首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Plains anthropologist》2013,58(49):219-228
Abstract

Drawing table methods of mapping artifacts prohibit extensive experimentation with artifact distribution patterns. A digital computer may be used to map efficiently and economically. A program for plotting artifacts by geological levels is presented. Preparation of the data and use of the program is explained.  相似文献   

2.
PurposeTo develop methods for qualitative and quantitative evaluation of MRI artifacts near metallic prostheses, and to compare the efficiency of different artifact suppression techniques with different types of hip prostheses.MethodsThree hip prostheses of cobalt-chromium, stainless steel, and titanium were embedded in agarose gel together with a rectilinear grid. Coronal MR images of the prostheses were acquired on a 1.5T scanner. Three pulse sequences were evaluated; TSE: a high-bandwidth turbo spin echo; VAT: TSE with view angle tilting, SEMAC: TSE with both VAT and slice distortion correction (6, 10 or 16 z-phase-encoding steps). Through-plane distortions were assessed as the length of visible gridlines, in-plane artifacts as the artifact area, and total artifacts by subtraction of an ideal, undistorted image from the actual image.ResultsVAT reduced in-plane artifacts by up to 50% compared to TSE, but did not reduce through-plane artifacts. SEMAC reduced through-plane artifacts by 60–80% compared to TSE and VAT. SEMAC in-plane artifacts were from 20% higher (6 encoding steps) to 50% lower (16 steps) than VAT. Total artifacts were reduced by 60–80% in the best sequence (SEMAC, 16 steps) compared to the worst (TSE). The titanium prosthesis produced 3–4 times lower artifact scores than the other prostheses.ConclusionsA rectilinear grid phantom is useful for qualitative and quantitative evaluation of artifacts provoked by different MRI protocols and prosthesis models. VAT and SEMAC were superior to TSE with high bandwidth. A proper number of z-encoding steps in SEMAC was critical. The titanium prosthesis caused least artifacts.  相似文献   

3.
PurposeMRI for radiotherapy planning requires spatial referencing using immobilization devices and markers. Clinical images of a difficult-to-interpret artifact are presented, resembling a metastasis, which occurs when combining CAIPIRINHA k-space-based parallel imaging (PI), 3D distortion correction, and external markers.MethodsA 3D variable flip angle Turbo Spin Echo sequence was used on a 1.5 T and 3 T MRI using flexible and head and neck coils. Two types of markers were tested: Liquimark LM1 and Spee-D-Mark. A silicone oil phantom was used that represents low signal intensity, such as gray matter. 3D Fourier transforms were also used to show the issue’s origin.ResultsThe markers can appear in an unexpected region of a patient, not in the same original or reconstructed slice nor in a rectilinear direction in a slice, especially when using CAIPIRINHA acceleration with 3D distortion correction. The probability of occurrence was respectively 13% and 80% for distances of <=2 mm and >2 mm between marker and patient, for example when using thermoplastic masks. Clinical cases are shown where this semi-randomly occurring artifact appears post contrast only, and thus can be interpreted as metastases. The artifact did not appear when using compressed sensing acceleration.ConclusionMarkers used for radiotherapy MRI application can introduce additional artifacts that can be interpreted as metastases. However, other high signal intensity structures on the surface of a patient, such as the ear, can lead to an equivalent error.  相似文献   

4.
《Plains anthropologist》2013,58(76):107-116
Abstract

Based on a sample of 76 artifacts of the Paleo-Indian Tradition from the Jurgens Site, Kersey, Colorado, the problem of functional diversity within a single morphological category of Plano (Jennings 1955) projectile points and/or knives is considered in terms of formal and functional analysis. Intensive mascroscopic and microscopic analysis of the artifacts is the basis for investigation. It is concluded that microscopic analysis of wear-patterns provides the means for more realistic evaluation of artifact function, which in turn enhances our understanding of morphological and functional changes through time. Analysis also revealed that within this collection the functional parameters can be defined in terms of breakage series and tool length. It is concluded that the results of this study have important implications for the interpretation of Paleo-Indian lithic technology.  相似文献   

5.
Current understanding of the pattern of proliferation within intestinal crypts involves the notion of a cutoff region introduced by Cairnieet al. (Exp. Cell. Res. 39, 539–553, 1965b). (Cells produced above the cutoff are non-cycling, whereas cells produced below the cutoff are cycling.) They contrasted the predicted distribution of proliferation in the extreme cases of a cutoff of width 0 (a sharp cutoff) with one eight cells wide (a slow cutoff) and concluded that the data were better explained by the latter. We have shown that crypt size variation artificially broadens the apparent distribution of proliferating cells in the crypt (Totafurnoet al., Biophys. J. 54, 845–858, 1988). Here we show that the measurement and analysis of crypts of a specified height reduces this artifact. This work introduces the use of distance from the crypt base (in microns) to specify the location of cells within the crypt as an improvement over the cell position ordering traditionally used in the determination of the distribution of proliferating cells. We also show how to explicitly correct for several artifacts in the measurement of the labelling index. We conclude that cell proliferation within the crypt is more localized than previously realized; in fact, a cutoff as slow as eight cells wide is rejected.  相似文献   

6.
PurposeTo quantitatively assess CT image quality and fracture visibility using virtual monochromatic imaging and iterative metal artifact reduction (iMAR) in a femoral bone fracture phantom with different fixation implants.MethodsA custom made phantom was scanned at 120-kVp and 140-kVp single-energy and 100/150-kVp dual-energy. Three stainless steel and two titanium implants with different thicknesses were placed on the phantom containing simulated one and two mm fractures. Single-energy CT images were reconstructed with and without iMAR, while DECT images were reconstructed at monochromatic energies between 70 and 190 keV. Non-metal scans were used as a reference. A Fourier power spectrum method and fracture model were used to analyze several anatomical areas.ResultsCT-value deviations of titanium implants were much lower compared to stainless steel implants. These deviations decreased for both DECT and iMAR. Fracture visibility, measured with the fracture model, improved the most when DECT was used while artifact reduction benefitted more from iMAR. The optimal monochromatic energy for metal artifact reduction, based on CT-value deviation, varied for each metal between 130 and 150 keV. The fracture model provided a signal-to-noise ratio for the near metal fracture visibility, providing the optimal keV.ConclusioniMAR and high keV monochromatic images extracted from DECT both reduce metal artifacts caused by different metal fixation implants. Quantitative femoral phantom results show that DECT is superior to iMAR regarding fracture visualization adjacent to metal fixation implants. The introduction of new artifacts when using iMAR impedes its value in near metal fixation implant imaging.  相似文献   

7.

Background

Ring artifacts are the concentric rings superimposed on the tomographic images often caused by the defective and insufficient calibrated detector elements as well as by the damaged scintillator crystals of the flat panel detector. It may be also generated by objects attenuating X-rays very differently in different projection direction. Ring artifact reduction techniques so far reported in the literature can be broadly classified into two groups. One category of the approaches is based on the sinogram processing also known as the pre-processing techniques and the other category of techniques perform processing on the 2-D reconstructed images, recognized as the post-processing techniques in the literature. The strength and weakness of these categories of approaches are yet to be explored from a common platform.

Method

In this paper, a comparative study of the two categories of ring artifact reduction techniques basically designed for the multi-slice CT instruments is presented from a common platform. For comparison, two representative algorithms from each of the two categories are selected from the published literature. A very recently reported state-of-the-art sinogram domain ring artifact correction method that classifies the ring artifacts according to their strength and then corrects the artifacts using class adaptive correction schemes is also included in this comparative study. The first sinogram domain correction method uses a wavelet based technique to detect the corrupted pixels and then using a simple linear interpolation technique estimates the responses of the bad pixels. The second sinogram based correction method performs all the filtering operations in the transform domain, i.e., in the wavelet and Fourier domain. On the other hand, the two post-processing based correction techniques actually operate on the polar transform domain of the reconstructed CT images. The first method extracts the ring artifact template vector using a homogeneity test and then corrects the CT images by subtracting the artifact template vector from the uncorrected images. The second post-processing based correction technique performs median and mean filtering on the reconstructed images to produce the corrected images.

Results

The performances of the comparing algorithms have been tested by using both quantitative and perceptual measures. For quantitative analysis, two different numerical performance indices are chosen. On the other hand, different types of artifact patterns, e.g., single/band ring, artifacts from defective and mis-calibrated detector elements, rings in highly structural object and also in hard object, rings from different flat-panel detectors are analyzed to perceptually investigate the strength and weakness of the five methods. An investigation has been also carried out to compare the efficacy of these algorithms in correcting the volume images from a cone beam CT with the parameters determined from one particular slice. Finally, the capability of each correction technique in retaining the image information (e.g., small object at the iso-center) accurately in the corrected CT image has been also tested.

Conclusions

The results show that the performances of the algorithms are limited and none is fully suitable for correcting different types of ring artifacts without introducing processing distortion to the image structure. To achieve the diagnostic quality of the corrected slices a combination of the two approaches (sinogram- and post-processing) can be used. Also the comparing methods are not suitable for correcting the volume images from a cone beam flat-panel detector based CT.  相似文献   

8.

Background

Cervical cancer is the fifth most common cancer among women, which is the third leading cause of cancer death in women worldwide. Brachytherapy is the most effective treatment for cervical cancer. For brachytherapy, computed tomography (CT) imaging is necessary since it conveys tissue density information which can be used for dose planning. However, the metal artifacts caused by brachytherapy applicators remain a challenge for the automatic processing of image data for image-guided procedures or accurate dose calculations. Therefore, developing an effective metal artifact reduction (MAR) algorithm in cervical CT images is of high demand.

Methods

A novel residual learning method based on convolutional neural network (RL-ARCNN) is proposed to reduce metal artifacts in cervical CT images. For MAR, a dataset is generated by simulating various metal artifacts in the first step, which will be applied to train the CNN. This dataset includes artifact-insert, artifact-free, and artifact-residual images. Numerous image patches are extracted from the dataset for training on deep residual learning artifact reduction based on CNN (RL-ARCNN). Afterwards, the trained model can be used for MAR on cervical CT images.

Results

The proposed method provides a good MAR result with a PSNR of 38.09 on the test set of simulated artifact images. The PSNR of residual learning (38.09) is higher than that of ordinary learning (37.79) which shows that CNN-based residual images achieve favorable artifact reduction. Moreover, for a 512?×?512 image, the average removal artifact time is less than 1 s.

Conclusions

The RL-ARCNN indicates that residual learning of CNN remarkably reduces metal artifacts and improves critical structure visualization and confidence of radiation oncologists in target delineation. Metal artifacts are eliminated efficiently free of sinogram data and complicated post-processing procedure.
  相似文献   

9.
The surface electromyographic (sEMG) signal that originates in the muscle is inevitably contaminated by various noise signals or artifacts that originate at the skin-electrode interface, in the electronics that amplifies the signals, and in external sources. Modern technology is substantially immune to some of these noises, but not to the baseline noise and the movement artifact noise. These noise sources have frequency spectra that contaminate the low-frequency part of the sEMG frequency spectrum. There are many factors which must be taken into consideration when determining the appropriate filter specifications to remove these artifacts; they include the muscle tested and type of contraction, the sensor configuration, and specific noise source. The band-pass determination is always a compromise between (a) reducing noise and artifact contamination, and (b) preserving the desired information from the sEMG signal. This study was designed to investigate the effects of mechanical perturbations and noise that are typically encountered during sEMG recordings in clinical and related applications. The analysis established the relationship between the attenuation rates of the movement artifact and the sEMG signal as a function of the filter band pass. When this relationship is combined with other considerations related to the informational content of the signal, the signal distortion of filters, and the kinds of artifacts evaluated in this study, a Butterworth filter with a corner frequency of 20 Hz and a slope of 12 dB/oct is recommended for general use. The results of this study are relevant to biomechanical and clinical applications where the measurements of body dynamics and kinematics may include artifact sources.  相似文献   

10.
【背景】定陶王墓地M2汉墓出土了一批处于防护层的重要汉砖,目前部分汉砖表面出现了真菌病害问题。【目的】根据现场文物保护状况,选取了5块汉砖表面的微生物病害样本,检测并分析了汉砖表面的真菌病害,将分离得到的7株真菌进行抑菌试验。【方法】使用扫描电镜观察、高通量测序、纯培养和抑菌试验等方法对样本中的真菌进行分析。【结果】发现未经抑菌处理的汉砖表面真菌病害问题严重,经75%乙醇和0.5%硝酸咪康唑处理过的汉砖表面真菌病害问题减弱。汉砖上的主要真菌不同,汉砖9表面含量最多的真菌为Boeremia,汉砖13表面含量最多的为虫草科(Cordycipitaceae)。然而硝酸咪康唑和硼酸硼砂并无抑菌效果,抑菌产品K100(2-甲基-4-异噻唑啉-3-酮)具有较好的抑菌效果。【结论】本研究对分析和防治汉砖表面的真菌病害及对汉砖进行科技保护具有重要意义。  相似文献   

11.
Abstract

Use of computerized analysis techniques for ligand binding data have recently become generally available, and are now used quite routinely. When used appropriately, these tools can improve the precision of the estimated parameters for binding affinity, K, and capacity, R. Furthermore, such programs can also calculate the uncertainty of the estimates e.g., as a percent coefficient of variation (%CV). However, because of unmeasured variability in specific activity, tracer purity, counting efficiency, counter background, efficiency of separation, etc., the actual uncertainty in the parameters K and R is usually much larger than stated. In an attempt to examine the effects of such artifacts, we have developed a computer program which simulates data arising from a number of commonly used experimental designs, and then intentionally distorted with each of these artifacts. Finally, the data are converted to B/F and B and plotted in the conventional Scatchard plot. Distortions revealed in this graph are indicative of the effect each artifact has on the parameter estimates. The computer program is generally written to simulate the binding of 2 or more ligands to one, two or many classes of independent or cooperative specific sites as well as to nonspecific sites. Thus, the program is applicable in a wide variety of situations. Results show that low tracer purity (“bindability”) or low filtration efficiency will significantly alter the measured R value. Poorly determined specific radioactivity may significantly alter the measured K value as well. Imprecise measurement of machine background may result in the specious appearance of positive cooperativity, or of additional high or low affinity classes of binding sites. Finally, under some circumstances, it is possible to detect and correct for the presence of these artifacts.  相似文献   

12.
PurposeThe exciting prospect of Spectral CT (SCT) using photon-counting detectors (PCD) will lead to new techniques in computed tomography (CT) that take advantage of the additional spectral information provided. We introduce a method to reduce metal artifact in X-ray tomography by incorporating knowledge obtained from SCT into a statistical iterative reconstruction scheme. We call our method Spectral-driven Iterative Reconstruction (SPIR).MethodThe proposed algorithm consists of two main components: material decomposition and penalized maximum likelihood iterative reconstruction. In this study, the spectral data acquisitions with an energy-resolving PCD were simulated using a Monte-Carlo simulator based on EGSnrc C++ class library. A jaw phantom with a dental implant made of gold was used as an object in this study. A total of three dental implant shapes were simulated separately to test the influence of prior knowledge on the overall performance of the algorithm. The generated projection data was first decomposed into three basis functions: photoelectric absorption, Compton scattering and attenuation of gold. A pseudo-monochromatic sinogram was calculated and used as input in the reconstruction, while the spatial information of the gold implant was used as a prior. The results from the algorithm were assessed and benchmarked with state-of-the-art reconstruction methods.ResultsDecomposition results illustrate that gold implant of any shape can be distinguished from other components of the phantom. Additionally, the result from the penalized maximum likelihood iterative reconstruction shows that artifacts are significantly reduced in SPIR reconstructed slices in comparison to other known techniques, while at the same time details around the implant are preserved. Quantitatively, the SPIR algorithm best reflects the true attenuation value in comparison to other algorithms.ConclusionIt is demonstrated that the combination of the additional information from Spectral CT and statistical reconstruction can significantly improve image quality, especially streaking artifacts caused by the presence of materials with high atomic numbers.  相似文献   

13.
PurposeIn cerebral angiography, for diagnosis and interventional neuroradiology, cone-beam computed tomography (CBCT) scan is frequently performed for evaluating brain parenchyma, cerebral hemorrhage, and cerebral infarction. However, the patient’s eye lens is more frequently exposed to excessive doses in these scans than in the previous angiography and interventional neuroradiology (INR) procedures. Hence, radioprotection for the lenses is needed. This study selects the most suitable eye lens protection material for CBCT from among nine materials by evaluating the dose reduction rate and image quality.MethodsTo determine the dose reduction rate, the lens doses were measured using an anthropomorphic head phantom and a real-time dosimeter. For image quality assessment, the artifact index was calculated based on the pixel value and image noise within various regions of interest in a water phantom.ResultsThe protective materials exhibited dose reduction; however, streak artifacts were observed near the materials. The dose reduction rate and the degree of the artifact varied significantly depending on the protective material. The dose reduction rates were 14.6%, 14.2%, and 26.0% when bismuth shield: normal (bismuth shield in the shape of an eye mask), bismuth shield: separate (two separate bismuth shields), and lead goggles were used, respectively. The “separate” bismuth shield was found to be effective in dose reduction without lowering the image quality.ConclusionWe found that bismuth shields and lead goggles are suitable protective devices for the optimal reduction of lens doses.  相似文献   

14.
PurposeLimited-angle CT imaging is an effective technique to reduce radiation. However, existing image reconstruction methods can effectively reduce streak artifacts but fail to suppress those artifacts around edges due to incomplete projection data. Thus, a modified NLM (mNLM) based reconstruction method is proposed.MethodsSince the artifacts around edges mainly exist in local position, it is possible to restore the true pixels in artifacts using pixels located in artifacts-free regions. In each iteration, mNLM is performed on image reconstructed by ART followed by positivity constraint. To solve the problem caused by ART-mNLM that there is undesirable information that may appear in the image, ART-TV is then utilized in the following iterative process after ART-mNLM iterates for a number of iterations. The proposed algorithm is named as ART-mNLM/TV.ResultsSimulation experiments are performed to validate the feasibility of algorithm. When the scanning range is [0, 150°], our algorithm outperforms the ART-NLM and ART-TV with more than 40% and 29% improvement in terms of SNR and with more than 58% and 49% reduction in terms of MAE. Consistently, reconstructed images from real projection data also demonstrate the effectiveness of presented algorithm.ConclusionThis paper uses mNLM which benefits from redundancy of information across the whole image, to recover the true value of pixels in artifacts region by utilizing pixels from artifact-free regions, and artifacts around the edges can be mitigated effectively. Experiments show that the proposed ART-mNLM/TV is able to achieve better performances compared to traditional methods.  相似文献   

15.
IntroductionWe have been developing a medical imaging technique using a Compton camera, which is expected to reconstruct three-dimensional images. If the number of views is not sufficient, star-shaped artifacts (streak artifacts) could arise in cross-sectional images. Therefore, we estimated the point spread function (PSF) of cross-sectional Compton images and the effect of the number of views by Monte Carlo simulations and experimental studies.Materials and methodsA cross-sectional Compton image was reconstructed using a dataset comprising 719 view directions and PSF was analyzed using a radial distribution. The peak height, full width at half maximum (FWHM), background (BG), and residual sum of squares (RSS) were calculated from the obtained PSF. In addition, RSSs were plotted against the number of views to estimate the required number to suppress star-shaped artifacts.ResultsThere was no correlation found between the number of views and both FWHM (16 mm) and peak/BG ratio (∼1 × 104). RSSs were reduced with the number of views and approached the minimum asymptotically. Correlation was observed between the required number of views and the number of Compton events used for image reconstruction.ConclusionWe determined the PSF of cross-sectional Compton images and the effect of the number of views on the images. The required number of views to suppress the star-shaped artifact is related to the square root of the number of Compton events used to reconstruct the image. From this study, we concluded that 21 or more views are required for clinical purposes.  相似文献   

16.
Abstract

The treatment of electrostatic interactions in molecular simulations is of fundamental importance. Ewald and related methods are being increasingly used to the detriment of cutoff schemes, which are known to produce several artifacts. A potential drawback of the Ewald method is the spatial periodicity that is imposed to the system, which could produce artifacts when applied in the simulation of liquids. In this work we analyze the octaalanine peptide with charged termini in explicit solvent, for which severe effects due to the use of Ewald sums were predicted using continuum electrostatics. Molecular Dynamics simulations for a total of 158 nanoseconds were performed in cells of different sizes. From the comparison of the results of different system sizes, no significant periodicity-induced artifacts were observed. It is argued that in current biomolecular simulations, the incomplete sampling is likely to affect the results to a larger extent than the artifacts induced by the use of Ewald sums.  相似文献   

17.
BackgroundProtein domains are commonly used to assess the functional roles and evolutionary relationships of proteins and protein families. Here, we use the Pfam protein family database to examine a set of candidate partial domains. Pfam protein domains are often thought of as evolutionarily indivisible, structurally compact, units from which larger functional proteins are assembled; however, almost 4% of Pfam27 PfamA domains are shorter than 50% of their family model length, suggesting that more than half of the domain is missing at those locations. To better understand the structural nature of partial domains in proteins, we examined 30,961 partial domain regions from 136 domain families contained in a representative subset of PfamA domains (RefProtDom2 or RPD2).ResultsWe characterized three types of apparent partial domains: split domains, bounded partials, and unbounded partials. We find that bounded partial domains are over-represented in eukaryotes and in lower quality protein predictions, suggesting that they often result from inaccurate genome assemblies or gene models. We also find that a large percentage of unbounded partial domains produce long alignments, which suggests that their annotation as a partial is an alignment artifact; yet some can be found as partials in other sequence contexts.ConclusionsPartial domains are largely the result of alignment and annotation artifacts and should be viewed with caution. The presence of partial domain annotations in proteins should raise the concern that the prediction of the protein’s gene may be incomplete. In general, protein domains can be considered the structural building blocks of proteins.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0656-7) contains supplementary material, which is available to authorized users.  相似文献   

18.
AimThis study compared volumetric-modulated arc therapy (VMAT) plans for head and neck cancers with and without an external body contour extended technique (EBCT).BackgroundDose calculation algorisms for VMAT have limitations in the buildup region.Materials and methodsThree VMAT plans were enrolled, with one case having a metal artifact from an artificial tooth. The proper dose was calculated using Eclipse version 11.0. The body contours were extended 2 cm outward from the skin surface in three-dimensional space, and the dose was recalculated with an anisotropic analytical algorithm (AAA) and Acuros XB (AXB). Monitor units (MUs) were set, and the dose distributions in the planning target volume (PTV), clinical target volume, and organ at risk (OAR) and conformity index (CI) with and without an EBCT were compared. The influence of a metal artifact outside of the thermoplastic head mask was also compared.ResultsThe coverage of PTV by the 95% dose line near the patient’s skin was increased drastically by using an EBCT. Plan renormalization had a negligible impact on MUs and doses delivered to OARs. CI of PTV with a 6-MV photon beam was closer to 1 than that with a 10-MV photon beam when both AAA and AXB were used in all cases. Metal artifacts outside the head mask had no effect on dose distribution.ConclusionsAn EBCT is needed to estimate the proper dose at object volumes near the patient’s skin and can improve the accuracy of the calculated dose at target volumes.  相似文献   

19.
PurposeTo investigate the potential of dual energy CT (DECT) to suppress metal artifacts and accurately depict episcleral brachytherapy Ru-106 plaques after surgical placement.MethodsAn anthropomorphic phantom simulating the adult head after surgical placement of a Ru-106 plaque was employed. Nine DECT acquisition protocols for orbital imaging were applied. Monochromatic 140 keV images were generated using iterative reconstruction and an available metal artifact reduction algorithm. Generated image datasets were graded by four observers regarding the ability to accurate demarcate the Ru-106 plaque. Objective image quality and visual grading analysis (VGA) was performed to compare different acquisition protocols. The DECT imaging protocol which allowed accurate plaque demarcation at minimum exposure was identified. The eye-lens dose from orbital DECT, with and without the use of radioprotective bismuth eye-shields, was determined using Monte Carlo methods.ResultsAll DECT acquisition protocols were judged to allow clear demarcation of the plaque borders despite some moderate streaking/shading artifacts. The differences between mean observers’ VGA scores for the 9 DECT imaging protocols were not statistically significant (p > 0.05). The eye-lens dose from the proposed low-exposure DECT protocol was found to be 20.1 and 22.8 mGy for the treated and the healthy eye, respectively. Bismuth shielding was found to accomplish >40% reduction in eye-lens dose without inducing shielding-related artifacts that obscure plaque delineation.ConclusionsDECT imaging of orbits after Ru-106 plaque positioning for ocular brachytherapy was found to allow artifact-free delineation of plaque margins at relatively low patient exposure, providing the potential for post-surgery plaque position verification.  相似文献   

20.
An artifact suppression method based on the assumption of linear independence of EEG and artifact signals is described. This assumption allows the use of principal component analysis for their separation. The method makes it possible to eliminate electrooculogram (EOG) signals from multichannel EEG recordings regardless of the use of special EOG channels in the recording, as well as to eliminate any other repetitive artifacts, including pulse and electrocardiogram artifacts, ones related to mechanical instability of the reference electrode, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号