首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Due to its extreme lipophilicity, the oral delivery of cinnarizine (CN) encounters several problems such as poor aqueous solubility and pH-dependent dissolution, which result in low and erratic bioavailability. The current study aims to design self-nanoemulsifying drug delivery systems (SNEDDS) of CN that circumvent such obstacles. Equilibrium solubility of CN was determined in a range of anhydrous and diluted lipid-based formulations. Dynamic dispersion tests were carried out to investigate the efficiency of drug release and magnitude of precipitation that could occur upon aqueous dilution. Droplet sizes of selected formulations, upon (1:1,000) aqueous dilution, were presented. The optimal formulations were enrolled in subsequent dissolution studies. The results showed that increasing lipid chain length and surfactant lipophilicity raised the formulation solvent capacity, while adding co-solvents provoked a negative influence. The inclusion of mixed glycerides and/or hydrophilic surfactants improved the drug release efficiency. Generally, no significant precipitation was observed upon aqueous dilution of the formulations. Five formulations were optimal in terms of their superior self-emulsifying efficiency, drug solubility, dispersion characteristics, and lower droplet size. Furthermore, the optimal formulations showed superior dissolution profile compared to the marketed (Stugeron®) tablet. Most importantly, they could resist the intensive precipitation observed with the marketed tablet upon shifting from acidic to alkaline media. However, SNEDDS containing medium-chain mixed glycerides showed the highest drug release rate and provide great potential to enhance the oral CN delivery. Accordingly, the lipid portion seems to be the most vital component in designing CN self-nanoemulsifying systems.  相似文献   

2.
Self-nanoemulsifying drug delivery system (SNEDDS) can be used to improve dissolution of poorly water-soluble drugs. The objective of this study was to prepare SNEDDS by using ternary phase diagram and investigate their spontaneous emulsifying property, dissolution of nifedipine (NDP), as well as the pharmacokinetic profile of selected SNEDDS formulation. The results showed that the composition of the SNEDDS was a great importance for the spontaneous emulsification. Based on ternary phase diagram, the region giving the SNEDDS with emulsion droplet size of less than 300 nm after diluting in aqueous medium was selected for further formulation. The small-angle X-ray scattering curves showed no sharp peak after dilution at different percentages of water, suggesting non-ordered structure. The system was found to be robust in different dilution volumes; the droplet size was in nanometer range. In vitro dissolution study showed remarkable increase in dissolution of NDP from SNEDDS formulations compared with NDP powders. The pharmacokinetic study of selected SNEDDS formulation in male Wistar rats revealed the improved maximum concentration and area under the curve. Our results proposed that the developed SNEDDS formations could be promising to improve the dissolution and oral bioavailability of NDP.KEY WORDS: nifedipine, poorly water-soluble drug, self-emulsifying drug delivery system, spontaneous emulsification  相似文献   

3.
The oral administration of celecoxib (CLX) is a real problem because of its low aqueous solubility that results in high variability in absorption and its severe adverse effect such as cardiotoxic effects and gastrointestinal toxicity. Self-nanoemulsifying drug delivery systems (SNEDDS) can enhance the poor dissolution and erratic absorption of poorly water-soluble drugs such as CLX. This study was conducted to investigate the potential of SNEDDS to enhance the efficacy of CLX on inflamed mucous tissue and reduce systemic adverse effects by increasing its poor dissolution properties. A pseudo-ternary phase diagram was derived from the results of CLX solubility experiments in various excipients. These studies revealed the use of Labrafil M 2515 CS as oil, tween 80 as a surfactant, and polyethylene glycol 400 as a co-surfactant for the optimization of SNEDDS formulations. Eight formulations were formulated and characterized by their particle size, polydispersity index, viscosity, globular shape, drug solubility, self-emulsification efficiency, in vitro drug release, and permeation. The anti-inflammatory effect of CLX-SNEDDS was evaluated by carrageenan-induced cheek oedema in rats. The cheeks were treated with CLX-SNEDDS before oedema induction and then noticed for narrow periods (2?h) followed by histopathological studies to determine the efficacy of treatment. The selected formulations (F3 and F5) showed spherical morphologies under transmission electron microscopy, mean droplet sizes of 116.9?±?1.78 and 124?±?1.87?nm, respectively, complete in vitro drug release, and high cumulative amounts of drug permeation in 8?h. They also showed significant remarkable cheek oedema inhibition in comparison with the control groups (p?<?0.05). CLX-SNEDDS was found to achieve effective local therapeutic concentration and intended to reduce cheek oedema, congestive capillary, inflammatory cells, and side effects due to lower dose size.  相似文献   

4.
The objective of this study was to develop proliposomes and self-nanoemulsifying drug delivery system (SNEDDS) for a poorly bioavailable drug, valsartan, and to compare their in vivo pharmacokinetics. Proliposomes were prepared by thin-film hydration method using different lipids such as soy phosphatidylcholine (SPC), hydrogenated soy phosphatidylcholine (HSPC), distearyl phosphatidylcholine (DSPC), dimyristoylphosphatidylcholine (DMPC), and dimyristoyl phosphatidylglycerol sodium (DMPG) and cholesterol in various ratios. SNEDDS formulations were prepared using varying concentrations of capmul MCM, labrafil M 2125, and Tween 80. Both proliposomes and SNEDDS were evaluated for particle size, zeta potential, in vitro drug release, in vitro permeability, and in vivo pharmacokinetics. In vitro drug release was carried out in purified water and 0.1 N HCl using USP type II dissolution apparatus. In vitro drug permeation was studied using parallel artificial membrane permeation assay (PAMPA) and everted rat intestinal permeation techniques. Among the formulations, the proliposomes with drug/DMPG/cholesterol in the ratio of 1:1:0.5 and SNEDDS with capmul MCM (16.0% w/w), labrafil M 2125 (64.0% w/w), and Tween 80 (18.0% w/w) showed the desired particle size and zeta potential. Enhanced drug release was observed with proliposomes and SNEDDS as compared to pure valsartan. Valsartan permeability across PAMPA and everted rat intestinal permeation models was significantly higher with proliposomes and SNEDDS. Following single oral administration of proliposomes and SNEDDS, a relative bioavailability of 202.36 and 196.87%, respectively, was achieved compared to pure valsartan suspension. The study results indicated that both proliposomes and SNEDDS formulations are comparable in improving the oral bioavailability of valsartan.  相似文献   

5.
The present studies entail formulation development of novel solid self-nanoemulsifying drug delivery systems (S-SNEDDS) of valsartan with improved oral bioavailability, and evaluation of their in vitro and in vivo performance. Preliminary solubility studies were carried out and pseudoternary phase diagrams were constructed using blends of oil (Capmul MCM), surfactant (Labrasol), and cosurfactant (Tween 20). The SNEDDS were systematically optimized by response surface methodology employing 33-Box–Behnken design. The prepared SNEDDS were characterized for viscocity, refractive index, globule size, zeta potential, and TEM. Optimized liquid SNEDDS were formulated into free flowing granules by adsorption on the porous carriers like Aerosil 200, Sylysia (350, 550, and 730) and Neusilin US2, and compressed into tablets. In vitro dissolution studies of S-SNEDDS revealed 3–3.5-fold increased in dissolution rate of the drug due to enhanced solubility. In vivo pharmacodynamic studies in Wistar rats showed significant reduction in mean systolic BP by S-SNEDDS vis-à-vis oral suspension (p < 0.05) owing to the drug absorption through lymphatic pathways. Solid-state characterization of S-SNEDDS using FT-IR and powder XRD studies confirmed lack of any significant interaction of drug with lipidic excipients and porous carriers. Further, the accelerated stability studies for 6 months revealed that S-SNEDDS are found to be stable without any change in physiochemical properties. Thus, the present studies demonstrated the bioavailability enhancement potential of porous carriers based S-SNEDDS for a BCS class II drug, valsartan.KEY WORDS: BCS, bioavailability, in vitro dissolution, porous carriers, XRD  相似文献   

6.
This study aims to formulate and evaluate bioavailability of a self-nanoemulsified drug delivery system (SNEDDS) of a poorly water-soluble herbal active component oleanolic acid (OA) for oral delivery. Solubility of OA under different systems was determined for excipient selection purpose. Four formulations, where OA was fixed at the concentration of 20 mg/g, were prepared utilizing Sefsol 218 as oil phase, Cremophor EL and Labrasol as primary surfactants, and Transcutol P as cosurfactant. Pseudo-ternary phase diagrams were constructed to identify self-emulsification regions for the rational design of SNEDDS formulations. Sefsol 218 was found to provide the highest solubility among all medium-chained oils screened. Efficient self-emulsification was observed for the systems composing of Cremophor EL and Labrasol. The surfactant to cosurfactant ratio greatly affected the droplet size of the nanoemulsion. Based on the outcomes in dissolution profiles, stability data, and particle size profiles, three optimized formulations were selected: Sefsol 218/Cremophor EL/Labrasol (50:25:25, w/w), Sefsol 218/Cremophor EL/Labrasol/Transcutol P (50:20:20:10, w/w), and Sefsol 218/Cremophor EL/Labrasol/Transcutol P (50:17.5:17.5:15, w/w). Based on the conventional dissolution method, a remarkable increase in dissolution was observed for the SNEDDS when compared with the commercial tablet. The oral absorption of OA from SNEDDS showed a 2.4-fold increase in relative bioavailability compared with that of the tablet (p < 0.05), and an increased mean retention time of OA in rat plasma was also observed compared with that of the tablet (p < 0.01). These results suggest the potential use of SNEDDS to improve dissolution and oral bioavailability for poorly water-soluble triterpenoids such as OA.  相似文献   

7.
《Phytomedicine》2014,21(3):307-314
Berberine, an isoquinoline alkaloid, has wide biological and pharmacological actions. Despite the promising pharmacological effects and safety of berberine, poor oral absorption due to its extremely low aqueous solubility results in poor oral systemic bioavailability. This limits its clinical usage. This study describes the development and characterization of self-nanoemulsifying drug delivery system (SNEDDS) of berberine in liquid as well as solid form with improved solubility, dissolution and in vivo therapeutic efficacy. The SNEDDS of berberine were prepared using Acrysol K-150, Capmul MCM and polyethylene glycol 400. The formulations were characterized for various in vitro physicochemical characteristics. In vivo efficacy was evaluated in acetic acid induced inflammatory bowel model in rats. Anti-angiogenic activity of the developed SNEDDS of berberine was studied using chick chorioallantoic membrane assay. SNEDDS of berberine rapidly formed nanoemulsions with globule size of 17–45 nm. The in vitro rate and extent of release of berberine from SNEDDS was significantly higher than berberine alone. Chick chorioallantoic membrane assay revealed potent anti-angiogenic activity of SNEDDS of berberine. These studies demonstrate that the SNEDDS of berberine is a promising strategy for improving its therapeutic efficacy and have potential application in the treatment of chronic inflammatory conditions and cancer.  相似文献   

8.
This study was aimed at preparing orally administered naringenin-loaded liposome for pharmacokinetic and tissue distribution studies in animal models. The liposomal system, consisting of phospholipid, cholesterol, sodium cholate, and isopropyl myristate, was prepared using the thin-film hydration method. Physicochemical characterization of naringenin-loaded liposome such as particle size, zeta potential, and encapsulation efficiency produced 70.53?±?1.71 nm, ?37.4?±?7.3 mV, and 72.2?±?0.8%, respectively. The in vitro release profile of naringenin from the formulation in three different media (HCl solution, pH 1.2; acetate buffer solution, pH 4.5; phosphate buffer solution, pH 6.8) was significantly higher than the free drug. The in vivo studies also revealed an increase in AUC of the naringenin-loaded liposome from 16648.48 to 223754.0 ng·mL?1 h as compared with the free naringenin. Thus, approximately 13.44-fold increase in relative bioavailability was observed in mice after oral administration. The tissue distribution further showed that the formulation was very predominant in the liver. These findings therefore indicated that the liposomal formulation significantly improved the solubility and oral bioavailability of naringenin, thus leading to wider clinical applications.  相似文献   

9.
The aim of this investigation was to examine the efficacy of PhytoSolve and Phosal-based formulation (PBF) to enhance the oral bioavailability of mebudipine, which is a poorly water-soluble calcium channel blocker. The solubility of mebudipine in various oils was determined. PhytoSolve was prepared with a medium-chain triglyceride (MCT) oil (20%), soybean phospholipids (5%), and a 70% fructose solution (75%). The influence of the weight ratio of Phosal 50PG to glycerol in PBF on the mean globule size was studied with dynamic light scattering. The optimized formulation was evaluated for robustness toward dilution, transparency, droplet size, and zeta potential. The in vivo oral absorption of different mebudipine formulations (PhytoSolve, PBF, oily solution, and suspension) were evaluated in rats. The optimized PBF contained Phosal 50PG/glycerol in a 6:4 ratio (w/w). The PBF and PhytoSolve formulations were miscible with water in any ratio and did not demonstrate any phase separation or drug precipitation over 1 month of storage. The mean particle size of PhytoSolve and PBF were 138.5 ± 9.0 and 74.4 ± 2.5 nm, respectively. The in vivo study demonstrated that the oral bioavailability of PhytoSolve and PBF in rats was significantly higher than that of the other formulations. The PhytoSolve and PBF formulations of mebudipine are found to be more bioavailable compared with suspension and oily solutions during an in vivo study in rats. These formulations might be new alternative carriers that increase the oral bioavailability of poorly water-soluble molecules, such as mebudipine.KEY WORDS: mebudipine, oral bioavailability, Phosal 50PG, PhytoSolve  相似文献   

10.
Background: Rosuvastatin (ROS) calcium is the latest synthetic drug in the statin group that has an anti-hyperlipidemic activity. It is available as tablets, and its poor aqueous solubility, slow dissolution rate and low-absorption extent result in less than 20% bioavailability and about 80% being excreted unchanged in the feces without absorption.

Objective: To utilize nanotechnology to reformulate ROS as a self-nano-emulsifying drug delivery system (SNEDDS), and utilizing design optimization to fabricate the SNEDDS as a tablet.

Methods: The solubility of ROS in different oils, surfactants and co-surfactants was tested. Pseudo-ternary phase diagrams were developed and various SNEDDS formulations were prepared and evaluated regarding globule size, self-emulsification, viscosity and transmittance. The optimized system was examined using transmission electron microscopy. The self-nano-emulsifying tablets were prepared using two types of nano-silica and different percentages of Avicel as a binder and Ac-Di-Sol as a disintegrant. The prepared tablets were evaluated for their physicochemical properties. Bioavailability in human volunteers was assessed.

Results: A SNEDDS system was successfully developed with a droplet size range of 15?nm and a composition of 10% Labrafac, 80% Cremophore RH40 and 10% Propylene glycol. The optimized tablet formula contained: hydrophilic nano-silica, 3% Ac-Di-Sol and 30% Avicel. The pharmacokinetic study revealed that the bioavailability was enhanced by more than 2.4-fold compared with the commercially available tablet.

Conclusions: Tablets containing SNEDDS loaded with ROS represent a promising novel formula that has higher gastrointestinal absorption and enhanced systemic bioavailability.  相似文献   

11.
Stable solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) formulations to enhance the dissolution rates of poorly soluble drug spironolactone (SP) were being developed. Probe ultra-sonication method was used to prepare SLNs and NLCs. All NLCs contained stearic acid (solid lipid carrier) and oleic acid (liquid lipid content), whereas, SLNs were prepared and optimised by using the solid lipid only. The particles were characterised in terms of particle size analysis, thermal behaviour, morphology, stability and in vitro release. The zeta sizer data revealed that the increase in the concentration of oleic acid in the formulations reduced the mean particle size and the zeta potential. The increase in concentration of oleic acid from 0 to 30% (w/w) resulted in a higher entrapment efficiency. All nanoparticles were almost spherically shaped with an average particle size of about ~170 nm. The DSC traces revealed that the presence of oleic acid in the NLC formulations resulted in a shift in the melting endotherms to a higher temperature. This could be attributed to a good long-term stability of the nanoparticles. The stability results showed that the particle size remained smaller in NLC compared to that of SLN formulations after 6 months at various temperatures. The dissolution study showed about a 5.1- to 7.2-fold increase in the release of the drug in 2 h compared to the raw drug. Comparing all nanoparticle formulations indicated that the NLC composition with a ratio of 70:30 (solid:liquid lipid) is the most suitable formulation with desired drug dissolution rates, entrapment efficiency and physical stability.  相似文献   

12.
The purpose of this study was to combine the advantages of self-nanoemulsifying drug delivery systems and tablets as a conventional dosage form emphasizing the excipients’ effect on the development of a new dosage form. Systems composed of HCO-40, Transcutol® HP, and medium-chain triglyceride were prepared. Essential properties of the prepared systems regarding carvedilol solubility, a model drug, and self-emulsification time were determined. In order to optimize self-nanoemulsifying drug delivery systems (SNEDDS), formulation dispersion–drug precipitation test was performed in the absence and presence of cellulosic polymers. Furthermore, SNEDDS was loaded onto liquisolid powders. P-glycoprotein (P-gp) activity of the selected SNEDDS was tested using HCT-116 cells. Carvedilol showed acceptable solubility in the selected excipients. It also demonstrated improvement in the stability upon dilution with aqueous media in the presence of cellulosic polymers. Use of granulated silicon dioxide improved the physical properties of liquisolid powders containing SNEDDS. It improved the compressibility of the selected powders and the tested SNEDDS showed marked P-gp inhibition activity. Prepared self-nanoemulsifying tablet produced acceptable properties of immediate-release dosage forms and expected to increase the bioavailability of carvedilol.  相似文献   

13.
Lacidipine (LCDP) is a highly lipophilic calcium channel blocker of poor aqueous solubility leading to poor oral absorption. This study aims to prepare and optimize LCDP nanosuspensions using antisolvent sonoprecipitation technique to enhance the solubility and dissolution of LCDP. A three-factor, three-level Box–Behnken design was employed to optimize the formulation variables to obtain LCDP nanosuspension of small and uniform particle size. Formulation variables were as follows: stabilizer to drug ratio (A), sodium deoxycholate percentage (B), and sonication time (C). LCDP nanosuspensions were assessed for particle size, zeta potential, and polydispersity index. The formula with the highest desirability (0.969) was chosen as the optimized formula. The values of the formulation variables (A, B, and C) in the optimized nanosuspension were 1.5, 100%, and 8 min, respectively. Optimal LCDP nanosuspension had particle size (PS) of 273.21 nm, zeta potential (ZP) of ?32.68 mV and polydispersity index (PDI) of 0.098. LCDP nanosuspension was characterized using x-ray powder diffraction, differential scanning calorimetry, and transmission electron microscopy. LCDP nanosuspension showed saturation solubility 70 times that of raw LCDP in addition to significantly enhanced dissolution rate due to particle size reduction and decreased crystallinity. These results suggest that the optimized LCDP nanosuspension could be promising to improve oral absorption of LCDP.  相似文献   

14.
Limited aqueous solubility of exemestane leads to high variability in absorption after oral administration. To improve the solubility and bioavailability of exemestane, the self-microemulsifying drug delivery system (SMEDDS) was developed. SMEDDS comprises of isotropic mixture of natural or synthetic oil, surfactant, and cosurfactant, which, upon dilution with aqueous media, spontaneously form fine o/w microemulsion with less than 100 nm in droplet size. Solubility of exemestane were determined in various vehicles. Ternary phase diagrams were plotted to identify the efficient self-emulsification region. Dilution studies, droplet size, and zeta potential of the formulations were investigated. The release of exemestane from SMEDDS capsules was studied using USP dissolution apparatus in different dissolution media and compared the release of exemestane from a conventional tablet. Oral pharmacokinetic study was performed in female Wistar rats (n = 8) at the dose of 30 mg kg−1. The absorption of exemestane from SMEDDS form resulted in about 2.9-fold increase in bioavailability compared with the suspension. Our studies illustrated the potential use of SMEDDS for the delivery of hydrophobic compounds, such as exemestane by the oral route.Key words: bioavailability enhancement, exemestane, microemulsion, SMEDDS  相似文献   

15.
Sparingly, water-soluble drugs such as candesartan cilexetil offer challenges in developing a drug product with adequate bioavailability. The objective of the present study was to develop and characterize self-microemulsifying drug delivery system (SMEDDS) of candesartan cilexetil for filling into hard gelatin capsules. Solubility of candesartan cilexetil was evaluated in various nonaqueous careers that included oils, surfactants, and cosurfactants. Pseudoternary phase diagrams were constructed to identify the self-microemulsification region. Four self-microemulsifying formulations were prepared using mixtures of oils, surfactants, and cosurfactants in various proportions. The self-microemulsification properties, droplet size, and zeta potential of these formulations were studied upon dilution with water. The optimized liquid SMEDDS formulation was converted into free flowing powder by adsorbing onto a solid carrier for encapsulation. The dissolution characteristics of solid intermediates of SMEDDS filled into hard gelatin capsules was investigated and compared with liquid formulation and commercial formulation to ascertain the impact on self-emulsifying properties following conversion. The results indicated that solid intermediates showed comparable rate and extent of drug dissolution in a discriminating dissolution medium as liquid SMEDDS indicating that the self-emulsifying properties of SMEDDS were unaffected following conversion. Also, the rate and extent of drug dissolution for solid intermediates was significantly higher than commercial tablet formulation. The results from this study demonstrate the potential use of SMEDDS as a means of improving solubility, dissolution, and concomitantly the bioavailability.  相似文献   

16.
The current research evaluated the ability of hydroxybutenyl-beta-cyclodextrin (HBenBCD) to enhance saquinavir in vitro solubility and in vivo oral bioavailability; both the base and mesylate salt forms of saquinavir were investigated. HBenBCD was effective and significantly improved saquinavir solubility in aqueous media. In the presence of 10 wt % HBenBCD, saquinavir base solubility in water was increased to ca. 5.5 +/- 0.4 mg/mL and represents a 27-fold increase from that observed in water (207 +/- 5 microg/mL) in the absence of HBenBCD. Saquinavir-HBenBCD formulations were found to have rapid dissolution over a wide pH range (1.2-6.8), and saquinavir solubility in these media was maintained throughout the experiments. When saquinavir-HBenBCD formulations were administered to Wistar-Hannover rats, saquinavir was rapidly absorbed and rapidly eliminated. Rapid saquinavir elimination was particularly pronounced when saquinavir-HBenBCD formulations were given as an oral aqueous gavage. Saquinavir oral bioavailability in rats obtained from saquinavir mesylate capsules (2.0% +/- 0.7%) was increased (9 +/- 4)-fold (18.6% +/- 7.3%) when dosed with saquinavir base-HBenBCD capsules. Clearly, HBenBCD can significantly improve the solubility and oral bioavailability of saquinavir; however, further formulation studies are required to optimize saquinavir oral delivery using this technology.  相似文献   

17.
Context: Gout is a painful disorder which does not have an efficient delivery system for its treatment.

Objective: Development and in vitro, in vivo evaluation of allopurinol-loaded nonionic surfactant-based niosomes was envisaged.

Materials and methods: Niosomes were prepared with Span 20 and Tween 20 (1:1 molar ratio) using ether injection method. The formulations were screened for entrapment efficiency, particle size analysis, zeta potential, release kinetics, in vivo activity, and stability studies.

Result: Stable, spherical vesicles of average particle size 304?nm with zeta-potential and entrapment efficiency of 22.2?mV and 79.44?±?0.02%, respectively, were produced. In vitro release study revealed 82.16?±?0.04% release of allopurinol within 24?h. The niosomal formulation was further evaluated for its antigout potential in monosodium urate (MSU) crystal induced gout animal model. The formulation demonstrated significant uric acid level reduction and enhanced antigout activity when compared with the pure allopurinol.

Discussion: The better antigout activity displayed by niosomal formulation could be attributed to sustained release of drug, higher drug solubility within biological fluids, better membrane interaction, smaller size, and presence of cholesterol and surfactant.

Conclusions: This study reveals that niosomes can be an efficient delivery system for the treatment of gout.  相似文献   

18.
The objectives of this study were to develop and evaluate a novel self-emulsifying floating drug delivery system (SEFDDS) that resulted in improved solubility, dissolution, and controlled release of the poorly water-soluble tetrahydrocurcumin (THC). The formulations of liquid self-emulsifying drug delivery system (SEDDS; mixtures of Labrasol, Cremophor EL, Capryol 90, Labrafac PG) were optimized by solubility assay and pseudo-ternary phase diagram analysis. The liquid SEDDS was mixed with adsorbent (silicon dioxide), glyceryl behenate, pregelatinized starch, sodium starch glycolate, and microcrystalline cellulose and transformed into pellets by the extrusion/spheronization technique. The resulting pellets with 22% liquid SEDDS had a uniform size and good self-emulsification property. The microemulsions in aqueous media of different self-emulsifying floating pellet formulations were in a particle size range of 25.9–32.5 nm. Use of different weight proportions of glyceryl behenate and sodium starch glycolate in pellet formulations had different effects on the floating abilities and in vitro drug release. The optimum formulation (F2) had a floating efficiency of 93% at 6 h and provided a controlled release of THC over an 8-h period. The release rate and extent of release of THC liquid SEDDS (80% within 2 h) and self-emulsifying floating pellet formulation (80% within 8 h) were significantly higher than that of unformulated THC (only 30% within 8 h). The pellet formulation was stable under intermediate and accelerated storage conditions for up to 6 months. Controlled release from this novel SEFDDS can be a useful alternative for the strategic development of oral solid lipid-based formulations.  相似文献   

19.
Utilization of lipid-based drug delivery systems has recently gained focus for drugs characterized by poor aqueous solubility. The improved aqueous solubility overcomes one of the main barriers that limit their bioavailability. The objective of this work was to improve the solubility and oral bioavailability of Avanafil (AVA), a recently approved second generation type 5 phospodiesterase inhibitor used for erectile dysfunction.AVA was formulated as self-nanoemulsifying drug delivery system (SNEDDS) utilizing various oils, surfactants, and cosurfactants. The solubility of AVA in various oils, surfactants, and cosurfactants was determined. Ternary phase diagram was constructed to identify stable nanoemulsion region. The prepared AVA loaded SNEDDS were assessed for optical clarity, droplet size, conductivity, and stability studies. In vitro drug release and in vivo pharmacokinetic parameters using animal model were also investigated. Results revealed that stable AVA (SNEDDS) were successfully developed with a droplet size range of 65 to 190 nm. SNEDDS composed of 25% dill oil, 55% Tween 80, and 20% propylene glycol successfully improved solubilization of AVA (over 80% within 30 min) vis-a-vis the powder AVA (35% within 30 min). In vivo pharmacokinetic showed a significant (P < 0.05) increase in Cmax, reduction in Tmax, and SNEDDS enhanced the bioavailability in the rats by 1.4-fold when compared with pure drug.Key words: avanafil, erectile dysfunction, dill oil, self-nanoemulsifying, SNEDDS  相似文献   

20.
Polymer based nanoparticle formulations have been shown to increase drug bioavailability and/or reduce drug adverse effects. Nonsteroidal anti-inflammatory drugs (e.g. celecoxib) reduce prostaglandin synthesis and cause side effects such as gastrointestinal and renal complications. The aim of this study was to formulate celecoxib entrapped poly lactide-co-glycolide based nanoparticles through a solvent evaporation process using didodecyldimethylammonium bromide or poly vinyl alcohol as stabilizer. Nanoparticles were characterized for zeta potential, particle size, entrapment efficiency, and morphology. Effects of stabilizer concentration (0.1, 0.25, 0.5, and 1% w/v), drug amount (5, 10, 15, and 20 mg), and emulsifier (lecithin) on nanoparticle characterization were examined for formula optimization. The use of 0.1, 0.25, and 0.5% w/v didodecyldimethylammonium bromide resulted in a more than 5-fold increase in zeta potential and a more than 1.5-fold increase in entrapment efficiency with a reduction in particle size over 35%, when compared to stabilizer free formulation. Nanoparticle formulations were also highly influenced by emulsifier and drug amount. Using 0.25% w/v didodecyldimethylammonium bromide NP formulations, peak zeta potential was achieved using 15 mg celecoxib with emulsifier (17.15±0.36 mV) and 20 mg celecoxib without emulsifier (25.00±0.18 mV). Peak NP size reduction and entrapment efficiency was achieved using 5 mg celecoxib formulations with (70.87±1.24 nm and 95.55±0.66%, respectively) and without (92.97±0.51 nm and 95.93±0.27%, respectively) emulsifier. In conclusion, formulations using 5 mg celecoxib with 0.25% w/v didodecyldimethylammonium bromide concentrations produced nanoparticles exhibiting enhanced size reduction and entrapment efficiency. Furthermore, emulsifier free formulations demonstrated improved zeta potential when compared to formulations containing emulsifier (p<0.01). Therefore, our results suggest the use of emulsifier free 5 mg celecoxib drug formulations containing 0.25% w/v didodecyldimethylammonium bromide for production of polymeric NPs that demonstrate enhanced zeta potential, small particle size, and high entrapment efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号