首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to reduce the toxicity and increase the efficacy of drugs, there is a need for smart drug delivery systems. Liposomes are one of the promising tools for this purpose. An ideal liposomal delivery system should be stable, long-circulating, accumulate at the target site and release its drug in a controlled manner. Even though there have been many developments to this end, the dilemma of having a stable liposome during circulation but converting it into a leaky structure at the target site is still a major challenge. So far, most attempts have focused on destabilizing the liposome in response to a specific stimulus at a target site, but with limited success. Our approach is to keep the stable liposome but build in a remote-controlled valve as a new release mechanism, instead. The valve is a pore-forming bacterial membrane protein. It has been engineered such that, after being reconstituted into the liposomes, its opening and closing can be controlled on command by the ambient pH, light or a combination of both. In addition, a much higher degree of flexibility for fine-tuning of the liposome's response to its environment is achieved.  相似文献   

2.
Abstract

Nanomedicine as a field has emerged from the early success of nanoparticle-based drug delivery systems, in particular for treatment of cancer, and the advances made in nano- and biotechnology over the past decade. A prerequisite for nanoparticle-based drug delivery systems to be effective is that the drug payload is released at the target site. A large number of drug release strategies have been proposed that can be classified into certain areas. The simplest and most successful strategy so far, probably due to relative simplicity, is based on utilizing certain physico-chemical characteristics of drugs to obtain a slow drug leakage from the formulations after accumulation in the cancerous site. However, this strategy is only applicable to a relatively small range of drugs and cannot be applied to biologicals. Many advanced drug release strategies have therefore been investigated. Such strategies include utilization of heat, light and ultrasound sensitive systems and in particular pH sensitive systems where the lower pH in endosomes induces drug release. Highly interesting are enzyme sensitive systems where over-expressed disease-associated enzymes are utilized to trigger drug release. The enzyme-based strategies are particularly interesting as they require no prior knowledge of the tumour localization. The basis of this review is an evaluation of the current status of drug delivery strategies focused on triggered drug release by disease-associated enzymes. We limit ourselves to reviewing the liposome field, but the concepts and conclusions are equally important for polymer-based systems.  相似文献   

3.
Nanomedicine as a field has emerged from the early success of nanoparticle-based drug delivery systems, in particular for treatment of cancer, and the advances made in nano- and biotechnology over the past decade. A prerequisite for nanoparticle-based drug delivery systems to be effective is that the drug payload is released at the target site. A large number of drug release strategies have been proposed that can be classified into certain areas. The simplest and most successful strategy so far, probably due to relative simplicity, is based on utilizing certain physico-chemical characteristics of drugs to obtain a slow drug leakage from the formulations after accumulation in the cancerous site. However, this strategy is only applicable to a relatively small range of drugs and cannot be applied to biologicals. Many advanced drug release strategies have therefore been investigated. Such strategies include utilization of heat, light and ultrasound sensitive systems and in particular pH sensitive systems where the lower pH in endosomes induces drug release. Highly interesting are enzyme sensitive systems where over-expressed disease-associated enzymes are utilized to trigger drug release. The enzyme-based strategies are particularly interesting as they require no prior knowledge of the tumour localization. The basis of this review is an evaluation of the current status of drug delivery strategies focused on triggered drug release by disease-associated enzymes. We limit ourselves to reviewing the liposome field, but the concepts and conclusions are equally important for polymer-based systems.  相似文献   

4.
Liposomes have been employed as drug delivery systems to target solid tumors through exploitation of the enhanced permeability and retention (EPR) effect resulting in significant reductions in systemic toxicity. Nonetheless, insufficient release of encapsulated drug from liposomes has limited their clinical efficacy. Temperature-sensitive liposomes have been engineered to provide site-specific release of drug in order to overcome the problem of limited tumor drug bioavailability. Our lab has designed and developed a heat-activated thermosensitive liposome formulation of cisplatin (CDDP), known as HTLC, to provide triggered release of CDDP at solid tumors. Heat-activated delivery in vivo was achieved in murine models using a custom-built laser-based heating apparatus that provides a conformal heating pattern at the tumor site as confirmed by MR thermometry (MRT). A fiber optic temperature monitoring device was used to measure the temperature in real-time during the entire heating period with online adjustment of heat delivery by alternating the laser power. Drug delivery was optimized under magnetic resonance (MR) image guidance by co-encapsulation of an MR contrast agent (i.e., gadoteridol) along with CDDP into the thermosensitive liposomes as a means to validate the heating protocol and to assess tumor accumulation. The heating protocol consisted of a preheating period of 5 min prior to administration of HTLC and 20 min heating post-injection. This heating protocol resulted in effective release of the encapsulated agents with the highest MR signal change observed in the heated tumor in comparison to the unheated tumor and muscle. This study demonstrated the successful application of the laser-based heating apparatus for preclinical thermosensitive liposome development and the importance of MR-guided validation of the heating protocol for optimization of drug delivery.  相似文献   

5.
Deformable propylene glycol-containing liposomes (DPGLs) incorporating metronidazole or clotrimazole were prepared and evaluated as an efficient drug delivery system to improve the treatment of vaginal microbial infections. The liposome formulations were optimized based on sufficient trapping efficiencies for both drugs and membrane elasticity as a prerequisite for successful permeability and therapy. An appropriate viscosity for vaginal administration was achieved by incorporating the liposomes into Carbopol hydrogel. DPGLs were able to penetrate through the hydrogel network more rapidly than conventional liposomes. In vitro studies of drug release from the liposomal hydrogel under conditions simulating human treatment confirmed sustained and diffusion-based drug release. Characterization of the rheological and textural properties of the DPGL-containing liposomal hydrogels demonstrated that the incorporation of DPGLs alone had no significant influence on mechanical properties of hydrogels compared to controls. These results support the great potential of DPGL-in-hydrogel as an efficient delivery system for the controlled and sustained release of antimicrobial drugs in the vagina.  相似文献   

6.
载药脂质体的研究与应用进展   总被引:2,自引:1,他引:1  
载药脂质体给药系统已成为国内外的研究热点。传统脂质体经修饰和改良后表现出良好的生物相容性,缓释性和靶向性。新型脂质体在经皮给药,肺部给药,脑部靶向治疗,基因治疗等方面的应用研究结果显示,集药物缓释、靶向于一体的具有良好生物安全性的脂质体给药系统具有很大发展潜力。本文综述了该领域中的最新研究进展。  相似文献   

7.
The development of devices for the precise and controlled delivery of therapeutics has grown rapidly over the last few decades. Drug delivery materials must provide a depot with delivery profiles that satisfy pharmacodynamic and pharmacokinetic requirements resulting in clinical benefit. Therapeutic efficacy can be limited due to short half-life and poor stability. Thus, to compensate for this, frequent administration and high doses are often required to achieve therapeutic effect, which in turn increases potential side effects and systemic toxicity. This can potentially be mitigated by using materials that can deliver drugs at controlled rates, and material design principles that allow this are continuously evolving. Affinity-based release strategies incorporate a myriad of reversible interactions into a gel network, which have affinities for the therapeutic of interest. Reversible binding to the gel network impacts the release profile of the drug. Such affinity-based interactions can be modulated to control the release profile to meet pharmacokinetic benchmarks. Much work has been done developing affinity-based control in the context of polymer-based materials. However, this strategy has not been widely implemented in peptide-based hydrogels. Herein, we present recent advances in the use of affinity-controlled peptide gel release systems and their associated mechanisms for applications in drug delivery.  相似文献   

8.
《New biotechnology》2015,32(6):665-672
Superparamagnetic iron oxide nanoparticles are used in a rapidly expanding number of research and practical applications in biotechnology and biomedicine. We highlight how recent developments in iron oxide nanoparticle design and understanding of nanoparticle membrane interactions have led to applications in magnetically triggered, liposome delivery vehicles with controlled structure. Nanoscale vesicles actuated by incorporated nanoparticles allow for controlling location and timing of compound release, which enables e.g. use of more potent drugs in drug delivery as the interaction with the right target is ensured. This review emphasizes recent results on the connection between nanoparticle design, vesicle assembly and the stability and release properties of the vesicles. While focused on lipid vesicles magnetically actuated through iron oxide nanoparticles, these insights are of general interest for the design of capsule and cell delivery systems for biotechnology controlled by nanoparticles.  相似文献   

9.
Colon targeting drug delivery systems have attracted many researchers due to the distinct advantages they present such as near neutral pH, longer transit time and reduced enzymatic activity. Moreover, in recent studies, colon specific drug delivery systems are gaining importance for use in the treatment of local pathologies of the colon and also for the systemic delivery of protein and peptide drugs.In previous works, our group has developed different types of hydrophilic matrices with grafted copolymers of starch and acrylic monomers with a wide range of physicochemical properties which have demonstrated their ability in controlled drug release. Since the cost of synthesizing a new polymeric substance and testing for its safety is enormous, polymer physical blends are frequently used as excipients in controlled drug delivery systems due to their versatility. So, the aim of this work is to combine two polymers which offer different properties such as permeability for water and drugs, pH sensitivity and biodegradability in order to further enhance the release performance of various drugs. It was observed that these physical blend matrices offer good controlled release of drugs, as well as of proteins and present suitable properties for use as hydrophilic matrices for colon-specific drug delivery.  相似文献   

10.
A novel controlled drug delivery system in which drug release is achieved by electrochemically actuating an array of polymeric valves on a set of drug reservoirs has been developed. The valves are bilayer structures, made in shape of a flap hinged on one side to a valve seat, consisting of thin films of evaporated gold and electrochemically deposited polypyrrole (PPy). Drugs (dry or wet) were pre-stored in an array of these reservoirs and their release is accomplished by bending the bilayer flaps away from the substrate with a small applied bias. In vitro color dye release experiment has been conducted. Seventy-five percent less energy consumption was achieved with this bilayer polymer valve design to open a same size reservoir compared to metal-corrosion based valves. Complex release patterns such as multiple drug pulsatile release and continuous linear release have been successfully implemented through flexible control of valve actuation sequence. These valves can be actuated under closed-loop-control of sensors responding to a specific biological or environmental stimulus, leading to potential applications in advanced responsive drug delivery systems.  相似文献   

11.
In the present study the cellular uptake of targeted immunoliposomes by interleukin-1 activated human endothelial cells has been analysed by several spectroscopical and microscopical fluorescence techniques. Previous in vitro experiments demonstrated that the targeting of immunoliposomes to vascular selectins is a potential way for a selective drug delivery at inflammatory sites. In attempts to further adapt the targeting experiments to physiological conditions, we demonstrate that E-Selectin-directed immunoliposomes are able to bind their target cells under the simulated shear force conditions of capillary blood flow cumulatively for up to 18 h. In order to consequently follow the fate of liposomes after target binding, we analysed the route and degree of liposome internalization of the cells concentrating on cell activation state or various liposomal parameters, e.g., sterical stabilization, type of antibody or antibody coupling strategy. The use of NBD-labelled liposomes and subsequent fluorescence quenching outside the cells with dithionite show that circa 25% of the targeted immunoliposomes were internalized. According to inhibition experiments with agents that interfered with the endocytotic pathway, we found out that the major mechanism of liposome entry is endocytic. The entry involves, at least in part, receptor-mediated endocytosis via E-Selectin, a liposome accumulation in the endosomes and their acidification was proved by pyranine spectroscopic results. Furthermore, microscopical investigations demonstrate that also a fusion of liposomes with the cell membrane occurs followed by a release of entrapped calcein into the cytoplasm. These observations gain insight into the behaviour of E-Selectin-targeted immunoliposomes and indicate that these immunoliposomes have great potential to be used as drug carriers for intracellular drug delivery at inflammatory sites.  相似文献   

12.
Polymer-coated liposomes can act as versatile drug-delivery systems due to long vascular circulation time and passive targeting by leaky blood vessels in diseased tissue. We present an experimental model system illustrating a new principle for improved and programmable drug-delivery, which takes advantage of an elevated activity of secretory phospholipase A(2) (PLA(2)) at the diseased target tissue. The secretory PLA(2) hydrolyses a lipid-based proenhancer in the carrier liposome, producing lyso-phospholipids and free fatty acids, which are shown in a synergistic way to lead to enhanced liposome destabilization and drug release at the same time as the permeability of the target membrane is enhanced. Moreover, the proposed system can be made thermosensitive and offers a rational way for developing smart liposome-based drug delivery systems. This can be achieved by incorporating specific lipid-based proenhancers or prodestabilisers into the liposome carrier, which automatically becomes activated by PLA(2) only at the diseased target sites, such as inflamed or cancerous tissue.  相似文献   

13.
A method to correct stent related complications non-invasively, is the local delivery of therapeutic agents. Different drugs have been delivered on stents, after being either dispersed or encapsulated in polymeric materials, and placed on stents to form drug-eluting-stents (DE-stents). Investigation of possibility to cover polymer - coated metallic stents, with liposomal drugs, for preparation of novel DE-liposome-coated-stents, has been initiated few years ago. In this context our research has been focused on answering the following questions: (i) Can liposomes be applied as coatings on polymer covered stents? (ii) Can drug release from liposome coated-stents be controlled? And: (iii) how is haemo-compatibility of stents affected? The results of the experiments carried out demonstrate that liposomal formulations of drugs can be used as coating systems of polymer covered stents for achieving sustained release of drugs at the site of interest. By modifying liposome characteristics, different amounts of drugs may be placed on the stents and their release rates can be adjusted for maximum therapeutic benefit. Finally, haemocompatibility of stents is highly improved (mainly in terms of cell adhesion and activation of coagulation system), when stents are coated with heparin-encapsulating -DRV liposomes.  相似文献   

14.
Vesicular phospholipid gels (VPGs) represent semi-solid phospholipid dispersions. Their morphology is truly vesicular with aqueous compartments both within the core of the vesicles and in-between the vesicles. VPGs are suited to carry both hydrophilic, amphiphilic and lipophilic drugs. Their drug load is stable since there is no concentration gradient between the vesicles' core and the surrounding water phase. VPGs are suited to release drugs in a controlled manner, and thus may serve as depot implants. When blended with excess aqueous medium VPGs are easily converted into small-sized liposome (SUV) dispersions showing high encapsulation efficiencies for all kinds of drugs. VPG-formulations with various cytostatic drugs have been tested successfully in human xenografts. Obviously, the vesicles protect the drugs from premature metabolic inactivation and/or elimination and guide them to solid tumors with enhanced vascular permeability (passive targeting).

Furthermore, when mounted on a filter support, VPGs represent a tight diffusion barrier suitable for screening of oral drug permeability, as demonstrated by a set of 21 drug compounds. Permeability values were shown to fit well with human absorption in vivo, indicating that the model is suited for rapid screening of passive transport properties of new chemical entities.  相似文献   

15.
The development of biocompatible, controlled release systems for macromolecules has provided the opportunity for researchers and clinicians to target and deliver, on site, biologically active factors. This advance has also facilitated the purification and characterization of a number of important biomolecules. These systems include controlled release delivery systems which release proteins through porous polymer matrices, degradable polymeric delivery systems, and modulated polymer release systems. These areas of research will be reviewed with regards to their design, release kinetics, and biocompatibilities. The utilization of these systems to release such biologically important polypeptides as growth factors (e.g., fibroblast growth factor, epidermal growth factor, transforming growth factor-B) as well as a number of important inhibitory factors (e.g., nitrosoureas, angiogenesis inhibitors) in both in vivo and in vitro studies will be discussed.  相似文献   

16.
作为药物递送载体,脂质体(LPs)由于免疫原性低、稳定性好、毒性低和成本低而被认为是有前途的纳米药物递送系统。然而,LPs的靶向递送效果并不理想,往往会对正常的机体细胞造成伤害,因此,如何优化LPs药物,使其具有靶向性仍然是当前研究的重点。本文结合近年来国内外相关研究进展,重点介绍了多肽、抗体、糖类、配体,以及核酸适配体等靶向修饰物对LPs功能的影响,并归纳总结了各种靶向修饰目前存在的优势与挑战,以期对LPs给药系统的进一步研究提供科学参考及新药研发提供理论依据。  相似文献   

17.
Infection and inflammation are common complications that seriously affect the functionality and longevity of implanted medical implants. Systemic administration of antibiotics and anti-inflammatory drugs often cannot achieve sufficient local concentration to be effective, and elicits serious side effects. Local delivery of therapeutics from drug-eluting coatings presents a promising solution. However, hydrophobic and thick coatings are commonly used to ensure sufficient drug loading and sustained release, which may limit tissue integration and tissue device communications. A calcium-mediated drug delivery mechanism was developed and characterized in this study. This novel mechanism allows controlled, sustained release of minocycline, an effective antibiotic and anti-inflammatory drug, from nanoscale thin hydrophilic polyelectrolyte multilayers for over 35 days at physiologically relevant concentrations. pH-responsive minocycline release was observed as the chelation between minocycline and Ca2+ is less stable at acidic pH, enabling ‘smart’ drug delivery in response to infection and/or inflammation-induced tissue acidosis. The release kinetics of minocycline can be controlled by varying initial loading, Ca2+ concentration, and Ca2+ incorporation into different layers, enabling facile development of implant coatings with versatile release kinetics. This drug delivery platform can potentially be used for releasing any drug that has high Ca2+ binding affinity, enabling its use in a variety of biomedical applications.  相似文献   

18.
Liposome, one of various drug carriers, has been extensively studied as an inert carrier for the delivery of protein, DNA, and biologically active agents into cells. Recently, much effort has been directed to the development of stimuli-sensitive liposomes that are able to respond to certain internal or external stimuli, such as, pH, electricity, temperature, magnet, or light. Among them, to obtain liposomes which release the contents in response to ambient temperature, liposomes have been modified with chemically synthetic polymers having various lower critical solution temperatures (LCST). In this study, instead of chemically synthetic polymers, a biologically produced elastin-like polypeptide (ELP), which was composed of oligomeric repeats of the pentapeptide sequence (Val-Pro-Gly-Val- Gly), was used for endowing the liposome with thermosensitivity. A model drug was encapsulated in the ELPconjugated liposomes and the release behavior of the drug caused by the liposome disruption due to the aggregation of ELPs was investigated. In addition, conjugation of ELP to liposome was identified with Fourier Transformed Infrared (FT-IR) and Scanning Electron Microscope (SEM) analyses.  相似文献   

19.
DNA纳米技术是基于沃森克里克碱基配对原则产生可编程核酸结构的技术。因其具有高精度的工程设计、前所未有的可编程性和内在的生物相容性等特点,运用该技术合成的纳米结构不仅可以与小分子、核酸、蛋白质、病毒和癌细胞相互作用,还可以作为纳米载体,递送不同的治疗药物。DNA折纸作为一种有效的、多功能的方法来构建二维和三维可编程的纳米结构,是DNA纳米技术发展的一个里程碑。由于其高度可控的几何形状、空间寻址性、易于化学修饰,DNA折纸在许多领域具有巨大的应用潜力。本文通过介绍DNA折纸的起源、基本原理和目前进展,归纳总结了运用DNA折纸进行药物装载和释放的方式,并基于此技术,展望了今后的发展趋势以及所面临的机遇和挑战。  相似文献   

20.
Tetrazine irreversibly reacts with dienophiles, and its derivatives find wide applications in the fields of biochemistry and biophysics. We have synthesized an amphiphilic tetrazine derivative (2-hexadecyl-N-(6-(6-(pyridin-2-yl)-1,2,4,5-tetrazine-3-yl)pyridin-3-yl)octadecanamide; 1), which has a hydrophilic tetrazine structure and hydrophobic alkyl chains. Liposomes composed of compound 1 and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) (PTz-liposome) were prepared. In search of a new drug delivery system (DDS), we investigated the viability of inverse electron-demand Diels-Alder, a reaction between tetrazine and 2-norbornene, on the surface of the liposomes to change membrane fluidity and promote spatial and temporal controlled release of the encapsulated drugs. Compound 1 was synthesized with a yield of 71%. MS analysis after incubation of 2-norbornene with PTz-liposome revealed the binding of 2-norbornene to tetrazine. Indium-111-labeled diethylenetriaminepentaacetic acid (111In-DTPA) was encapsulated inside PTz-liposome to evaluate the leakage of free 111In-DTPA from the liposomes quantitatively. After 24 h of adding 2-norbornene, the release percentage for PTz-liposome was significantly higher than that for the control liposome (without tetrazine structure). Furthermore, the membrane fluidity of the PTz-liposome was increased by adding 2-norbornene. These results suggested that the combination of dienophile and liposome containing a newly synthesized tetrazine derivative can be used as a controlled release DDS carrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号