can be obtained by adjusting these parameters.Particularly,when input power coefficient is less than 2.8,the rigid tail generates larger thrust force and higher propulsive efficiency than flexible tail.However,when input power coefficient is larger than 2.8,flexible tail is superior to rigid tail.  相似文献   

10.
The combined use of several nuclear magnetic resonance and restrained molecular dynamics techniques allowed the formulation of a molecular model for the preferred solution conformation of a synthetic peptide reproducing the [1-20] processing domain of the pro-ocytocin-neurophysin precursor. In the model, the conformation of the 20-membered tocin ring, with the two Cys1 and Cys6 residues bridged by a disulphide bond, is very close to that observed for isolated ocytocin in the solid state; in addition, a type II β-turn is postulated for the 7-10 segment of the acyclic tail containing the Lys11-Arg12 processing site, and connecting ocytocin to the neurophysin domain, while the C-terminal 13-20 segment of the molecule is believed to assume a helical structure. This particular structural organization could be important in participating as the favorable conformation for optimal substrate-enzyme active site recognition and processing by specific endoproteases. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Beta-arrestins (betaarrs) play a central role in the regulation of G-protein-coupled receptors (GPCRs). Their binding to phosphorylated activated GPCRs induces a conformational transition to an active state resulting in the release of their flexible C-terminal tail. Binding sites for clathrin and the adaptor protein (AP)-2 clathrin adaptor complex are then unmasked, which drive the recruitment of betaarrs-GPCR complexes into clathrin-coated pits (CCPs). A conserved isoleucine-valine-phenylalanine (IVF) motif of the C-terminal tail controls betaarr activation through intramolecular interactions. Here, we provide structural, biochemical and functional evidence in living cells that the IVF motif also controls binding to AP-2. While the F residue is directly involved in AP-2 binding, substitutions of I and V residues, markedly enhanced affinity for AP-2 resulting in active betaarr mutants, which are constitutively targeted to CCPs in the absence of any GPCR activation. Conformational change and endocytic functions of betaarrs thus appear to be coordinated via the complex molecular interactions established by the IVF motif.  相似文献   

12.
The rotavirus spike protein, VP4, is a major determinant of infectivity and neutralization. Previously, we have shown that trypsin-enhanced infectivity of rotavirus involves a transformation of the VP4 spike from a flexible to a rigid bilobed structure. Here we show that at elevated pH the spike undergoes a drastic, irreversible conformational change and becomes stunted, with a pronounced trilobed appearance. These particles with altered spikes, at a normal pH of 7.5, despite the loss of infectivity and the ability to hemagglutinate, surprisingly exhibit sialic acid (SA)-independent cell binding in contrast to the SA-dependent cell binding exhibited by native virions. Remarkably, a neutralizing monoclonal antibody that remains bound to spikes throughout the pH changes (pH 7 to 11 and back to pH 7) completely prevents this conformational change, preserving the SA-dependent cell binding and hemagglutinating functions of the virion. A hypothesis that emerges from the present study is that high-pH treatment triggers a conformational change that mimics a post-SA-attachment step to expose an epitope recognized by a downstream receptor in the rotavirus cell entry process. This process involves sequential interactions with multiple receptors, and the mechanism by which the antibody neutralizes is by preventing this conformational change.  相似文献   

13.
14.
We propose a hypothesis that the T-cell receptor is a possible target of thymic hormones. We modelled the conformational dynamics of thymopentin and its structural variants in solution, as well as the interactions of these short peptides with the proposed molecular target. Thymopentin is a five-amino-acid fragment of the thymic hormone thymopoietin (residues 32 to 36) that reproduces the immunomodulatory activity of the complete hormone. Using molecular dynamics and flexible docking methods, we demonstrated high-affinity binding of thymopentin and its prospective mimetics with the T-cell receptor. The calculated biological activity spectra of thymopentin and its two promising modifications can be used in immunomodulatory activity screenings with live systems.  相似文献   

15.
The interactions between Cu(II) ions and heparin were investigated using several complementary spectroscopic techniques. NMR indicated an initial binding phase involving specific coordination to four points in the structure that recur in slightly different environments throughout the heparin chain; the carboxylic acid group and the ring oxygen of iduronate-2-O-sulfate, the glycosidic oxygen between this residue and the adjacent (towards the reducing end) glucosamine and the 6-O-sulfate group. In contrast, the later binding phase showed little structural specificity. One- and two-dimensional correlated FTIR revealed that complex out of phase (asynchronous) conformational changes also occurred during the titration of Cu(II) ions into heparin, involving the CO and N-H stretches. EPR demonstrated that the environments of the Cu(II) ions in the initial binding phase were tetragonal (with slightly varied geometry), while the later non-specific phases exhibited conventional coordination. Visible spectroscopy confirmed a shift of the absorbance maximum. Titration of Cu(II) ions into a solution of heparin indicated (both by analysis of FTIR and EPR spectra) that the initial binding phase was complete by 15-20 Cu(II) ions per chain; thereafter the ions bound in the non-specific mode. Hetero-correlation spectroscopy (FTIR-CD) improved resolution and assisted assignment of the broad CD features from the FTIR spectra and indicated both in-phase and more complex out of phase (synchronous and asynchronous, respectively) changes in interactions within the heparin molecule during the titration of Cu(II) ions.  相似文献   

16.
Mild oxidative stress, as elicited by ascorbate, oxygen, and trace metals, affects the binding properties of human serum albumin via purely conformational changes. In fact, no gross alteration can be observed in the electrophoretic and chromatographic patterns of albumin, whereas localized modifications are indicated by the changes in absorption and fluorescence spectra and in polarization degree. The oxidized protein presents a small increase of bityrosine production and a time-dependent increase in the content of carbonyl groups, whereas proteolytic susceptibility is unchanged. A higher affinity for cis-parinaric acid and a slight loss of solubility in high salt indicate a greater surface hydrophobicity. Pinpoint denaturation of the albumin molecule is also suggested by a decreased "esterase" activity in the presence of p-nitrophenyl acetate. Conformational stability evaluated through thermal shock and addition of moderate amounts of guanidine indicate that the oxidized protein is more heat-resistant, less flexible, and more rigid than the native one. Although limited, structural damages afforded by the oxidative stress cause alterations of albumin binding properties as documented by experiments with probes and physiological ligands. The loss of biological activity of human serum albumin induced by ascorbate system appears of medical relevance, because it can affect drug metabolism and particularly drug tolerance in the elderly.  相似文献   

17.
D H Live  D Cowburn  E Breslow 《Biochemistry》1987,26(20):6415-6422
NMR was used to monitor the binding to neurophysin of oxytocin and 8-arginine-vasopressin, 15N labeling being used to identify specific backbone 15N and 1H signals. The most significant effects of binding were large downfield shifts in the amino nitrogen resonance of Phe-3 of vasopressin and in its associated proton, providing evidence that the peptide bond between residues 2 and 3 of the hormones is hydrogen-bonded to the protein within hormone-neurophysin complexes. Suggestive evidence of hydrogen bonding of the amino nitrogen of Tyr-2 was also obtained in the form of decreased proton exchange rates on binding; however, the chemical shift changes of this nitrogen and its associated proton indicated that such hydrogen bonding, if present, is probably weak. Shifts in the amino nitrogen of Asn-5 and in the -NH protons of both Asn-5 and Cys-6 demonstrated that these residues are significantly perturbed by binding, suggesting conformational changes of the ring on binding and/or the presence of binding sites on the hormone outside the 1-3 region. No support was obtained for the thesis that there is a significant second binding site for vasopressin on each neurophysin chain. The behavior of both oxytocin and vasopressin on binding was consistent with formation of 1:1 complexes in slow exchange with the free state under most pH conditions. At low pH there was evidence of an increased exchange rate. Additionally, broadening of 15N resonances in the bound state at low pH occurred without a corresponding change in the resonances of equilibrating free hormone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Secondary active transporters couple the free energy of the electrochemical potential of one solute to the transmembrane movement of another. As a basic mechanistic explanation for their transport function the model of alternating access was put forward more than 40 years ago, and has been supported by numerous kinetic, biochemical and biophysical studies. According to this model, the transporter exposes its substrate binding site(s) to one side of the membrane or the other during transport catalysis, requiring a substantial conformational change of the carrier protein. In the light of recent structural data for a number of secondary transport proteins, we analyze the model of alternating access in more detail, and correlate it with specific structural and chemical properties of the transporters, such as their assignment to different functional states in the catalytic cycle of the respective transporter, the definition of substrate binding sites, the type of movement of the central part of the carrier harboring the substrate binding site, as well as the impact of symmetry on fold-specific conformational changes. Besides mediating the transmembrane movement of solutes, the mechanism of secondary carriers inherently involves a mechanistic coupling of substrate flux to the electrochemical potential of co-substrate ions or solutes. Mainly because of limitations in resolution of available transporter structures, this important aspect of secondary transport cannot yet be substantiated by structural data to the same extent as the conformational change aspect. We summarize the concepts of coupling in secondary transport and discuss them in the context of the available evidence for ion binding to specific sites and the impact of the ions on the conformational state of the carrier protein, which together lead to mechanistic models for coupling.  相似文献   

19.
High specific antibodies have permitted the ultrastructural localization of vasopressin, ocytocin and neurophysins 1 and 2. Hormones and carrier proteins are detected in neurosecretory granules of the hypothalamic and neurohypophyseal fibres and so at the granular and extra-granular level of supra-optic pericaryons.  相似文献   

20.
Calcium- and integrin-binding protein (CIB) is a novel member of the helix-loop-helix family of regulatory calcium-binding proteins which likely has a specific function in hemostasis through its interaction with platelet integrin alphaIIbbeta(3). The significant amino acid sequence homology between CIB and other regulatory calcium-binding proteins such as calmodulin, calcineurin B, and recoverin suggests that CIB may undergo a calcium-induced conformational change; however, the mechanism of calcium binding and the details of a structural change have not yet been investigated. Consequently, we have performed a variety of spectroscopic and microcalorimetric studies of CIB to determine its calcium binding characteristics, and the subsequent conformational changes that occur. Furthermore, we provide the first evidence for magnesium binding to CIB and determine the structural consequences of this interaction. Our results indicate that in the absence of any bound metal ions, apo-CIB adopts a folded yet highly flexible molten globule-like structure. Both calcium and magnesium binding induce conformational changes which stabilize both the secondary and tertiary structure of CIB, resulting in considerable increases in the thermal stability of the proteins. CIB was found to bind two Ca(2+) ions in a sequential manner with dissociation constants (K(d)) near 0.54 and 1.9 microM for sites EF-4 and EF-3, respectively. In contrast, CIB bound only one Mg(2+) ion to EF-3 with a K(d) near 120 microM. Together, our results suggest that CIB may exist in multiple structural and metal ion-bound states in vivo which may play a role in its regulation of target proteins such as platelet integrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号