首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of adenylate cyclase of Escherichia coli measured in toluene-treated cells under standard conditions is subject to control by the phosphoenolpyruvate:sugar phosphotransferase system (PTS). Sugars such as glucose, which are transported by the PTS, will inhibit adenylate cyclase provided the PTS is functional. An analysis was made of the properties of E. coli strains carrying mutations in PTS proteins. Leaky mutants in the PTS protein HPr are similar to wild-type strains with respect to cAMp regulation; adenylate cyclase activity in toluene-treated cells and intracellular cAMP levels are in the normal range. Furthermore, adenylate cyclase in toluene-treated cells of leaky HPr mutants is inhibited by glucose. In contrast, mutations in the PTS protein Enzyme I result in abnormalities in cAMP regulation. Enzyme I mutants generally have low intracellular cAMP levels. Leaky Enzyme I mutants show an unusual phosphoenolpyruvate-dependent activation of adenylate cyclase that is not seen in Enzyme I+ revertants or in Enzyme I deletions. A leaky Enzyme I mutant exhibits changes in the temperature-activity profile for adenylate cyclase, indicating that adenylate cyclase activity is controlled by Enzyme I. Temperature-shift studies suggest a functional complex between adenylate cyclase and a regulator protein at 30 °C that can be reversibly dissociated at 40 °C. These studies further support the model for adenylate cyclase activation that involves phosphoenolpyruvate-dependent phosphorylation of a PTS protein complexed to adenylate cyclase.  相似文献   

2.
In Escherichia coli, adenylate cyclase activity in toluene-treated cells can be inhibited by glucose while the activity in a broken cell preparation cannot. Adenylate cyclase activity in the permeabilized but not in broken cells is stimulated somewhat specifically and additively by potassium and phosphate. Kinetic studies show sigmoid substrate-velocity curves for the toluene-treated cells but hyperbolic curves for the broken cells. The stimulatory effects of potassium and phosphate on adenylate cyclase activity in tolulene-treated cells are associated with increases in the Vmax and Km for ATP. While the enzyme activity in toluene-treated cells shows a preference for magnesium over manganese, the reverse is observed in broken cells. Stimulation of adenylate cyclase activity in toluene-treated cells requires the presence of the proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The PTS proteins can be phosphorylated in a P-enolpyruvate-dependent reaction. The stimulatory effects of ions will not occur if the PTS proteins are not phosphorylated. Since potassium phosphate stimulates both adenylate cyclase and PTS activities in toluene-treated cells, it is proposed that the effect of potassium phosphate on adenylate cyclase activity is mediated through an effect on the PTS. A model for dual regulation by glucose of adenylate cyclase activity is proposed. This model involves regulation of both the condition of the PTS proteins as well as the cellular concentration of phosphate.  相似文献   

3.
Toluene treatment of Escherichia coli B makes it possible to measure adenylate cyclase activity directly using [alpha-32-P]-ATP as substrate. In contrast to French press extracts, the activity of adenylate cyclase in toluene-treated cells shows many of the characteristics of the enzyme seen in the intact cell. In both toluene-treated and intact cells the activity of adenylate cyclase is inhibited at least 85% by glucose, while in French press extracts the enzyme activity is much lower and is not sensitive to inhibition by glucose. In toluene-treated cells, glucose inhibits at 10 muM, and the effect is rapid in onset and readily reversible. The activity is not inhibited by glucose 6-phosphate suggesting that glucose is responsible for the inhibition. The measurement of the activity and sensitivity to glucose of adenylate cyclase in toluene-treated cells requires the presence of potassium phosphate in the assay medium. Since it does not increase the activity or sensitivity of the enzyme in the French press extract, it is suggested that potassium phosphate is required for the maintenance of cellular integrity necessary for the activity and sensitivity of adenylate cyclase.  相似文献   

4.
The biochemical mechanisms of adenylate cyclase desensitization in arginine vasopressin-responsive epithelial cells remain unclear. Preincubation of cultured rabbit renal cortical collecting tubular cells with arginine vasopressin leads to a 30-100% decline in arginine vasopressin-stimulated adenylate cyclase activity. This loss of adenylate cyclase activity is time- and arginine vasopressin concentration-dependent. Preincubation with arginine vasopressin does not result in significant changes in basal, NaF-, forskolin-, isoproterenol- or cholera toxin-stimulated adenylate cyclase activity. Preincubation of cells with chlorophenylthio-cAMP, forskolin, and cholera toxin does not result in loss of arginine vasopressin-stimulated adenylate cyclase activity. Since products of cyclo-oxygenase inhibit arginine vasopressin action, cells were preincubated with indomethacin. Arginine vasopressin-induced adenylate cyclase desensitization is not reversed by indomethacin. By contrast, incubation with pertussis toxin prevents arginine vasopressin-induced adenylate cycle desensitization. These data demonstrate that arginine vasopressin induces homologous desensitization in membranes from cultured rabbit cortical collecting tubular cells and suggest that this desensitization is mediated, at least in part, by pertussis toxin substrate. These observations provide a unifying mechanism for desensitization of adenylate cyclase-coupled hormone receptors.  相似文献   

5.
1. Adenylate cyclase activity and patterns of insulin release in response to various concentrations of glucose were determined in islets of Langerhans isolated from starving, fed, or glucose-loaded rats. 2. Basal and glucagon-stimulated activities of adenylate cyclase were lower in islets from starved than from fed rats. The minimum glucose concentration required for stimulation of insulin secretion was higher, whereas the maximum secretory response to glucose was lower, in islets from starved than from fed rats. 3. Adenylate cyclase activity in islets of Langerhans obtained from fed rats loaded with glucose by intermittent intravenous or intraperitoneal injections over 5h was significantly higher than that seen in islets from normal fed rats. Islets obtained from glucose-loaded rats required a lower glucose concentration for stimulation of insulin secretion and attained a higher maximal response to glucose stimulation than those derived from fed rats. 4. Incubation in vitro of islets isolated from normal fed rats, for periods of 1 to 24h in the presence of high concentrations of glucose resulted in an activation of adenylate cyclase that occurred progressively from 2 to 7h and which was maintained during 24h of incubation. The increase of adenylate cyclase activity in isolated islets incubated for 4h in the presence of glucose was not prevented by addition of cycloheximide or actinomycin D. Galactose or 2-deoxyglucose was ineffective in increasing adenylate cyclase activity, and pyruvate (20mm) was less effective than glucose. 5. It is suggested that glucose or a glucose metabolite may exert long-term effects on islet cell adenylate cyclase.  相似文献   

6.
The mechanism of catabolite repression caused by sugar transported via the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) and stipulated by the decrease of the adenylate cyclase activity was studied. It was demonstrated that the sensitivity of the adenylate cyclase and beta-galactosidase synthesis to methyl-L-D-glucoside (MeGlc) or sorbitol is correlated with the content and activity of glucose (EIIGlc) or mannitol enzyme II of the PTS, correspondingly. Under anaerobic conditions the cells become insensitive to catabolic repression caused by MeGlc and the adenylate cyclase activity does not decrease in the presence of the sugar despite the increased rate of MeGlc transport. The adenylate cyclase activity of the mutant with the Tn5 transposone inserted into the ptsG gene does not change in the presence of MeGlc, while the activity of adenylate cyclase and the differential rate of beta-galactosidase synthesis increase in these bacteria. The data obtained confirm the hypothesis on the "catabolite signal" which is generated when the substrate binds to its transporter, i. e. adenylate cyclase reacts to the conformational changes in the transporter being complexed with it. The strength of this complex depends on the affinity of adenylate cyclase for the transporter and on the value of the membrane potential, delta mu H+ A model is proposed, which explains the necessity of factor IIIGlc for EIIGlc binding to adenylate cyclase.  相似文献   

7.
Adenylate cyclase in rat adipocyte membranes was inactivated as a result of treatment with sulfhydryl oxidants or with p-chloromercuribenzoate as well as by S-alkylating agents. The inhibition of the basal and isoproterenol- or glucagon-stimulated enzyme activity by the oxidants or the mercurial could be reversed by adding thiols to the isolated membranes. The activity of the enzyme paralleled the cellular glutathione (GSH) content. Lowering of intracellular glutathione by incubating the cells with specific reactants resulted in the inhibition of both basal and hormone-stimulated adenylate cyclase activity in the isolated membranes. Activity could be partly restored by supplying glucose to the incubation medium of intact cells. The fluoride-stimulated adenylate cyclase was also inhibited by the oxidants or the sulfhydryl inhibitors. The results suggest that adenylate cyclase may be partly regulated by oxidation-reduction. Thus, a direct relationship between both basal and hormone-stimulated adenylate cyclase activity and the cellular redox potential, determined by the cellular level of reduced glutathione, may be ascribed to the protection of the catalytic -SH groups of the enzyme from oxidative or peroxidative reactions and maintenance of the redox optimum for the reaction.  相似文献   

8.
The nature of the interaction of glucose with toluene-treated cells of Escherichia coli leading to inhibition of adenylate cyclase was examined by the use of analogues. Those analogues with variations of the substituents about carbon atoms 1 or 2 (e.g. alpha-methylglucoside or 2-deoxyglucose) are inhibitory, and they are also substrates of the phosphoenolpyruvate-dependent sugar phosphotransferase system. Analogues with changes in other parts of the molecule (e.g. 3-O-methylglucose or galactose), L-glucose and several disaccharides and pentoses, do not inhibit adenylate cyclase and are not substrates of the phosphotransferase system. This correlation suggests some functional relationship between the adenylate cyclase and phosphotransferase systems. Further studies were done with mutants defective in glucose enzymes II of the phosphotransferase system (designated GPT and MPT); these two activities are measured by phosphorylation of alpha-methyl-glucoside and 2-deoxyglucose, respectively. The wild-type parent phosphorylates both analogues, and both inhibit adenylate cyclase. In the GPT- mutant, alpha-methylglucoside does not inhibit adenylate cyclase and is not phosphorylated, while 2-deoxyglucose is inhibitory and phosphorylated. In the GPT- MPT- double mutant, adenylate cyclase activity is present, but neither alpha-methylglucoside nor 2-deoxyglucose inhibits adenylate cyclase, and neither sugar is phosphorylated. These studies demonstrate that glucose inhibition of adenylate cyclase in toluene-treated cells requires an interaction of this sugar with either the GPT or mpt enzyme II of the phosphotransferase system.  相似文献   

9.
The influence of nerve growth factor (NGF) on the activities of adenylate cyclase and high-affinity GTPase in pheochromocytoma PC12 cells was studied. Incubation of cells with nerve growth factor led to a rapid activation of adenylate cyclase accompanied by an inhibition of high-affinity GTPase. By the 10th min of incubation the activity of adenylate cyclase had been reduced 2-fold when compared to the control. The activity of GTPase, however, increased. No significant changes in the cAMP level were detected. The data obtained indicate that NGF interaction with PC12 cells induces changes in the adenylate cyclase system and this process involves G-proteins that regulate the adenylate cyclase activity.  相似文献   

10.
Abstract: Despite several studies indicating that cyclic nucleotides and their associated enzymes are present in peripheral nerves, their role in neuronal function remains unknown. One possible role is that of a modulating influence in the processes associated with axonal growth and maintenance, and in axonal regeneration. This study has used the frog sciatic nerve as a preparation for investigating the subcellular distribution of neuronai adenylate cyclase activity in normal and crush-injured nerves. The experiments have focused primarily on the axonal transport of adenylate cyclase activity and its subcellular redistribution at the site of constriction. The adenylate cyclase activity measurements were also compared with similar measurements of acetylcholinesterase distribution. Adenylate cyclase activity in normal sciatic nerves increased in the segment proximal to a nerve constriction over time, but did not increase distal to the constriction. Subcellular fractionation of the accumulating activity indicated that the majority of axonally transported enzyme was associated with microsomal organelles; however, an additional transported component was found in the nuclear/mitochondrial fraction. The transport velocities of these two components were different. The microsomal activity appeared to be transported with Group I proteins, while the nuclear/mitochondrial activity was transported with Group II. Rapidly transported Group I proteins have been suggested to be destined principally for the axolemma or the agranular reticu-lum, and the more slowly transported Group II proteins to be associated with intracellular organelles, including synaptic structures. Thus, axonally transported adenylate cyclase activity may have more than one functional role in peripheral nerve. The association of both adenylate cyclase and Protein I, an endogenous substrate for cyclic AMP, with Group II transport offers the intriguing possibility of a structural correspondence. Adenylate cyclase activity in Group I, however, did not appear to be transported with organelles which also contained acetylcholinesterase. The two enzymes, in terms of both velocity of transport and susceptibility to retrograde transport, were handled differently by the neuron. The subcellular distribution of adenylate cyclase activity in an isolated nerve segment was also found to change over time. Microsomal activity decreased, while nuclear/mitochondrial activity transiently increased and then also decreased. This may offer some indication of the morphological location of adenylate cyclase and its potential involvement in Wallerian degeneration and nerve regeneration, particularly in view of recent reports concerning the importance of local injury-induced changes to the initiation of nerve regeneration. We have proposed a dynamic association between axonal calcium and cyclic AMP concentration, which provides a method for membrane renewal or degradation in the intact axon and may offer a molecular basis for the structural reorganization occurring in the proximal segment of an injured nerve.  相似文献   

11.
Many cells develop enhanced adenylate cyclase activity after prolonged exposure to drugs that acutely inhibit the enzyme and it has been suggested that this adaptation may be due to an increase in Gs alpha. We have treated wild-type and Gs alpha-deficient cyc- S49 mouse lymphoma cells with a stable analogue (SMS 201-995) of the inhibitory agonist somatostatin. After incubation with SMS for 24 h, the forskolin-stimulated cAMP synthetic rate in intact cyc- cells was increased by 76%, similar to the increase found in the wild-type cells. Forskolin-stimulated adenylate cyclase activity in the presence of Mn2+ was also increased in membranes prepared from SMS-treated cyc- cells; however, guanine nucleotide-mediated inhibition of adenylate cyclase activity was not changed despite a small decrease in inhibitory Gi alpha subunits detected by immunoblotting. Pretreatment of cyc- cells with pertussis toxin prevented SMS from inducing the enhancement of forskolin-stimulated cAMP accumulation in intact cells. After chronic incubation of cyc- cells with SMS, exposure to N-ethylmaleimide, which abolished receptor-mediated inhibition of cAMP accumulation, did not attenuate the enhanced rate of forskolin-stimulated cAMP synthesis compared to N-ethylmaleimide-treated controls. These results with cyc- cells demonstrate that an adaptive increase in adenylate cyclase activity induced by chronic treatment with an inhibitory drug can occur in the absence of expression of Gs alpha.  相似文献   

12.
Adenylate cyclase activity was measured in suspensions of E.coli B, rendered permeable with toluene. The enzyme was activated in a dose-dependent manner by GTP and by its non-hydrolysable analogue, GTP[gamma S]. In contrast, incubation with GDP[beta S], a non-phosphorylatable analogue of GDP, caused a dose-related inhibition of adenylate cyclase; this was partially overcome by addition of GTP. GTP did not relieve, and GDP[beta S] augmented, the non-competitive and dose-related inhibition of E.coli adenylate cyclase by glucose.  相似文献   

13.
Modulation of adenylate cyclase in human keratinocytes by protein kinase C   总被引:3,自引:0,他引:3  
Adenylate cyclase (ATP-pyrophosphate lyase (cyclizing); EC 4.6.1.1) in the human keratinocyte cell line SCC 12F was potentiated by 12-O-tetradecanoyl-phorbol-13-acetate (TPA), phorbol-12,13-diacetate, and 1,2-dioctanoylglycerol. Keratinocytes exposed to TPA showed a 2-fold enhancement of adenylate cyclase activity when assayed in the presence of isoproterenol or GTP. The half-maximal effective concentration (EC50) for both isoproterenol and GTP were unaltered by TPA treatment of the cells. Basal adenylate cyclase activity in membranes from TPA-treated cultures was also increased 2-fold relative to activity in control membranes. Potentiation of adenylate cyclase activity was dependent on the concentration of TPA to which the keratinocytes were exposed (EC50 for TPA = 3 nM). TPA actions on adenylate cyclase were maximal after 15 min of incubation of the cells with the compound, correlating well with the time course of translocation of protein kinase C (Ca2+/phospholipid-dependent enzyme) from cytosol to membrane. The action of cholera toxin on adenylate cyclase was additive with TPA. In contrast, pertussis toxin actions on adenylate cyclase were not additive with TPA. Treatment of control cells with pertussis toxin activated adenylate cyclase 1.5-fold, whereas cells exposed to pertussis toxin for 6 h followed by TPA for 15 min showed the same 2-fold increase in adenylate cyclase activity as observed in membranes from cells exposed to TPA without prior exposure to pertussis toxin. Pertussis toxin catalyzed ADP-ribosylation was increased 2-fold in membranes from SCC 12F cells exposed to TPA, indicating an increase in the alpha beta gamma form of Gi. These data suggest that exposure of human keratinocytes to phorbol esters increases adenylate cyclase activity by a protein kinase C-mediated increase in the heterotrimeric alpha beta gamma form of Gi resulting in decreased inhibition of basal adenylate cyclase activity.  相似文献   

14.
Starvation triggers the differentiation of Dictyostelium discoideum amoebas to aggregation competence. To determine more precisely the nature of the starvation signal, the ability of various components of the growth medium to inhibit differentiation was examined. Changes in adenylate cyclase (the enzyme which generates the cAMP pulses basic to the differentiation process), various physiological and biochemical markers of developing cells, and the ability of amoebas to form specific intercellular contacts were monitored. We show that amino acid mixtures inhibit cell differentiation by preventing the increase of adenylate cyclase activity which normally occurs during the early hours of starvation. High concentrations of glucose also inhibit the differentiation process but at a later stage: The rise in adenylate cyclase still occurs when cells are starved in the presence of sugar, but the enzyme does not appear to function in vivo. Exogenously generated cAMP pulses are not able to bypass the block exerted by amino acids but can bypass the block exerted by glucose. Results support the hypothesis that the presence of amino acids inhibits adenylate cyclase synthesis, while the presence of 3% glucose blocks endogenous activation of adenylate cyclase, perhaps as a consequence of high osmotic pressure.  相似文献   

15.
Effects of recombinant murine interferon-gamma (rIFN-gamma) on the membrane adenylate cyclase of a murine macrophage cell line (P388D1) were investigated in order to explore the nature of a signal transmitted by IFN-gamma receptor. Following the incubation of P388D1 cells with 40 U/ml of rIFN-gamma, the intracellular level of cAMP gradually increased about twofold over the control level within 60 min, and then began to gradually decline to about half the control level by 24 h incubation. The initial rise in cAMP level appeared to be due to the modest activation of adenylate cyclase and not due to the inhibition of cAMP-phosphodiesterase. Later decrease of intracellular cAMP may be due to quantitative down-regulation of the adenylate cyclase system. The basal enzymatic activity of the membrane prepared from P388D1 cells exposed to IFN-gamma for 24 h was found to be reduced to about 20% of that of the control membrane. However, the quality of the adenylate cyclase system appeared unchanged, because the relative degree of the response of the down-regulated membrane adenylate cyclase to prostaglandin PGE2, NaF, guanylimidodiphosphate (GppNHp), choleara toxin (CT), or forskolin was found to remain unchanged. This quantitative down-regulation of adenylate cyclase must be due to the action of rIFN-gamma, since the prior treatment of rIFN-gamma with either acid (pH 2) or monoclonal anti-IFN-gamma antibody inhibited the ability of IFN-gamma to induce the down-regulation. The rIFN-gamma-induced down-regulation is a reversible process, since the adenylate cyclase activity of the membrane was found to be restored when the rIFN-gamma-exposed cells were cultured for 72 h in the absence of rIFN-gamma. In addition, the 48 h-incubation of P388D1 cells with rIFN-beta or IFN-alpha was found not to significantly affect the membrane adenylate cyclase system.  相似文献   

16.
Following incubation of intact vascular endothelial cells with 1 mM 3-isobutyl-1-methylxanthine, and isoproterenol or PGI2, cyclic AMP levels increased 4- and 3-fold, respectively. Isoproterenol-stimulated adenylate cyclase activity of cell lysates was selectively inhibited by the β-adrenergic blocking agent propranolol. Catecholamines stimulated adenylate cyclase with the potency series: isoproterenol > epinephrine > norepinephrine. Prostaglandin did not stimulate adenylate cyclase activity in cell lysates, even in the presence of guanine nucleotides or following preincubation of the intact cells with prostaglandins prior to freeze-thaw lysis.  相似文献   

17.
The effect of adenosine in insulin secretion and adenylate cyclase activity of rat islets of Langerhans was investigated. Adenosine inhibited insulin secretion stimulated by glucose, glucagon, prostaglandin E2, tolbutamine and theophylline. Adenosine decreased basal adenylate cyclase activity of the islets as well as that stimulated by glucagon prostaglandin E2 and GTP, although fluoride-stimulated activity was not affected. Neither insulin secretion nor adenylate cyclase activity of the islets was affected by adenine, AMP or ADP. The inhibitory effect of adenosine on adenylate cyclase activity was not altered by either phenoxybenzamine (alpha-adrenergic blocker) or propranolol (beta-adrenergic blocker), suggesting that the effect is not mediated through the adrenergic receptors of the islet cells. These results suggest that the intracellular concentration of adenosine in the beta-cell may play a role in regulating insulin secretion and that this effect may be mediated via alterations in the activity of adenylate cyclase in the beta-cell.  相似文献   

18.
Cyclic AMP has been implicated in the regulation of the immunologic release of histamine from lung and other tissues and cell types. The mechanism whereby intracellular levels of cAMP are altered during mediator release was investigated. Measurements of histamine, adenylate cyclase, and cAMP phosphodiesterase activities were made in actively and passively sensitized guinea pig lung after challenge with antigen. A transient decrease in basal adenylate cyclase activity occurred which returned to control levels after histamine release. There was no change in cAMP phosphodiesterase activity determined at substrate concentrations of 1 mM and 0.01 mM. The adenylate cyclase response did not occur under the following conditions: 1) incubation of nonsensitized lung with antigen, 2) incubation of sensitized lung with antigen in the absence of extracellular calcium, and 3) incubation of nonsensitized lung with compound 48/80. These observations indicate 1) the adenylate cyclase response and the immunologic release of histamine are intimately related, and 2) the reduction in intracellular levels of cAMP which have been reported to occur during immunologic histamine release are mediated via adenylate cyclase.  相似文献   

19.
The ability of various adenosine analogs to inhibit cholera toxin activation of the intestinal epithelial cell adenylate cyclase-cyclic AMP system was investigated. After incubation of cells with cholera toxin for 6 hr, large increases in cellular cyclic AMP content were observed. Addition of 2', 5'-dideoxyadenosine during the last 30 min of this 6-hr incubation resulted in 70% reduction in elevated cyclic AMP content. Other analogs were not effective inhibitors. 2', 5'-Dideoxyadenosine was also a potent inhibitor of cholera toxin-activated intestinal cell adenylate cyclase activity with half-maximal inhibition occuring at 16 muM. NaF-stimulated cyclase was less susceptible to inhibition. The data suggest that inhibition by 2', 5'-dideoxyadenosine is due at least in part to direct inhibition of the cholera toxin-activated intestinal adenylate cyclase activity.  相似文献   

20.
Amplification of the cya gene of E. coli on the plasmid pBR325 leads to an increase of adenylate cyclase activity proportional to the gene dosage. In strains harboring hybrid plasmids with cya gene the intracellular level of cAMP and the rate of nucleotide secretion are also elevated. The adenylate cyclase activity in cells with truncated cya gene cloned on pBR322 remains sensitive to glucose inhibition. Amplification of the cya gene leads to considerable resistance of beta-galactosidase synthesis to transient repression by alpha-methylglucoside, but does not influence the permanent repression caused by glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号