首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liposomes are widely used vehicles for the delivery of bioactive molecules. They are composed mainly from acyl-phosphatidylcholines, cholesterol, and charged lipids (e.g., stearylamine, dipalmitoylphosphatidylglycerol (DPPG), phosphatidylethanolamine).The incorporation efficiencies of the bioactive molecule and the drug to lipid molar ratio are important factors for the assessment of the liposomal formulation. In order to successfully characterize a liposomal formulation, it is necessary to be able to accurately measure the lipids and the encapsulated molecule, using the smallest possible sample.The present work describes an analytical methodology on qualitative and quantitative determination of all the lipid ingredients that are involved in the liposome formulation, as well as the drug incorporation and the drug-lipid ratio, by a simultaneous measurement of all the liposomal ingredients using thin-layer chromatography coupled with a flame ionization detector (HPTLC/FID).The procedure requires only one measurement per sample, and it can be applied even in very small or much diluted samples.The proposed analytical method can be applied in general on all steps of the development of liposomal formulations. The purity and stability of the raw materials can also be easily evaluated. In addition the preparation procedure can be tracked in order to locate possible losses of raw material and errors of the preparation method resulting in the amelioration of the method.  相似文献   

2.
Liposomes incorporating polyethylene glycol (PEG)-conjugated lipids (PEGylated liposomes) have attracted attention as drug delivery carriers because they show good in vivo stability. The lipid component of PEGylated liposomal formulations needs to be quantified for quality control. In this study, a simple reversed-phase high-performance liquid chromatography (HPLC) method with an evaporative light-scattering detector (ELSD) was established for simultaneous determination of hydrogenated soy phosphatidylcholine, cholesterol, PEG-conjugated lipid, and hydrolysis products of phospholipid in PEGylated liposomal formulations. These lipids were separated using a C18 column with a gradient mobile phase consisting of ammonium acetate buffer and ammonium acetate in methanol at a flow rate of 1.0 ml/min. This method provided sufficient repeatability, linearity, and recovery rate for all lipids. However, the linearity and recovery rates of cholesterol achieved using a ultraviolet (UV) detector were better than those achieved using an ELSD. This validated method can be applied to assess the composition change during the preparation process of liposomes and to quantify lipid components and hydrolysis products contained in a commercially available liposomal formulation DOXIL®. Taken together, this reversed-phase HPLC-UV/ELSD method may be useful for the rapid or routine analysis of liposomal lipid components in process development and quality control.  相似文献   

3.
4.
Liposomes are well known lipid carriers for drug delivery of bioactive molecules encapsulated inside their membrane. Liposomes as skin drug delivery systems were initially promoted primarily for localized effects with minimal systemic delivery. Subsequently, a novel vesicular system, transferosomes was reported for transdermal delivery with efficiency similar to subcutaneous injection. The multiple bilayered organizations of lipids applied in these vesicles structure are somewhat similar to complex nature of stratum corneal intercellular lipids domains. The incorporation of novel agents into these lipid vesicles results in the loss of entrapped markers but it is similar to fluidization of stratum corneum lipids on treatment with a penetration enhancer. This approach generated the utility of penetration enhancers/fluidizing agents in lipids vesicular systems for skin delivery. For the transdermal and topical applications of liposomes, fluidity of bilayer lipid membrane is rate limiting which governs the permeation. This article critically reviews the relevance of using different types of vesicles as a model for skin in permeation enhancement studies. This study has also been designed to encompass all enhancement measurements and analytical tools for characterization of permeability in liposomal vesicular system.  相似文献   

5.
Abstract

Liposome encapsulation of doxorubicin can dramatically alter its biological activity, resulting in decreased toxicity and equivalent or increased antitumor potency. Since the physical characteristics of the liposome carrier system (size, lipid composition, and lipid dose) can have profound effects on the pharmacologic properties of vesicles administered intravenously, it may be expected that the therapeutic activity of liposomal doxorubicin will be sensitive to these properties. To determine the influence of these variables on the toxicity and efficacy properties of liposomal doxorubicin, transmembrane pH gradient-dependent active encapsulation techniques have been utilized to generate liposomal doxorubicin preparations in which the vesicle size, lipid composition, and drug to lipid ratio can be independently varied. these studies indicate that the toxicity of liposomal doxorubicin is related to the stability of the preparation in the circulation. This property is dictated primarily by vesicle lipid composition, although the drug to lipid ratio can also exert an influence. In contrast, the antitumor activity of liposomal doxorubicin appears most sensitive to the size of the vesicle system. Specifically, antitumor drug potency increases as the vesicle size is decreased. these studies demonstrate that manipulating the physical characteristics of liposomal anticancer pharmaceuticals can lead to preparations with optimized therapeutic activity.  相似文献   

6.
Abstract

The motive behind present work was to discover a solution for overcoming the problems allied with a deprived oral bioavailability of salbutamol sulfate (SS) due to its first pass hepatic metabolism, shorter half-life, and systemic toxicity at high doses. Pulmonary delivery provides an alternative route of administration to avoid hepatic metabolism of SS, moreover facilitated diffusion and prolonged retention can be achieved by incorporation into liposomes. Liposomes were prepared by thin film hydration technique using 32 full factorial design and formulation was optimized based on the vesicle size and percent drug entrapment (PDE) of liposomes. Optimized liposomal formulation exhibited an average size of about 167.2?±?0.170?nm, with 80.68?±?0.74% drug entrapment, and 9.74?±?1.10?mV zeta potential. The liposomal dispersion was then spray dried and further characterized for in-vitro aerosol performance using Andersen Cascade Impactor. Optimized liposomal formulation revealed prolonged in-vitro drug release of more than 90% up to 14?h following Higuchi’s controlled release model. Thus, the proposed new-fangled liposomal formulation would be a propitious alternative to conventional therapy for efficient and methodical treatment of asthma and alike respiratory ailments.  相似文献   

7.
A new strategy for fast, convenient high-throughput screening of liposomal formulations was developed, utilizing the automation of the so-called ethanol-injection method. This strategy was illustrated by the preparation and screening of the liposomal formulation library of a potent second-generation photosensitizer, temoporfin. Numerous liposomal formulations were efficiently prepared using a pipetting robot, followed by automated size characterization, using a dynamic light scattering plate reader. Incorporation efficiency of temoporfin and zeta potential were also detected in selected cases. To optimize the formulation, different parameters were investigated, including lipid types, lipid concentration in injected ethanol, ratio of ethanol to aqueous solution, ratio of drug to lipid, and the addition of functional phospholipid. Step-by-step small liposomes were prepared with high incorporation efficiency. At last, an optimized formulation was obtained for each lipid in the following condition: 36.4 mg·mL(-1) lipid, 13.1 mg·mL(-1) mPEG(2000)-DSPE, and 1:4 ethanol:buffer ratio. These liposomes were unilamellar spheres, with a diameter of approximately 50?nm, and were very stable for over 20 weeks. The results illustrate this approach to be promising for fast high-throughput screening of liposomal formulations.  相似文献   

8.
The purpose of this research was to investigate the relationship of drug solubility in a complex lipid mixture to that of the individual ingredients with the goal of substantiating a quantitative equation that can be applied in formulation development of lipid dosage forms. To this end, the solubility of four drugs, which span a large range of physicochemical properties, was evaluated in 18 lipid ingredients that cover the major lipid classes. To assess the solubility relation in complex lipid mixtures in an unbiased manner, the experiments were created as an experimental design with the ability to detect cubic curvature in the solubility-lipid composition space. The results demonstrated that for all drugs, irrespective of their significantly distinct physicochemical properties, solubility in lipid mixtures can be readily estimated as a simple weighted average of the drug solubility in the individual ingredients. This result is of great value to formulators who can minimize a large number of solubility experiments once a basis set of solubility is determined in individual lipids.  相似文献   

9.
Amphotericin B is available in various drug delivery systems such as cholesteryl sulfate complex, as lipid complex, and as liposomal formulation. The separation and measurement of free drug (drug which is not bound with liposomal lipids) and liposomal drug (drug which is entrapped in liposomes) in the human plasma after injection of liposomal Amphotericin B is of prime importance due to toxicity concerns. A robust, specific and sensitive method has been developed to effectively separate and then quantify the free drug and liposomal drug, present in human plasma. This method utilizes solid phase extraction Oasis HLB cartridges, which retains the free drug and the liposomal Amphotericin B was eluted from the cartridge in first step. The eluted liposomal Amphotericin B was then extracted from lipids by protein precipitation method using 2% dimethylsulfoxide (DMSO) in acetonitrile. After separation and extraction, the quantification of free and liposomal fractions of Amphotericin B was performed by HPLC–MS–MS technique. The chromatographic separation was performed using Chromolith Performance RP 18e column. The mobile phase composed of 5 mM ammonium acetate, methanol and acetonitrile and a gradient elution program was used. The calibration curves were found to be linear for free Amphotericin B (0.25–15.0 μg/ml) and liposomal Amphotericin B (1.0–100.0 μg/ml). The recovery was about 96% for free Amphotericin B and about 92% for liposomal Amphotericin B. Recoveries were consistent over the linearity ranges defined. The intra-batch and inter-batch accuracy and precision fulfilled the international requirements. The stability of free and liposomal Amphotericin B was assessed under different storage conditions.  相似文献   

10.
Although liposomal nanoparticles are one of the most versatile class of drug delivery systems, stable liposomal formulation of small neutral drug molecules still constitutes a challenge due to the low drug retention of current lipid membrane technologies. In this study, we evaluate the encapsulation and retention of seven nucleoside analog-based drugs in liposomes made of archaea-inspired tetraether lipids, which are known to enhance packing and membrane robustness compared to conventional bilayer-forming lipids. Liposomes comprised of the pure tetraether lipid generally showed improved retention of drugs (up to 4-fold) compared with liposomes made from a commercially available diacyl lipid. Interestingly, we did not find a significant correlation between the liposomal leakage rates of the molecules with typical parameters used to assess lipophilicity of drugs (such logD or topological polar surface area), suggesting that specific structural elements of the drug molecules can have a dominant effect on leakage from liposomes over general lipophilic character.  相似文献   

11.
Abstract

Recent developments in immunochemical techniques have resulted in a new ultrasensitive analytical method known as liposome immunoassay (LIA). Liposomes are key elements in performing LIAs, as discussed in this review. they are sspecifically designed to participate in immune reactions. A variety of chemical markers described to participate in immune reactions. A variety of chemical markers described can be encapsulated in liposomes and used as quantitative indicators of reactions occurring. Details are given of liposomal agglutination and lysis that are essential LIA ingredients. Basic designs for determining reaction rates, measuring immune complexes, and quantitating analytes are evaluated. Vesicle formation, marker encapsulation, and liposomal lysis are presented to provide a better understanding of LIA performance.

Basic principles of LIAs are described which include homogeneous, heterogeneous, competitive, and direct techniques. Cytolytic and complement-mediated LIAs are also compared. Advantages and disadvantages of performing LIAs electrochemically or spectrophotometrically are also presented. LIA applications discussed include measuring antigens, antibodies, drug monitoring, detecting infectious diseases, and diagnosing congenital disorders.  相似文献   

12.
Liposomal formulation of curcumin is an important therapeutic agent for the treatment of various cancers. Despite extensive studies on the biological effects of this formulation in cancer treatment, much remains unknown about curcumin–liposome interactions. Understanding how different lipid bilayers respond to curcumin molecule may help us to design more effective liposomal curcumin. Here, we used molecular dynamics simulation method to investigate the behavior of curcumin in two lipid bilayers commonly used in preparation of liposomal curcumin, namely dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylglycerol (DMPG). First, the free energy barriers for translocation of one curcumin molecule from water to the lipid bilayer were determined by using the potential of mean force (PMF). The computed free energy profile exhibits a global minimum at the solvent–headgroup interface (LH region) for both lipid membranes. We also evaluated the free energy difference between the equilibrium position of curcumin in the lipid bilayer and bulk water as the excess chemical potential. Our results show that curcumin has the higher affinity in DMPG compared to DPPC lipid bilayer (?8.39 vs. ?1.69 kBT) and this is related to more hydrogen bond possibility for curcumin in DMPG lipid membrane. Next, using an unconstrained molecular dynamic simulation with curcumin initially positioned at the center of lipid bilayer, we studied various properties of each lipid bilayer system in the presence of curcumin molecule that was in full agreement with PMF and experimental data. The results of these simulation studies suggest that membrane composition could have a large effect on interaction of curcumin–lipid bilayer.  相似文献   

13.
Small‐sized liposomes have several advantages as drug delivery systems, and the ethanol injection method is a suitable technique to obtain the spontaneous formation of liposomes having a small average radius. In this paper, we show that liposomal drug formulations can be prepared in situ, by simply injecting a drug‐containing lipid(s) organic solution into an aqueous solution. Several parameters should be optimized in order to obtain a final suitable formulation, and this paper is devoted to such an investigation. Firstly, we study the liposome size distributions determined by dynamic light scattering (DLS), as function of the lipid concentration and composition, as well as the organic and aqueous phases content. This was carried out, firstly, by focusing on POPC (1‐palmitoyl‐2‐oleoyl‐sn‐glycero‐3‐phosphocholine) then on the novel L‐carnitine derivative PUCE (palmitoyl‐(R)‐carnitine undecyl ester chloride), showing that it is possible to obtain monomodal size distributions of rather small vesicles. In particular, depending on the conditions, it was possible to achieve a population of liposomes with a mean size of 100 nm, when a 50 mM POPC ethanol solution was injected in pure water; in the case of 50 mM PUCE the mean size was around 30 nm, when injected in saline (0.9% NaCl). The novel anticancer drug Gimatecan, a camptothecin derivative, was used as an example of lipophilic drug loading by the injection method. Conditions could be found, under which the resultant liposome size distributions were not affected by the presence of Gimatecan, in the case of POPC as well as in the case of PUCE. To increase the overall camptothecin concentration in the final liposomal dispersion, the novel technique of “multiple injection method” was used, and up to a final 5 times larger amount of liposomal drug could be reached by maintaining approximately the same size distribution. Once prepared, the physical and chemical stability of the liposome formulations was satisfactory within 24, as judged by DLS analysis and HPLC quantitation of lipids and drug. The Gimatecan‐containing liposomes formulations were also tested for in vitro and in vivo activity, against the human nonsmall cell lung carcinoma NCI‐H460 and a murine Lewis lung carcinoma 3 LL cell lines. In the in vitro tests, we did not observe any improvement or reduction of the Gimatecan pharmacological effect by the liposomal delivery system. More interestingly, in the in vivo Lewis lung carcinoma model, the intravenously administration of liposomal Gimatecan formulation showed a mild but significant increase of Tumor Volume Inhibition with respect to the oral no‐liposomal formulation (92% vs. 86 %, respectively; p < 0.05). Finally, our study showed that the liposomal formulation was able to realize a delivery system of a water‐insoluble drug, providing a Gimatecan formulation for intravenous administration with a preserved antitumoral activity.  相似文献   

14.
The interactions with and effects of five chemically distinct, bioactive phenolic compounds on the lipid bilayers of model dipalmitoylphosphatidylcholine (DPPC) liposomes were investigated. Complementary analytical techniques, including differential scanning calorimetry (DSC) and phosphorus and proton nuclear magnetic resonance spectroscopy (NMR), were employed in order to determine the location of the compounds within the bilayer and to correlate location with their effects on bilayer characteristics and liposomal stability. As compared to the phenolic compounds localized in the glycerol region of the DPPC head group within the bilayer, which enhanced the colloidal stability of the liposomes, compounds located closer to the center of the bilayer reduced vesicle stability as a function of time. Molecules present in the upper region of liposomal DPPC acyl chains (C1–C10) inhibited liposomal aggregation and size increase, perhaps due to tighter packing of adjoining DPPC molecules and increased surface exposure of DPPC phosphate head groups. These data may be useful for designing liposomal systems containing hydrophobic phenols and other small molecules, selecting appropriate analytical methods for determining their location within liposomal bilayers, and predicting their effects on liposome characteristics early in the liposome formulation development process.  相似文献   

15.
Nano-drug delivery systems have proven to be an efficient formulation tool to overcome the challenges with current antibiotics therapy and resistance. A series of pH-responsive lipid molecules were designed and synthesized for future liposomal formulation as a nano-drug delivery system for vancomycin at the infection site. The structures of these lipids differ from each other in respect of hydrocarbon tails: Lipid1, 2, 3 and 4 have stearic, oleic, linoleic, and linolenic acid hydrocarbon chains, respectively. The impact of variation in the hydrocarbon chain in the lipid structure on drug encapsulation and release profile, as well as mode of drug interaction, was investigated using molecular modeling analyses. A wide range of computational tools, including accelerated molecular dynamics, normal molecular dynamics, binding free energy calculations and principle component analysis, were applied to provide comprehensive insight into the interaction landscape between vancomycin and the designed lipid molecules. Interestingly, both MM-GBSA and MM-PBSA binding affinity calculations using normal molecular dynamics and accelerated molecular dynamics trajectories showed a very consistent trend, where the order of binding affinity towards vancomycin was lipid4?>?lipid1?>?lipid2?>?lipid3. From both normal molecular dynamics and accelerated molecular dynamics, the interaction of lipid3 with vancomycin is demonstrated to be the weakest (?Gbinding?=??2.17 and ?11.57, for normal molecular dynamics and accelerated molecular dynamics, respectively) when compared to other complexes. We believe that the degree of unsaturation of the hydrocarbon chain in the lipid molecules may impact on the overall conformational behavior, interaction mode and encapsulation (wrapping) of the lipid molecules around the vancomycin molecule. This thorough computational analysis prior to the experimental investigation is a valuable approach to guide for predicting the encapsulation ability, drug release and further development of novel liposome-based pH-responsive nano-drug delivery system with refined structural and chemical features of potential lipid molecule for formulation development.  相似文献   

16.
Abstract

Improving tumor delivery of lipophilic drugs through identifying advanced drug carrier systems with efficient carrier potency is of high importance. We have performed an investigative approach to identify parameters that affect liposomes’ ability to effectively deliver lipophilic camptothecin (CPT) to target cells. CPT is a potent anticancer drug, but its undesired physiological properties are impairing its therapeutic use. In this study, we have identified parameters influencing incorporation and retention of lipophilic CPT in liposomes, evaluating the effect of lipid composition, lipid chemical structure (head and tail group variations, polymer inclusion), zeta potential and anisotropy. Polyethyleneglycol (PEG) surface decoration was included to avoid liposome fusing and increase the potential for prolonged in vivo circulation time. The in vitro effect of the different carrier formulations on cell cytotoxicity was compared and the effect of active targeting of one of the formulations was evaluated. We found that a combination of liposome surface charge, lipid headgroup and carbon chain unsaturation affect CPT incorporation. Retention in liposomes was highly dependent on the liposomal surroundings and liposome zeta potential. Inclusion of lipid tethered PEG provided stability and prevented liposome fusing. PEGylation negatively affected CPT incorporation while improving retention. In vitro cell culture testing demonstrated that all formulations increased CPT potency compared to free CPT, while cationic formulations proved significantly more toxic to cancer cells that healthy cells. Finally, antibody mediated targeting of one liposome formulation further enhanced the selectivity towards targeted cancer cells, rendering normal cells fully viable after 1 hour exposure to targeted liposomes.  相似文献   

17.
Almost from the time of their rediscovery in the 60's and the demonstration of their entrapment potential, liposomal vesicles have drawn attention of researchers as potential carriers of various bioactive molecules that could be used for therapeutic applications in humans and animals. Several commercial liposome-based drugs have already been discovered, registered and introduced with great success on the pharmaceutical market. However, further studies, focusing on the elaboration of more efficient and stable amphiphile-based vesicular (or non-viral) drug carriers are still under investigation. In this review we present the achievements of our group in this field. We have discovered that natural amphiphilic dihydroxyphenols and their semisynthetic derivatives are promising additives to liposomal lipid compositions. The presence of these compounds in lipid composition enhances liposomal drug encapsulation, reduces the amount of the lipid carrier necessary for efficient entrapment of anthracycline drugs by a factor of two, stabilizes liposomal formulation of the drug (both in suspension and in a lyophilized powder), does not influence liposomal fate in the blood circulation system and benefits from other biological activities of their resorcinolic lipid modifiers.  相似文献   

18.
Abstract

When considering the use of combination therapies with liposomal anticancer agents several approaches can be defined. One approach could rely on administration of one liposomal formulation with more than one entrapped cytotoxic drug. This study focuses on an assessment of a liposomal formulation containing vincristine and mitoxantrone. Distearoyl phosphatidylcholine (DSPC)/Cholesterol (Choi) (55:45 molar ratio) liposomes were loaded with vincristine using transmembrane pH gradients. These systems were subsequently incubated with mitoxantrone to effect uptake of the second drug. Retention of both drugs was determined in vitro and in vivo. In vitro drug release indicated >95% retention of mitoxantrone and approximately 75% retention of vincristine when liposomes were prepared with an initial interior pH of 2.0. In vivo results however, demonstrated that greater than 80% of the encapsulated vincristine was released within 1 hour following i.v. administration. The instability of a liposomal formulation containing two anticancer drugs following i.v. administration may be a consequence of a combination of factors including drug-loading induced collapse of the transmembrane pH gradient, loss due to osmotic effects and an associated insertion of serum proteins into the bilayer, as well as the presence of a large biological “sink” which can alter the transbilayer drug gradient in favor of drug release.  相似文献   

19.
A comparative study between archaeosomes, lipid lamellar vesicles made from archaea polar lipids, and conventional phospholipids liposomes was carried out, aiming at evaluating the properties and the potential of archaeosomes as novel colloidal carriers for effective drug delivery to the skin. Betamethasone dipropionate (BMD)–loaded archaeosomes and conventional liposomes were prepared by the thin-lipid film and sonication procedures, using, respectively, archaeal lipids extracted from archaea Halobacterium salinarum and enriched soy phosphatidylcholine. Vesicular formulations were characterized by assessing vesicle size, zeta potential, incorporation efficiency, and morphology. In order to investigate the effect of the incorporation in the two different colloidal carrier systems on the (trans)dermal delivery of BMD, in vitro drug permeation studies through full-thickness pig skin were carried out by using Franz diffusion vertical cells by testing both archaeal and liposomal dispersions. Interestingly, archaeosomes appeared to be the most effective carriers for the model drug, achieveing a major drug penetration and accumulation in the skin strata, especially in the epidermis. This can, presumably, be due to the enhanced archaeosomal bilayer fluidity, as indicated by the rheological studies that provided insight into the viscoelastic properties of all the studied systems. The available data suggest that suitably developed archaeosomes may hold great promise as delivery vehicles for topical applications.  相似文献   

20.
In rat liver plasma membrane, the molar ratio of sphingomyelin and phospholipid is approximately 1:4, whereas, the molar ratio of phospholipid and cholesterol is 3:1. Considering this ratio to be typical for a real biological membrane, we have studied the effect of anticholesterol and the vasodialatory drug nicotinic acid (NA) on the fluidity profile of a liposomal system of lipids mixed in this ratio using the fluorescence polarization probe 1,6-diphenyl-1-1,3,5-hexatriene. The study reveals that when NA is added to the aqueous dispersion of the mixed lipid system (molar ratio of lipid:NA, 1:1) it creates a more fluid environment for the probe molecule and modifies the fluidity profile of the cholesterol-incorporated liposomal system by eliminating the effect of cholesterol to some extent. The drug also affects the activation energy of diffusion of this system. These results on fluidity have been compared with those in cases of liposomes of individual lipids. The effect of NA on fluidity may be attributed to a mechanical interaction of the drug molecules with the lipid molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号