首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Particulate drug formulations are considered to be a means that may improve the pharmacokinetics and biodistribution of active compounds. By using them, drug distribution is determined solely by the properties of the carrier. The surface properties of such supramolecular aggregates determine how they will interact with various biological structures. Among others, surface electrostatic charge and surface grafted polymers are considered to be among the major factors affecting its interaction with proteins and cells. In this article, we present experimental evidence that properly selected surface electrostatic charge and grafted polymers can alter the association of liposomes with colon cancer cells. The dependence of the adsorption of liposomes onto the cell surface on the quantity and length of surface grafted polymers for a certain surface charge density exhibits a distinct maximum. For example, when liposomes were formed with 20 mol% of DOTAP, PE-PEG350 increased liposome adsorption by up to 6 mol%. This adsorption maximum depends on both polymer length and charge type. Results presented in this article show that the interaction of liposomes with colon cancer cells can be tuned by a proper combination of liposome surface electrostatics and surface grafted polymers.  相似文献   

2.
Poly(ethylene glycol) (PEG)-stabilized liposomes were recently shown to exhibit differences in cell uptake that were linked to the liposome charge. To determine the differences and similarities between charged and uncharged PEG-decorated liposomes, we directly measured the forces between two supported, neutral bilayers with terminally grafted PEG chains. The measurements were performed with the surface force apparatus. The force profiles were similar to those measured with negatively charged PEG conjugates of 1, 2-distearoyl-sn-glycero-3-phosphatidyl ethanolamine (DSPE), except that they lacked the longer ranged electrostatic repulsion observed with the charged compound. Theories for simple polymers describe the forces between end-grafted polymer chains on neutral bilayers. The force measurements were complemented by surface plasmon resonance studies of protein adsorption onto these layers. The lack of electrostatic forces reduced the adsorption of positively charged proteins and enhanced the adsorption of negatively charged ones. The absence of charge also allowed us to determine how membrane charge and the polymer grafting density independently affect protein adsorption on the coated membranes. Such studies suggest the physical basis of the different interactions of charged and uncharged liposomes with proteins and cells.  相似文献   

3.
Poly(ethyleneglycol) (PEG), anchored at the surface of liposomes via the conjugation to a lipid, is commonly used for increasing the liposome stability in the blood stream. In order to gain a better understanding of the protective properties of interfacial polymers, we have studied the binding of melittin to PEG-lipid-containing membranes as well as the melittin-induced efflux of a fluorescent marker from liposomes containing PEG-lipids. We examined the effect of the polymer size by using PEG with molecular weights of 2000 and 5000. In addition, we studied the role of the anchoring lipid by comparing PEG conjugated to phosphatidylethanolamine (PE) which results in a negatively charged PEG-PE, with PEG conjugated to ceramide (Cer) which provides the neutral PEG-Cer. Our results show that interfacial PEG does not prevent melittin adsorption onto the interface. In fact, PEG-PE promotes melittin binding, most likely because of attractive electrostatic interactions with the negative interfacial charge density of the PEG-PE-containing liposomes. However, PEG-lipids limit the lytic potential of melittin. The phenomenon is proposed to be associated with the change in the polymorphic tendencies of the liposome bilayers. The present findings reveal that the protective effect associated with interfacial hydrophilic polymers is not universal. Molecules like melittin can sense surface charges borne by PEG-lipids, and the influence of PEG-lipids on liposomal properties such as the polymorphic propensities may be involved in the so-called protective effect.  相似文献   

4.
The purpose of this study was to establish a new experimental approach to determine the maximum amount of campothecin (CPT) that can be incorporated in liposomes, and to use this method to compare the CPT-incorporation capacity of various liposome formulations. Small, CPT-saturated liposomes were prepared by dispersing freeze-dried blends of lipids and drug in phosphate buffer, and subsequent probe-sonication. Excess precipitated CPT could be separated from the liposomes by ultra-centrifugation. The small and homogeneous liposome size obtained gave a good and reproducible recovery of liposomes in the supernatant (>80%), whereas the acidic pH (pH 6.0) kept CPT in its hydrophobic lactone form, which is poorly soluble in the buffer. The maximum CPT-incorporation capacity of 12 different liposome formulations was investigated, using the described method, and was found to vary widely. With liposomes made of neutral and anionic phospholipids, the solubili ty of CPT in the buffer was improved by approximately a factor of 10 (from ∼2.7 to 15–50 μg/mL) as compared with buffer. With cationic liposomes containing 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), a maximum CPT-solubilization of ∼100-fold, the buffer solubility was reached, probably owing to an electrostatic interaction between the cationic lipids and the carboxylate-CPT isomer. Increasing DOTAP fractions within egg-phosphatidylcholine (EPC)/DOTAP liposomes reached a CPT-incorporation plateau at ∼20 mol% DOTAP. The presented approach appears suitable to study the incorporation capacity of any drug component within small vesicles as long as the liposome incorporation is high relative to the intrisic water solubility of the drug.  相似文献   

5.
Poly(ethyleneglycol) (PEG), anchored at the surface of liposomes via the conjugation to a lipid, is commonly used for increasing the liposome stability in the blood stream. In order to gain a better understanding of the protective properties of interfacial polymers, we have studied the binding of melittin to PEG-lipid-containing membranes as well as the melittin-induced efflux of a fluorescent marker from liposomes containing PEG-lipids. We examined the effect of the polymer size by using PEG with molecular weights of 2000 and 5000. In addition, we studied the role of the anchoring lipid by comparing PEG conjugated to phosphatidylethanolamine (PE) which results in a negatively charged PEG-PE, with PEG conjugated to ceramide (Cer) which provides the neutral PEG-Cer. Our results show that interfacial PEG does not prevent melittin adsorption onto the interface. In fact, PEG-PE promotes melittin binding, most likely because of attractive electrostatic interactions with the negative interfacial charge density of the PEG-PE-containing liposomes. However, PEG-lipids limit the lytic potential of melittin. The phenomenon is proposed to be associated with the change in the polymorphic tendencies of the liposome bilayers. The present findings reveal that the protective effect associated with interfacial hydrophilic polymers is not universal. Molecules like melittin can sense surface charges borne by PEG-lipids, and the influence of PEG-lipids on liposomal properties such as the polymorphic propensities may be involved in the so-called protective effect.  相似文献   

6.
Unmodified and polyethylene glycol (PEG) modified neutral and negatively charged liposomes were prepared by freeze-thaw and extrusion followed by chromatographic purification. The effects of PEG molecular weight (PEG 550, 2000, 5000), PEG loading (0-15 mol%), and liposome surface charge on fibrinogen adsorption were quantified using radiolabeling techniques. All adsorption isotherms increased monotonically over the concentration range 0-3 mg/ml and adsorption levels were low. Negatively charged liposomes adsorbed significantly more fibrinogen than neutral liposomes. PEG modification had no effect on fibrinogen adsorption to neutral liposomes. An inverse relationship was found between PEG loading of negatively charged liposomes and fibrinogen adsorption. PEGs of all three molecular weights at a loading of 5 mol% reduced fibrinogen adsorption to negatively charged liposomes. Protein adsorption from diluted plasma (10% normal strength) to four different liposome types (neutral, PEG-neutral, negatively charged, and PEG-negatively charged) was investigated using gel electrophoresis and immunoblotting. The profiles of adsorbed proteins were similar on all four liposome types, but distinctly different from the profile of plasma itself, indicating a partitioning effect of the lipid surfaces. alpha2-macroglobulin and fibronectin were significantly enriched on the liposomes whereas albumin, transferrin, and fibrinogen were depleted compared to plasma. Apolipoprotein AI was a major component of the adsorbed protein layers. The blot of complement protein C3 adsorbed on the liposomes suggested that the complement system was activated.  相似文献   

7.
Serum proteins, acting as opsonins, are believed to contribute significantly to liposome-macrophage cell association and thus regulate liposome uptake by cells of the mononuclear phagocytic system (MPS). We studied the effect of serum protein on binding and uptake of phosphatidylglycerol-, phosphatidylserine-, cardiolipin-, and N,N-dioleyl-N,N-dimethylammonium chloride- (DODAC) containing as well as poly(ethylene glycol)- (PEG) containing liposomes by mouse bone marrow macrophages in vitro. Consistent with the postulated surface-shielding properties of PEG, protein-free uptake of liposomes containing 5 mol% PEG and either 20 mol% anionic phosphatidylserine or 20 mol% cationic DODAC was equivalent to uptake of neutral liposomes. In contrast to previous reports indicating that protein adsorption to liposomes increases uptake by macrophages, the presence of bound serum protein did not increase the uptake of these liposomes by cultured macrophages. Rather, we found that pre-incubating liposomes with serum reduced the uptake of liposomes containing phosphatidylserine. Surprisingly, serum treatment of PEG-containing liposomes also significantly reduced liposome uptake by macrophages. It is postulated that, in the case of phosphatidylserine liposomes, the bound serum protein can provide a non-specific surface-shielding property that reduces the charge-mediated interactions between liposomes and bone marrow macrophage cells. In addition, incubation of PEG-bearing liposomes with serum can result in a change in the properties of the PEG, resulting in a surface that is better protected against interactions with cells.  相似文献   

8.
Abstract

Improving tumor delivery of lipophilic drugs through identifying advanced drug carrier systems with efficient carrier potency is of high importance. We have performed an investigative approach to identify parameters that affect liposomes’ ability to effectively deliver lipophilic camptothecin (CPT) to target cells. CPT is a potent anticancer drug, but its undesired physiological properties are impairing its therapeutic use. In this study, we have identified parameters influencing incorporation and retention of lipophilic CPT in liposomes, evaluating the effect of lipid composition, lipid chemical structure (head and tail group variations, polymer inclusion), zeta potential and anisotropy. Polyethyleneglycol (PEG) surface decoration was included to avoid liposome fusing and increase the potential for prolonged in vivo circulation time. The in vitro effect of the different carrier formulations on cell cytotoxicity was compared and the effect of active targeting of one of the formulations was evaluated. We found that a combination of liposome surface charge, lipid headgroup and carbon chain unsaturation affect CPT incorporation. Retention in liposomes was highly dependent on the liposomal surroundings and liposome zeta potential. Inclusion of lipid tethered PEG provided stability and prevented liposome fusing. PEGylation negatively affected CPT incorporation while improving retention. In vitro cell culture testing demonstrated that all formulations increased CPT potency compared to free CPT, while cationic formulations proved significantly more toxic to cancer cells that healthy cells. Finally, antibody mediated targeting of one liposome formulation further enhanced the selectivity towards targeted cancer cells, rendering normal cells fully viable after 1 hour exposure to targeted liposomes.  相似文献   

9.
The interaction between lecithin liposomes and acid clay was investigated to clarify the mechanism for liposome adsorption to the clay. It was found that the multilamellar vesicular structure of the liposomes was broken as a result of primary adsorption. The acid clay particles aggregated and were eventually covered by the lecithin layer structure. In the case of kaolin, on the other hand, the liposomes were weakly adsorbed to the clay and maintained the vesicular structure. The amount of primary adsorption to the clay surface, which was estimated from the adsorption isotherm, was more for acid clay than for kaolin, and the total amount adsorbed to the acid clay was also more than to kaolin. This result can be explained by the much higher density of the negative charge on the acid clay surface than that for kaolin. The liposomes are therefore considered to be adsorbed to the acid clay mainly by the choline positive charge residing at the end of the lecithin molecule, although this is of no net charge as a whole.  相似文献   

10.
We have studied the complement-activating properties of liposomes. We show that surface charge is a key determinant of complement-activating liposomes. The nature of the charge, whether negative or positive, appears to dictate which pathway of the complement system is activated. Phosphatidylcholine:cholesterol (PC:CHOL, 55:45 mol/mol) liposomes were made to exhibit a positive or negative surface charge by the addition of cationic or anionic lipids, respectively. Normal human or guinea pig serum was incubated with liposomes, followed by determining the residual hemolytic activity of the serum as a measure of complement activation. Negatively charged liposomes containing phosphatidyl-glycerol, phosphatidic acid, cardiolipin, phosphatidylinositol, or phosphatidylserine activated complement in a Ca(2+)-dependent manner suggesting activation occurred via the classical pathway. Positively charged liposomes containing stearylamine or 1,2-bis(oleoyloxy)-3-(trimethylammonio)propane activated complement via the alternative pathway. Neutral liposomes, PC:CHOL (55:45) and PC:CHOL:dipalmitoylphosphatidylethanolamine (35:45:20), failed to activate complement as measured by the hemolytic assays. We show that unsaturated liposomes are more potent complement activators than saturated liposomes and that 45 mol% cholesterol promotes complement protein-liposome interactions. Immunoblot analysis of phosphatidylglycerol-containing liposomes showed that C3b and C9 were associated with these liposomes. Thus, the complement consumption measured in the hemolytic assays represents active cleavage of the complement components and not passive adsorption to the liposome surface. These studies suggest that membranes composed of net charged phospholipids can activate the complement system. This observation underlines the importance in biologic membranes of complement regulatory proteins that protect normal cells from complement attack.  相似文献   

11.
We have investigated interaction of alkyphospholipid (APL) liposomes consisting of 1,1-dimethylpiperidin-1-ium-4-yl) octadecyl phosphate (OPP) and different concentrations of cholesterol (CH) with human MT-3 breast-cancer cells using electron paramagnetic resonance method (EPR) with advanced characterization of EPR spectra of spin labeled liposome membranes. After incubation of OPP liposomes with MT-3 cells, a reduction of liposome entrapped, water soluble spin-probe tempocholine (ASL) was observed, indicating that ASL is released from liposomes and is reduced by oxy-redoxy systems inside the cells. This process is fast if cholesterol content in the bilayer was 29 or 45 mol%, whereas at 56 mol% cholesterol the process is almost stopped. The rate of spin-probe reduction in first 10 min after incubation with cells is even faster as for the free ASL, indicating that liposomes with low amount of cholesterol accelerate penetration of ASL into the cells. A faster release of hydrophilic material from liposomes with low cholesterol content coincides with the presence of domains with highly disordered alkyl chain motion that disappears at 50 mol% of cholesterol. We propose that these highly fluid domains are responsible for interaction of OPP liposomes with cells and fast release of the entrapped material into the cells. These results suggest that micelles are not the only reason for cytotoxic effect of OPP liposome formulations, as it was suggested before. OPP in liposomes, containing 45 mol% cholesterol or less, also contributes to the cytotoxic effect, due to their fast interaction with breast-cancer cells.  相似文献   

12.
Targeted drug delivery requires binding to (and subsequent uptake by) the carrier and target cell. In this paper, we calculate the work required to bring into contact liposomal carriers and cells as a function of the liposome and cell electrostatic characteristics. We find that cell-liposome adhesion is sensitive to the cell type and optimized at a cell to liposome charge ratio which depends on the degree of cell charge regulation. As a result, uptake (which is dependent on the occurrence of binding) is also optimized. Incorporation of a (poly)ethylene glycol (PEG) layer enhances liposome adhesion in cases where the cell-liposome interactions are repulsive, and suppresses adhesion in systems where the interactions are attractive. Our results, which are in agreement with experimental observations, show that electrostatic interactions may be designed to enable targeted drug delivery by liposomes to a specific cell population.  相似文献   

13.
The effect of the positive surface charge of unilamellar liposomes on the kinetics of their interaction with rat peritoneal macrophages was investigated using three sizes of liposomes: small unilamellar vesicles (approx. 25 nm diameter), prepared by sonication, and large unilamellar vesicles (100 nm and 160 nm diameter), prepared by the Lipoprep dialysis method. Charge was varied by changing the proportion of stearylamine added to the liposomal lipids (egg phosphatidylcholine and cholesterol, molar ratio 10:2.5). Increasing the stearylamine content of large unilamellar vesicles over a range of 0-25 mol% enhanced the initial rate of vesicle-cell interaction from 0.1 to 1.4 microgram lipid/min per 10(6) cells, and the maximal association from 5 to 110 micrograms lipid/10(6) cells. Cell viability was greater than 90% for cells incubated with large liposomes containing up to 15 mol% stearylamine but decreased to less than 50% at stearylamine proportions greater than 20 mol%. Similar results were obtained with small unilamellar vesicles except that the initial rate of interaction and the maximal association were less sensitive to stearylamine content. The initial rate of interaction, with increasing stearylamine up to 25 mol%, ranged from 0.5 to 0.7 microgram lipid/min per 10(6) cells, and the maximal association ranged from 20 to 70 micrograms lipid/10(6) cells. A comparison of the number and entrapped aqueous volume of small and large vesicles containing 15 mol% stearylamine revealed that although the number of large vesicles associated was 100-fold less than the number of small vesicles, the total entrapped aqueous volume introduced into the cells by large vesicles was 10-fold greater. When cytochalasin B, a known inhibitor of phagocytosis, was present in the medium, the cellular association of C8-LUV was reduced approx. 25% but association of SUV increased approx. 10-30%. Modification of small unilamellar vesicles with an amino mannosyl derivative of cholesterol did not increase their cellular interaction over that of the corresponding stearylamine liposomes, indicating that cell binding induced by this glycolipid may be due to the positive charge of the amine group on the sugar moiety. The results demonstrate that the degree of liposome-cell interaction with macrophages can be improved by increasing the degree of positive surface charge using stearylamine. Additionally, the delivery of aqueous drugs to cells can be further improved using large unilamellar vesicles because of their greater internal volume. This sensitivity of macrophages to vesicle charge and size can be used either to increase or reduce liposome uptake significantly by this cell type  相似文献   

14.
H Schreier 《Life sciences》1989,44(3):193-200
The quantitative and qualitative interaction of liposomes with synaptosomes isolated from rat brain was examined using radiolabeled phospholipids and electron microscopy. Liposomes were prepared by sonication and detergent dialysis. Binding (adsorption) of radiolabeled phospholipid to synaptosomes was saturable when liposomes were in the liquid-crystalline state, were electrically neutral (egg-phosphatidylcholine), or carried increasing fractions (10:2 and 10:4 molar ratio) of negatively charged phosphatidic acid. Analysis using the Langmuir isotherm equation indicated a biphasic adsorption behavior. Adsorption increased with increasing temperature (4 degrees C and 37 degrees C). Binding was nonsaturable when liposomes were positively charged with stearylamine or composed of dimyristoylphosphatidylcholine and phosphatidylinositol (10:2 molar ratio). Due to the latter composition's solid state at 4 degrees C, temperature dependency was inverse. Electron micrographs revealed disc-shaped areas of adsorption that were free of integral membrane particles which appeared to form a condensed layer surrounding the areas of liposome adsorption. Following interaction with stearylamine-containing liposomes the vesicular structure of synaptosomes appeared largely destroyed. It is concluded that both liposome surface charge and membrane fluidity determine the extent of interaction with biological membranes.  相似文献   

15.
Targeted drug delivery requires binding to (and subsequent uptake by) the carrier and target cell. In this paper, we calculate the work required to bring into contact liposomal carriers and cells as a function of the liposome and cell electrostatic characteristics. We find that cell-liposome adhesion is sensitive to the cell type and optimized at a cell to liposome charge ratio which depends on the degree of cell charge regulation. As a result, uptake (which is dependent on the occurrence of binding) is also optimized. Incorporation of a (poly)ethylene glycol (PEG) layer enhances liposome adhesion in cases where the cell-liposome interactions are repulsive, and suppresses adhesion in systems where the interactions are attractive. Our results, which are in agreement with experimental observations, show that electrostatic interactions may be designed to enable targeted drug delivery by liposomes to a specific cell population.  相似文献   

16.
Adsorption of serum proteins to the liposomal surface plays a critical role in liposome clearance from the blood. The aim of this study was to investigate the role of liposome-adsorbed serum proteins in the interaction of liposomes with hepatocytes. We analyzed the serum proteins adsorbing to the surface of differently composed small unilamellar liposomes during incubation with human or rat serum, and found that one protein, with a molecular weight of around 55 kDa, adsorbed in a large amount to negatively charged liposomes containing phosphatidylserine (PS) or phosphatidylglycerol (PG). The binding was dependent on the liposomal charge density. The approximately 55-kDa protein was identified as beta2-glycoprotein I (beta2GPI) by Western blotting. Despite the high affinity of beta2GPI for strongly negatively charged liposomes, in vitro uptake and binding experiments with isolated rat hepatocytes, Kupffer cells or liver endothelial cells, and with HepG2 cells showed no enhancing effect of this protein on the association of negatively charged liposomes with any of these cells. On the contrary, an inhibitory effect was observed. We conclude that despite abundant adsorption to negatively charged liposomes, beta2GP1 inhibits, rather than enhances, liposome uptake by liver cells.  相似文献   

17.
Surface modification of liposomes with amphiphilic flexible polymers significantly prolongs their circulation time in blood and reduces uptake by cells of the reticuloendothelial system (RES). Several polymers have already been shown to provide steric protection to liposomes. Still more polymers are expected to serve this purpose, thus broadening the variability of properties of long-circulating liposomes. Poly[N-(2-hydroxypropyl)methacrylamide] (poly (HPMA)) seems to have some properties similar to polyethylene glycol (PEG), the most widely used polymer in liposome surface modification, including flexibility, hydrophilicity and low immunogenicity, which suggest that it may also function as an efficient steric protector of liposomes. Semitelechelic poly(HPMA) with single- or double-oleic acid hydrophobic terminus were synthesized and incorporated into the surface of liposomes composed of phosphatidylcholine and cholesterol. These poly(HPMA)-modified liposomes provided strong steric protection for liposomes, increasing their circulation time and decreasing liver accumulation in experimental mice. Poly(HPMA)-modified liposomes may become a useful addition to a family of long-circulating liposomes with potential to be used as a drug delivery system.  相似文献   

18.
The purpose of this study was to begin investigating the nature of liposome interactions with colon tumor cells. Thus, experiments were performed to study the uptake and incorporation of multilamellar and of reverse-phase evaporation liposomes of neutral charge into monolayers, suspended spinner cultures, and trypsinized cells of a human colon adenocarcinoma cell line, LS174T. The results showed that the same tumor cells cultured under each condition exhibited a distinct pattern of vesicle uptake as determined at 0, 15, 30, 60, and 120 min. In monolayer cultures of LS174T cells, the uptake of liposomes bearing [3H]actinomycin D in the lipid bilayers was linear throughout the incubation period. In contrast, in trypsinized and spinner suspension cultures, uptake of liposomes was biphasic. There was a proportional uptake of both liposome (labeled with [3H]phosphatidylcholine or [14C]cholesterol) and of actinomycin D (trace labeled with 3H) into the cells under all culture conditions, indicating quantitative delivery of the drug with the intact lipid vesicle. Although the amount of actinomycin D presented to tumor cells by the two liposomes was equivalent, reverse-phase evaporation liposomes were more effective than multilamellar vesicles in inhibiting uridine uptake. In the presence of excess liposomes (10 times the uptake studies), saturation of the tumor cell surface occurred by 120 min. However, the liposomes remained accessible to enzymatic removal for 60 min. Liposome-saturated tumor cells remained refractory to further binding of liposomes for at least 2 hr. The results thus revealed that differences in cell uptake were due to the state of the target cells and not the liposome types, or their differential leakage of labels.  相似文献   

19.
Abstract

Long-circulating liposomes can be prepared by coating liposome surface with a hydrophilic layer of oligosaccharides, glycoproteins, polysaccharides and synthetic polymers in order to make liposomes “invisible” for scavenger cells of the mononuclear phagocyte system. Incorporation of lipid-anchored poly(ethylene glycol) in liposome bilayer allows to prolong its circulation at least tenfold. Various designs of glycolipid- and polymer-based liposomes are presented, possible mechanisms of action are discussed; potential of these liposomes for drug targeting is presented.  相似文献   

20.
Adsorption of serum proteins to the liposomal surface plays a critical role in liposome clearance from the blood. The aim of this study was to investigate the role of liposome-adsorbed serum proteins in the interaction of liposomes with hepatocytes. We analyzed the serum proteins adsorbing to the surface of differently composed small unilamellar liposomes during incubation with human or rat serum, and found that one protein, with a molecular weight of around 55 kDa, adsorbed in a large amount to negatively charged liposomes containing phosphatidylserine (PS) or phosphatidylglycerol (PG). The binding was dependent on the liposomal charge density. The ∼55-kDa protein was identified as β2-glycoprotein I (β2GPI) by Western blotting. Despite the high affinity of β2GPI for strongly negatively charged liposomes, in vitro uptake and binding experiments with isolated rat hepatocytes, Kupffer cells or liver endothelial cells, and with HepG2 cells showed no enhancing effect of this protein on the association of negatively charged liposomes with any of these cells. On the contrary, an inhibitory effect was observed. We conclude that despite abundant adsorption to negatively charged liposomes, β2GP1 inhibits, rather than enhances, liposome uptake by liver cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号