首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J A Carver  J H Bradbury 《Biochemistry》1984,23(21):4890-4905
The resolved 1H NMR resonances of the aromatic region in the 270-MHz NMR spectrum of sperm whale, horse, and pig metmyoglobin (metMb) have been assigned, including the observable H-2 and H-4 histidine resonances, the tryptophan H-2 resonances, and upfield-shifted resonances from one tyrosine residue. The use of different Mb species, carboxymethylation, and matching of pK values allows the assignment of the H-4 resonances, which agree in only three cases out of seven with scalar-correlated two-dimensional NMR spectroscopy assignments by others. The conversion to hydroxymyoglobin at high pH involves rearrangements throughout the molecule and is observed by many assigned residues. In sperm whale ferric cyanomyoglobin, nine H-2 and eight H-4 histidine resonances have been assigned, including the His-97 H-2 resonance and tyrosine resonances from residues 103 and 146. The hyperfine-shifted resonances from heme and near-heme protons observe a shift with a pK = 5.3 +/- 0.3 (probably due to deprotonation of His-97, pK = 5.6) and another shift at pK = 10.8 +/- 0.3. The spectrum of high-spin ferrous sperm whale deoxymyoglobin is very similar to that of metMb, which allows the assignment of seven surface histidine H-2 and H-4 resonances and also resonances from the two tryptophan residues and one tyrosine. In diamagnetic sperm whale (carbon monoxy)myoglobin (COMb), 10 His H-2 and 11 His H-4 resonances are observed, and 8 H-2 and 9 H-4 resonances are assigned, including His-64 H-4, the distal histidine. This important resonance is not observed in sperm whale oxymyoglobin, which in general shows very similar titration curves to COMb. Histidine-36 shows unusual titration behavior in the paramagnetic derivatives but normal behavior in the diamagnetic derivatives, which is discussed in the accompanying paper [Bradbury, J. H., & Carver, J. A. (1984) Biochemistry (following paper in this issue)].  相似文献   

2.
1H NMR spectroscopy at 100 MHz was used to determine the first-order rate constants for the 1H-2H exchange of the H-2 histidine resonances of RNase-A in 2H2O at 35 degrees C and pH meter readings of 7, 9, 10 and 10.5. Prolonged exposure in 2H2O at 35 degrees C and pH meter reading 11 caused irreversible denaturation of RN-ase-A. The rate constants at pH 7 and 9 agreed reasonably well with those obtained in 1H-3H exchange experiments by Ohe, J., Matsuo, H., Sakiyama, F. and Narita, K. [J. Biochem, (Tokyo) 75, 1197-1200 (1974)]. The rate data obtained by various authors is summarised and the reasons for the poor agreement between the data is discussed. The first-order rate constant for the exchange of His-48 increases rapidly from near zero at pH 9 (due to its inaccessibility to solvent) with increase of pH to 10.5 The corresponding values for His-119 show a decrease and those for His-12 a small increase over the same pH range. These changes are attributed to a conformational change in the hinge region of RNase-A (probably due to the titration of Tyr-25) which allows His-48 to become accessible to solvent. 1H NMR spectra of S-protein and S-peptide, and of material partially deuterated at the C-2 positions of the histidine residues confirm the reassignment of the histidine resonances of RNase-A [Bradbury, J. H. & Teh, J. S. (1975) Chem. Commun., 936-937]. The chemical shifts of the C-2 and C-4 protons of histidine-12 of S-peptide are followed as a function of pH and a pK' value of 6.75 is obtained. The reassignment of the three C-2 histidine resonances of S-protein is confirmed by partial deuteration studies. The pK' values obtained from titration of the H-2 resonances of His-48, His-105 and His-119 are 5.3, 6.5 and 6.0, respectively. The S-protein is less stable to acid than RNase-A since the former, but not the latter, shows evidence of reversible denaturation at pH 3 and 26 degrees C. His-48 in S-protein titrates normally and has a lower pK than in RN-ase-A probably because of the absence of Asp-14, which in RN-ase-A forms a a hydrogen bond with His-48 and causes it to be inaccessible to solvent, at pH values below 9.  相似文献   

3.
A study of the three histidine residues of bovine alpha-lactalbumin has been made using proton magnetic resonance (PMR) spectroscopy in order to obtain information on their environments in the protein and thereby to test in part the previously proposed structure. PMR titration curves are obtained for the H-4 resonances using difference spectroscopy and for the H-2 resonances and the 1-H-2-H exchange rates of the H-2 protons have been measured. The assignment of resonances to particular histidine residues is achieved by utilising their selective reaction with iodoacetate in conjunction with a PMR study of the carboxymethylation of alpha-N-acetyl-L-histidine. The H-2 and H-4 resonances labelled 1, 2 and 3 starting from the downfield end of the spectrum are assigned to histidine residues 107, 68 and 32 respectively. Their apparent pK values at low ionic strength and 20 degrees C are 5.78, 6.49 and 6.51 respectively. The experimental results on two histidine residues are consistent with the predictions of the proposed structure, which indicate that histidine-68 is an external residue and histidine-32 is partially buried and in the vicinity of aromatic residues. The experimental data on histidine 107 can also be rationalised with less certainty in terms of the proposed structure, which indicates a partially buried residue that may be involved in hydrogen bonding.  相似文献   

4.
The 250 MHz 1H-NMR spectrum of horse carbonic anhydrase I (or B) (carbonate hydro-lyase, EC 4.2.1.1) was measured as a function of pH under various conditions. Eight resonances corresponding to histidine C-2 protons and four resonances corresponding to histidine C-4 protons were identified and assigned to individual histidine residues in the enzyme molecule. Substantial similarities between horse and human carbonic anhydrases I were demonstrated. While the human enzyme has three titratable histidine residues in its active site, the horse enzyme has only two, His-67 in the human enzyme being replaced by Gln in the horse enzyme (Jabusch, J.R., Bray, R.P. and Deutsch, H.F. (1980) J. Biol. Chem. 255, 9196-9204). This substitution has small but significant effects on the behaviour of the other active-site histidines. His-64 and His-200. However, His-64 has an anomalously low pKa value also in horse isoenzyme I, as previously observed in human isoenzyme I (Campbell, I.D., Lindskog, S. and White, A.I. (1974) J. Mol. Biol. 90, 469-489).  相似文献   

5.
The proton magnetic resonance spectrum at 300 MHz of the histidine residues in a semisynthetic derivative of bovine pancreatic ribonuclease (RNase A) has been determined. The derivative RNase 1-118 . 111-124 was prepared by enzymically removing six residues from the COOH terminus of the protein (positions 119-124) and then complementing the inactive RNase 1-118 with a chemically synthesized peptide containing the COOH-terminal 14 residues of ribonuclease (RNase 111-124) [Lin, M.C., Gutte, B., Moore, S., & Merrifield, R.B. (1970) J. Biol. Chem. 245, 5169-5170]. Comparison of the line positions of the C(2)-1H resonances of these residues and of their pH dependence with those reported by other workers has allowed assignment of the resonances to individual residues, as well as the determination of individual pK values for histidine-12, histidine-105, and histidine-119. The assignment of histidine-119 was confirmed by the use of a selectively deuterated derivative. The titration behavior of all four histidine residues is indistinguishable from that observed by others for bovine pancreatic ribonuclease A. Partial dissociation of the noncovalent semisynthetic complex was evident at 30 degrees C, pH 4.0, 0.3 M NaCl; pertinent spectra were analyzed to provide an estimate of the association constant between the component chains under these conditions of 1.9 X 10(3) M-1.  相似文献   

6.
Four titrating histidine ring C2 and C4 proton resonances are observed in 220 MHz proton NMR spectra of human metmyoglobin as a function of pH. Values of ionization constants determined from the NMR titration data using an equation describing a simple proton association-dissociation equilibrium are curves (1) 6.6, (2) 7.0, (3) 5.8, and (4) 7.4. Four histidine residues have also been found to be solvent-accessible in human metmyoglobin by carboxymethylation studies (Harris, C.M., and Hill, R.L. (1969) J. Biol. Chem. 244, 2195-2203). Two of the titration curves (3 and 4) deviate significantly from the chemical shift values normally observed for histidine C2 proton resonances. Curve 3, with a low pKa, is shifted downfield at high values of pH and also exhibits a second minor inflection with a pKa value of 8.8. On the other hand, the high pKa curve, 4, is shifted upfield at all values of pH. The characteristics of the NMR titration curves with the lowest and highest pKa values (3 and4) are very similar to curves observed previously with sperm whale and horse metmyoglobins (Cohen, J.S., Hagenmaier, H., Pollard, H., and Schechter, A.N. (1972) J. Mol. Biol. 71, 513-519). These results indicate that the histidine residues from which these curves are derived have unusual and characteristic environments in this series of homologous proteins. The NMR spectra of all three metmyoglobins are changed extensively as a result of azide ion binding, indicating conformational changes affecting the environments of several imidazole side chains. The presence of azide ion causes a selective downfield chemical shift for the low pKa curve and a selective upfield chemical shift for the high pKa curve in all three proteins. Azide also abolishes the second inflection seen in the low pKa curve at high pH. In addition to these effects, the presence of azide ion permits the observation of two additional titrating proton resonances for all three metmyoglobins. Increasing the azide to protein ratio at several fixed values of pH yields results which show that a slow exchange process is occurring with each of the metmyoglobins. In the azide titration studies the maximum changes in the NMR spectra occurred at approximately equimolar concentrations. The NMR results for these proteins in the absence and presence of azide ion are related to x-ray crystallographic studies of sperm whale metmyoglobin and the known alkylation properties of the histidine residues. Tentative assignments of the titrating resonances observed are suggested.  相似文献   

7.
J H Bradbury  J A Carver 《Biochemistry》1984,23(21):4905-4913
In paramagnetic metmyoglobin, cyanomyoglobin (CNMb), and deoxymyoglobin, His-36 has a high pK (approximately 8), and the NMR titration behavior of the H-2 resonance is perturbed, due to the presence at low pH of a hydrogen bond with Glu-38, which is broken at high pH. The His-36 H-4 resonance shows no shift with pK approximately 8 because of two opposing chemical shift effects but monitors the titration of nearby Glu-36 (pK = 5.6). In diamagnetic derivatives [(carbon monoxy)myoglobin (COMb) and oxymyoglobin (oxyMb)], the titration behavior of His-36 H-2 and H-4 resonances is normalized (pK approximately 6.8). The very slight alkaline Bohr effect in sperm whale myoglobin (Mb) is interpreted in terms of the pK change of His-36 from deoxyMb to oxyMb and compensating pK changes in the opposite direction of other unspecified groups. In sperm whale COMb at 40 degrees C, the distal histidine (His-64) and His-97 have pK values of 5.0 and 5.9. The meso proton resonances remote from these groups do not show a titration shift, but the nearby gamma-meso proton (pK = 5.3) responds to titration of both histidines, and the upfield Val-68 methyl at -2.3 ppm (pK = 4.7) witnesses the titration of nearby His-64. At 20 degrees C, the latter resonance is reduced in size, and a second resonance occurs at -2.8 ppm, which is insensitive to pH and, hence, more remote from His-64. Both resonances arise from two conformations of Val-68 in slow equilibrium. In oxyMb at 20 degrees C, only the latter resonance is observed, presumably because of the steric restrictions imposed by the hydrogen bond between ligand and His-64 in oxyMb, which is not present in COMb. In oxyMb the pK of His-97 (5.6) is similar to that of the meso proton resonances (5.5) and to the pK of other pH-dependent processes, including the very small acid Bohr effect. It is likely that these processes are controlled by the titration of His-97.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Bovine adrenodoxin in the reduced form has been measured by one- and two-dimensional 1H NMR spectroscopy. By comparing the spectrum of reduced adrenodoxin with that of the oxidized protein, resonances have been assigned for the aromatic residues. The spin-lattice relaxation time for the resonances due to histidine residues was found to depend on the reduction state of adrenodoxin. The distance from the paramagnetic center is calculated by using the Solomone-Bloembergen equation. The resonances from Tyr-82 and Ala-81 show large chemical shift changes upon reduction of adrenodoxin. The conformational change of adrenodoxin manifested by chemical shift difference between reduced and oxidized forms is found in the sequence around Tyr-82 and Ala-81. Modification with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at Glu-74, Asp-79, and Asp-86 inhibited the interaction with both adrenodoxin reductase and cytochrome P-450scc (Lambeth, D. J., Geren, L. M., and Millett, F. (1984) J. Biol. Chem. 259, 10025-10029; Geren, L. M., O'Brien, P., Stonehuerner, J., and Millett, F. (1984) J. Biol. Chem. 259, 2155-2160). Thus, the sequence of these amino acids was assigned to the interaction site with the redox partners. The present 1H NMR investigation of adrenodoxin demonstrates that a conformational change upon reduction of the iron-sulfur cluster occurs in the sequence of negatively charged amino acids that is a putative site for interaction with redox partners. This could offer the structural basis of the electron transfer mechanism in which adrenodoxin functions as a mobile electron carrier.  相似文献   

9.
The histidine C-2 proton NMR titration curves of ribonuclease S-peptide (residues 1 to 20) and S-protein (residues 21 to 124) are reported. Although S-protein contains 3 histidine residues, four discrete resonances are observed to titrate. One of these arises from the equivalent histidine residues of unfolded S-protein. The variation in area of the four resonances indicate that there is a reversible pH-dependent equilibrium between the folded and unfolded forms of S-protein, with some unfolded material being present at most pH values. Two of the resonances of the folded S-protein can be assigned to 2 of the histidine residues, 48 and 105, from the close similarity of their titration curves to those in ribonuclease. These similarities indicate a homology of portions of the folded conformation of S-protein to that of ribonuclease in solution. These results indicate that the complete amino acid sequence is not required to produce a folded conformation similar to the native globular protein, and they appear to eliminate the possibility that proteins fold from their NH2 terminus during protein synthesis. The low pH inflection present in the titration curve assigned to histidine residue 48 in ribonuclease is absent from this curve in S-protein. This is consistent with our previous conclusion that this inflection arises from the interaction of histidine 48 with aspartic acid residue 14, which is also absent in S-protein. The third titrating resonance of native S-protein is assigned to the remaining histidine residue at position 119. The properties of this resonance are not identical with either of the titration curves of the active site histidine residues 12 and 119 of ribonuclease. The resonance assigned to histidine 119 is the only one significantly affected on the addition of sodium phosphate to S-protein, indicating that some degree of phosphate binding occurs. In both the absence and presence of phosphate this curve also lacks the low pH inflection observed in the histidine 119 NMR titration curve in ribonuclease. This difference presumably arise from a conformational between ribonuclease and the folded S-protein involving a carboxyl group.  相似文献   

10.
L P Yu  G M Smith 《Biochemistry》1990,29(12):2920-2925
The 15N-enriched ferricytochrome c2 from Rhodospirillum rubrum has been studied by 15N and 1H NMR spectroscopy as a function of pH. The 15N resonances of the heme and ligand tau nitrogen are broadened beyond detection because of paramagnetic relaxation. The 15N resonance of the ligand histidine phi nitrogen was unambiguously identified at 184 ppm (pH 5.6). The 15N resonances of the single nonligand histidine are observed only at low pH, as in the ferrocytochrome because of the severe broadening caused by tautomerization. The dependence of the 15N and 1H spectra of the ferricytochrome on pH indicated that the ligand histidine tau NH does not dissociate in the neutral pH range and is involved in a hydrogen bond, similar to that in the reduced state. Because neither deprotonated nor non-hydrogen-bonded forms of the ligand histidine are observed in the spectra of either oxidation state, the participation of such forms in producing heterogeneous populations having different electronic g tensors is ruled out. Transitions having pKa's of 6.2, 8.6, and 9.2 are observed in the ferricytochrome. The localized conformational change around the omega loops is observed in the neutral pH range, as in the ferrocytochrome. Structural heterogeneity leads to multiple resonances of the heme ring methyl at position 8. The exchange rate between the conformations is temperature dependent. The transition with a pKa of 6.2 is assigned to the His-42 imidazole group. The displacement of the ligand methionine, which occurs with a pKa of 9.2, causes gross conformational change near the heme center.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The amino groups of ribonuclease A (RNase-A) have been methylated with formaldehyde and borohydride to provide observable resonances for proton magnetic resonance (PMR) studies. Although enzymatic activity is lost, PMR difference spectroscopy and PMR studies of thermal denaturation show native conformation is largely preserved in methylated RNase-A. Resonances corresponding to the NH2-terminal alpha-amino and 10 xi-amino N-methyl groups are titrated at 220 MHz to obtain pK values. After correction for the effects of methylation, using values previously derived from model compound studies, a pK of 6.6 is found for the alpha-amino group, a pK of 8.6 for the xi-amino group of lysine-41 and pK values ranging from 10.6 to 11.2 for the other lysine xi-amino groups. Interactions between lysine-7 and lysine-41 or between the alpha-amino and xi-amino groups of lysine-1 have been proposed to account for deviations from simple titration behaviour. The correct continuities for the titration curves of the histidine H-2 proton resonances have been confirmed by selective deuteration of the H-2 protons. Titration curves for the H-2 proton resonances of histidine-12 and histidine-119 of methylated RNase-A show deviations from the titration curves for the native enzyme, indicating some alteration of the active-site conformation. In the presence of phosphate, titration curves for the H-2 proton resonances of histidine-12 and histidine-119 of methylated RNase-A indicate binding of phosphate at the active site, but these curves continue to show deviations from the titration behaviour of native RNase-A. The titration curve for the N-methyl resonance of lysine-41 is perturbed considerably by the presence of phosphate, which indicates a possible catalytic role for lysine-41.  相似文献   

12.
Nearly complete assignment of the aliphatic 1H and 13C resonances of the IIAglc domain of Bacillus subtilis has been achieved using a combination of double- and triple-resonance three-dimensional (3D) NMR experiments. A constant-time 3D triple-resonance HCA(CO)N experiment, which correlates the 1H alpha and 13C alpha chemical shifts of one residue with the amide 15N chemical shift of the following residue, was used to obtain sequence-specific assignments of the 13C alpha resonances. The 1H alpha and amide 15N chemical shifts had been sequentially assigned previously using principally 3D 1H-15N NOESY-HMQC and TOCSY-HMQC experiments [Fairbrother, W. J., Cavanagh, J., Dyson, H. J., Palmer, A. G., III, Sutrina, S. L., Reizer, J., Saier, M. H., Jr., & Wright, P. E. (1991) Biochemistry 30, 6896-6907]. The side-chain spin systems were identified using 3D HCCH-COSY and HCCH-TOCSY spectra and were assigned sequentially on the basis of their 1H alpha and 13C alpha chemical shifts. The 3D HCCH and HCA(CO)N experiments rely on large heteronuclear one-bond J couplings for coherence transfers and therefore offer a considerable advantage over conventional 1H-1H correlation experiments that rely on 1H-1H 3J couplings, which, for proteins the size of IIAglc (17.4 kDa), may be significantly smaller than the 1H line widths. The assignments reported herein are essential for the determination of the high-resolution solution structure of the IIAglc domain of B. subtilis using 3D and 4D heteronuclear edited NOESY experiments; these assignments have been used to analyze 3D 1H-15N NOESY-HMQC and 1H-13C NOESY-HSQC spectra and calculate a low-resolution structure [Fairbrother, W. J., Gippert, G. P., Reizer, J., Saier, M. H., Jr., & Wright, P. E. (1992) FEBS Lett. 296, 148-152].  相似文献   

13.
The low field regions of the 220 MHz proton magnetic resonance spectra of concanavalin A (Con A) complexes with metal ions show well resolved resonances from the C2 protons of histidine side chains. Shifts of these resonances are observed when Zn2+ ions at the transition metal ion binding site, S1, are replaced by CO2 ions. The magnitude of these shifts can be used to determine the orientation of axis of anisotropy of the Co2+ ligand field since the distances from the C2 protons of the histidines to S1 can be computed from the crystal structure coordinates. Assignment of the separate peaks in the spectrum of the Con A-Co2+-Ca2+ complex and of the Con A-Zn2+-Ca2+ complex, to particular histidines in the amino acid sequence of Con A then follows. The refined crystal coordinates of both Reeke et al. (Reeke, G. N., Jr., Becker, J. W., and Edelman, G. M. (1975) J. Biol. Chem, 250, 1525-1547) and of Hardman and Ainsworth (private communication) have been used. These two sets of coordinates both yield orientations for the axis of anisotropy which are approximately in the direction of the His 24 nitrogen ligand.  相似文献   

14.
Insulin has proved difficult to study by nuclear magnetic resonance spectroscopy because of its complex aggregation behaviour in solution and its insolubility between pH 4 and 7. Now for the first time it has been possible to assign the 1H nuclear magnetic resonances of the H-2 histidine protons of residues B5 and B10 of bovine 2 Zn insulin and Zn-free insulin, and the B5 and A8 residues of hagfish insulin. As expected, the addition of Zn to Zn-free insulin causes virtually no change in the chemical shift or the rate of H-D exchange of the H-2 proton of histidine B5, which is not involved in Zn binding in the 2 Zn insulin hexamer. The rate of H-D exchange of the H-2 proton of histidine B10 is decreased markedly on Zn binding at this residue, but the chemical shift of the resonance remains virtually constant owing to the balancing of an upfield ring current shift of the ordered histidine residues by a downfield shift due to electron withdrawal from the ring nitrogen by the Zn binding.  相似文献   

15.
The study by means of 1H nuclear magnetic resonance (NMR) of the histidines of phospholipase A2 isolated from porcine, bovine and equine pancreas is reported. Assignment of the histidine resonances was achieved by comparison of different enzymes and the use of paramagnetic probes. pH titration curves for various histidyl resonances were obtained and compared in the presence and absence of calcium. Calcium is shown to lower the pKa of the active site histidine. The NMR results are compared with the known X-ray three-dimensional structure for the bovine enzyme.  相似文献   

16.
Optical, resonance Raman, and electron paramagnetic resonance spectroscopies have been used to characterize the ligands and spin state of the chloroplast cytochrome b-559. The protein was isolated from both maize and spinach in a low-potential form. The spectroscopic data indicate that the heme iron in both ferric and ferrous cytochrome b-559 is in its low-spin state and ligated in its fifth and sixth coordination positions by histidine nitrogens. Electron paramagnetic resonance data for the purified spinach cytochrome are in good agreement with those determined by Bergstr?m and V?nng?rd [Bergstr?m, J., & V?nng?rd, T. (1982) Biochim. Biophys. Acta 682, 452-456] for a low-potential membrane-bound form of cytochrome b-559. The g values of high-potential cytochrome b-559 are shifted from those of its low-potential forms; this shift is interpreted as arising from a deviation of the planes of the two axial histidine imidazole rings from a parallel orientation. The model is consistent with the physical data and may also account for the facility with which cytochrome b-559 can be converted between low- and high-potential forms. Recent biochemical and molecular biological data [Widger, W. R., Cramer, W. A., Hermodson, M., Meyer, D., & Gullifor, M. (1984) J. Biol. Chem. 259, 3870-3876; Herrmann, R. G., Alt, J., Schiller, D., Cramer, W. A., & Widger, W. R. (1984) FEBS Lett. 179, 239-244] have shown that two polypeptides, one with 83 residues and a second with 39 residues, most likely constitute the protein of the cytochrome.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The interaction of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase, 4,5-dideoxyshikimate 3-phosphate (ddS3P), and [2-13C]-and [3-13C]phosphoenolpyruvate (PEP) has been examined by 13C NMR spectroscopy. Although no resonances due to a dead-end intermediate complex could be detected, an enzyme active site specific formation of pyruvate was observed. The interaction of EPSP synthase with shikimate 3-phosphate (S3P) and [2-13C]- or [3-13C]PEP has been examined by 13C NMR spectroscopy. With [2-13C]PEP, in addition to the resonances due to [2-13C]PEP and [8-13C]EPSP, new resonances appeared at 164.8, 110.9, and 107.2 ppm. The resonance at 164.8 ppm has been assigned to enzyme-bound EPSP. The resonance at 110.9 ppm has been assigned to C-8 of an enzyme-free tetrahedral intermediate of the sort originally proposed by Levin and Sprinson [Levin, J. G., & Sprinson, D. B. (1964) J. Biol. Chem. 239, 1142-1150] and recently independently observed by Anderson et al. [Anderson, K. S., Sikorski, J. A., Benesi, A. J., & Johnson, K. A. (1988) J. Am. Chem. Soc. 110, 6577-6579]. The resonance at 107.2 ppm has been assigned to an enzyme-bound intermediate whose structure is closely related to that of the tetrahedral intermediate. With [3-13C]PEP, new resonances appeared at 88.9, 26.2, 25.5, and 24.5 ppm. The resonance at 88.9 ppm has been assigned to enzyme-bound EPSP. The resonance at 26.2 ppm, which was found to correlate with 1.48 ppm by isotope-edited multiple quantum coherence 1H NMR spectroscopy, has been assigned to the methyl group 4-hydroxy-4-methylketoglutarate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Rui L  Pochapsky SS  Pochapsky TC 《Biochemistry》2006,45(12):3887-3897
Structural perturbations in cytochrome P450cam (CYP101) induced by the soluble fragment of cytochrome b5, a nonphysiological effector of CYP101, were investigated by NMR spectroscopy and compared with the perturbations induced by the physiological reductant and effector putidaredoxin (Pdx). Chemical shifts of perdeuterated [U-15N]CYP101 backbone amide (NH) resonances were monitored as a function of cytochrome b5 concentration by 1H-15N TROSY-HSQC experiments. The association of cytochrome b5 with the reduced CYP101-camphor-carbon monoxide complex (CYP-S-CO) perturbs many of the same resonances that Pdx does, including regions of the CYP101 molecule implicated in substrate access and orientation. The perturbations are smaller in magnitude than those observed with Pdx(r) due to a lower binding affinity (a Kd of 13 +/- 3 mM, for the reduced cytochrome b5-CYP-S-CO complex compared to a Kd of 26 +/- 12 microM for the Pdx-CYP-S-CO complex). The results are in accord with our previous suggestion that the observed perturbations are related to effector activity and support the proposal that the primary role of the effector is to populate the active conformation of CYP101 to prevent uncoupling [Pochapsky, S. S., et al. (2003) Biochemistry 42, 5649-5656]. A titratable perturbation is observed at the 1H resonance of the 8-CH3 group of CYP101-bound camphor upon addition of cytochrome b5, a phenomenon also associated with the formation of the CYP101 x Pdx complex, albeit with larger perturbations [Wei, J. Y., et al. (2005) J. Am. Chem. Soc. 127, 6974-6976]. The effector activity of the particular rat cytochrome b5 construct used for NMR studies was confirmed by monitoring the enzymatic turnover that yielded 5-exo-hydroxycamphor using gas chromatography and mass spectrometry. Finally, the common features of the perturbations observed in the NMR spectra of the two complexes are discussed, and their relevance to effector activity is considered.  相似文献   

19.
The effects of pH upon the C-2 resonances of the 5 histidine residues of Escherichia coli MB 1428 dihydrofolate reductase in binary complexes with methotrexate, aminopterin, folate, methopterin, and trimethoprim were studied by 300-MHz 1H nmr spectroscopy. Three of the five histidine residues, labeled 1, 2, and 3, exhibited similar pK' values and chemical shifts for their C-2 protons in the five binary complexes. One histidine, 4, was quite different in the folate complex and the last histidine, 5 was quite different in the trimethoprim complex. For all five binary complexes, each histidine had a pK' which was significantly different from the other 4 histidines of that complex. Titration of the binary methotrexate complex of a 5,5'-dithiobis(2-nitrobenzoate)-modified enzyme showed that 2 histidines were not perturbed by this modification of Cys 152, and that the alkaline form of histidine 2, the acid form of histidine 4, and, to a lesser extent, the acid form of histidine 3 were slightly perturbed. Titration of the binary methotrexate complex of a N-bromosuccinimide-modified enzyme demonstrated that this modification slightly affected all of the histidines and drastically affected histidine 5. Histidines 3 and 5 of the binary methotrexate complex reacted rapidly with the histidine-specific reagent, ethoxyformic anhydride, while histidines 2 and 4 reacted at a moderate rate and histidine 1 reacted slowly if at all. The local electrostatic environments of the 5 histidine residues as deduced from the crystal structure of the binary complex of the enzyme with methotrexate (Matthews, D.A., Alden, R.A., Bolin, J.T., Freer, S.T., Hamlin, R., Xuong, N., Kraut, J., Poe, M., Williams, M.N., and Hoogsteen, K. (1977) Science 197, 594-597) were used as the basis for proposed assignments of the five histidine C-2 nmr resonances. The assignments were: 1, pK' 7.9 to 8.2, His 124; 2, pK' 7.2 to 7.4, His 141; 3, pK' 6.5 to 6.7, His 149; 4, pK' 5.7 to 6.3, His 114; and 5, pK' 5.2 to 5.9, His 45. The effect of the chemical modifications upon the enzyme's histidine residues were consistent with the assignments, but no direct chemical evidence in support of the assignments was obtained. It was proposed that, since the crystallographic data provided consistent assignments of the histidine nmr data for both native and chemically modified enzyme, the local environment of each of the 5 histidine residues was similar in the crystal and in solution.  相似文献   

20.
D Davis  F O Garces 《Steroids》1992,57(11):563-568
The molecular structure of 3,3-difluoro-5 alpha-androstane-17 beta-ol acetate was analyzed by 1H, 13C, and 19F nuclear magnetic resonance (NMR) techniques; two-dimensional NMR was used to assigned 1H and 13C resonances. The 1H NMR spectrum in deuterated chloroform shows three sharp singlets (delta = 0.74, 0.79, and 2.00 ppm) integrating for three protons each, an isolated triplet at 4.55 ppm integrating for one proton, and overlapping multiplets between 0.72 and 2.12 ppm integrating for 31 protons. The 13C spectrum shows 18 resonances between 10 and 55 ppm, and three additional resonances at 82.9, 124.0, and 171.5 ppm. The 19F[1H] spectrum shows two sets of doublets (observed 2J = 150 Hz) at 5.00 and -4.80 ppm. Multiplets arising from 19F-13C J-coupling provide the starting assignment for all resonances by means of 1H homonuclear correlation (COSY) and 1H-13C heteronuclear correlation spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号