首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Galactofuranosyl residues are present in various microorganisms but not in mammals. In this study, we identified a human lectin binding to galactofuranosyl residues and named this protein human intelectin (hIntL). The mature hIntL was a secretory glycoprotein consisting of 295 amino acids and N-linked oligosaccharides, and its basic structural unit was a 120-kDa homotrimer in which 40-kDa polypeptides were bridged by disulfide bonds. The hIntL gene was split into 8 exons on chromosome 1q21.3, and hIntL mRNA was expressed in the heart, small intestine, colon, and thymus. hIntL showed high levels of homology with mouse intelectin, Xenopus laevis cortical granule lectin/oocyte lectin, lamprey serum lectin, and ascidian galactose-specific lectin. These homologues commonly contained no carbohydrate recognition domain, which is a characteristic of C-type lectins, although some of them have been reported as Ca(2+)-dependent lectins. Recombinant hIntL revealed affinities to d-pentoses and a d-galactofuranosyl residue in the presence of Ca(2+), and recognized the bacterial arabinogalactan of Nocardia containing d-galactofuranosyl residues. These results suggested that hIntL is a new type lectin recognizing galactofuranose, and that hIntL plays a role in the recognition of bacteria-specific components in the host.  相似文献   

2.
The present study reports a new type of skin mucus lectin found in catfish Silurus asotus. The lectin exhibited calcium-dependent mannose-binding activity. When mannose eluate from chromatography with mannose-conjugated agarose was analysed by SDS-PAGE, the lectin appeared as a single 35-kDa band. Gel filtration showed that the lectin forms monomers and dimers. A 1216-bp cDNA sequence obtained by RACE-PCR from the skin encoded a 308 amino acid secretory protein with homology to mammalian and fish intelectins. RT-PCR demonstrated that the lectin gene was expressed in the gill, kidney and skin. Subsequent sequencing revealed the presence of an isoform in the gills. Antiserum detected the intelectin protein in club cells in the skin and gill, renal tubules and blood plasma. Although intelectin gene expression was not induced by in vivo bacterial stimulation, the intelectin showed agglutination activity against the pathogenic bacterium Aeromonas salmonicida, suggesting that the lectin plays an important role in self-defence against bacteria in the skin surface of the catfish. These findings represent one of the few examples of characterization and functional analysis of a fish intelectin protein.  相似文献   

3.
4.
5.
A new galactose-specific lectin was purified from seeds of a Caesalpinoideae plant, Bauhinia variegata, by affinity chromatography on lactose-agarose. Protein extracts haemagglutinated rabbit and human erythrocytes (native and treated with proteolytic enzymes), showing preference for rabbit blood treated with papain and trypsin. Among various carbohydrates tested, the lectin was best inhibited by D-galactose and its derivatives, especially lactose. SDS-PAGE showed that the lectin, named BVL, has a pattern similar to other lectins isolated from the same genus, Bauhinia purpurea agglutinin (BPA). The molecular mass of BVL subunit is 32 871 Da, determined by MALDI-TOF spectrometry. DNA extracted from B. variegata young leaves and primers designed according to the B. purpurea lectin were used to generate specific fragments which were cloned and sequenced, revealing two distinct isoforms. The bvl gene sequence comprised an open reading frame of 876 base pairs which encodes a protein of 291 amino acids. The protein carried a putative signal peptide. The mature protein was predicted to have 263 amino acid residues and 28 963 Da in size.  相似文献   

6.
Intelectins (X-type lectins), broadly distributed throughout chordates, have been implicated in innate immunity. Xenopus laevis embryonic epidermal lectin (XEEL), an intelectin secreted into environmental water by the X. laevis embryo, is postulated to function as a defense against microbes. XEEL is homologous (64% identical) to human intelectin-1 (hIntL-1), which is also implicated in innate immune defense. We showed previously that hIntL-1 binds microbial glycans bearing exocyclic vicinal diol groups. It is unknown whether XEEL has the same ligand specificity. Also unclear is whether XEEL and hIntL-1 have similar quaternary structures, as XEEL lacks the corresponding cysteine residues in hIntL-1 that stabilize the disulfide-linked trimer. These observations prompted us to further characterize XEEL. We found that hIntL-1 and XEEL have similar structural features. Even without the corresponding intermolecular disulfide bonds present in hIntL-1, the carbohydrate recognition domain of XEEL (XEELCRD) forms a stable trimer in solution. The structure of XEELCRD in complex with d-glycerol-1-phosphate, a residue present in microbe-specific glycans, indicated that the exocyclic vicinal diol coordinates to a protein-bound calcium ion. This ligand-binding mode is conserved between XEEL and hIntL-1. The domain architecture of full-length XEEL is reminiscent of a barbell, with two sets of three glycan-binding sites oriented in opposite directions. This orientation is consistent with our observation that XEEL can promote the agglutination of specific serotypes of Streptococcus pneumoniae. These data support a role for XEEL in innate immunity, and they highlight structural and functional conservation of X-type lectins among chordates.  相似文献   

7.
Lectins are innate immune defense proteins that recognize bacterial cell wall components. Based on the knowledge that cigarette smoking is associated with an increased risk of infections, we hypothesized that cigarette smoking may modulate the expression of lectin genes in airway epithelium. Affymetrix microarrays were used to survey the expression of lectin genes in large airway epithelium from nine nonsmokers and 20 healthy smokers and in small airway epithelium from 13 nonsmokers and 20 healthy smokers. There were no changes (>2-fold change; p < 0.05) in lectin gene expression among healthy smokers compared with nonsmokers except for down-regulation of intelectin 1, a lectin that binds to galactofuranosyl residues in bacterial cell walls (large airway epithelium, p < 0.01; small airway epithelium, p < 0.01). This was confirmed by TaqMan RT-PCR in both large (p < 0.05) and small airway epithelium (p < 0.02). Immunohistochemistry assessment of airway biopsies demonstrated that intelectin 1 was expressed in secretory cells, while Western analysis confirmed the decreased expression of intelectin 1 in airway epithelium of healthy smokers compared with healthy nonsmokers (p < 0.02). Finally, compared with healthy nonsmokers, intelectin 1 expression was also decreased in small airway epithelium of smokers with lone emphysema and normal spirometry (n = 13, p < 0.01) and smokers with established chronic obstructive pulmonary disease (n = 14, p < 0.01). In the context that intelectin 1 plays a role in defense against bacteria, its down-regulation in response to cigarette smoking is another example of the immunomodulatory effects of smoking on the immune system and may contribute to the increase in susceptibility to infections observed in smokers.  相似文献   

8.
Multiple soluble beta-galactoside-binding lectins from human lung   总被引:16,自引:0,他引:16  
Soluble extracts of human lung contain three major beta-galactoside-binding proteins with apparent subunit molecular weights of 14,000 (HL-14), 22,000 (HL-22), and 29,000 (HL-29). HL-14 and HL-29 were abundant in all the specimens that we tested whereas HL-22 was abundant in some and very scarce in others. HL-14 could be resolved into at least six acidic forms by isoelectric focusing and HL-29 into at least five acidic forms by this procedure. In contrast, HL-22 is a basic protein. Other beta-galactoside-binding proteins with subunit molecular weights ranging from about 16,000 to 27,000 were also detected in lung extracts, but the possibility that they are degradation products cannot be excluded. HL-14 is very similar to a rat lung lectin (RL-14.5) in carbohydrate binding specificity and amino acid composition and reacts strongly with an antiserum raised against the rat lectin. HL-29 is similar to the rat lectin RL-29 in the same respects, but its carbohydrate binding specificity is somewhat different. Of the known rat lectins, HL-22 resembles RL-18 most closely in carbohydrate binding specificity, but it is significantly different in other properties and does not react with an antiserum raised against the rat lectin.  相似文献   

9.
A cDNA clone encoding a lectin was isolated by immunological screening of an expression library prepared from poly(A)+ RNA from the inner bark ofRobinia pseudoacacia. The cDNA clone (RBL104) had an open reading frame of 858 bp that encoded a polypeptide with a predicted molecular weight of 31210. This molecular weight corresponded closely to that of a polypeptide immunoprecipitated from products of translationin vitro of the poly(A)+ RNA. Thus, RBL104 appeared to be a full-length cDNA. The N-terminal amino acid sequence of the purified lectin protein matched a portion of the predicted amino acid sequence. It appeared that the lectin was synthesized as a precursor that consisted of a putative signal peptide of 31 amino acids and a mature polypeptide of 255 amino acids. Southern blot analysis of the genomic DNA revealed that the lectin was encoded by a small multigene family. The lectin was mostly localized in the axial and ray parenchymal cells of the inner bark. A small amount of lectin was also found in the axial and ray parenchymal cells of the xylem. The lectin accumulated in the inner bark in September, remained at high levels during the winter and disappeared in May. The mRNA for the lectin was detected from August to the following March. The appearance and disappearance of the mRNA were observed prior to those of the lectin protein.  相似文献   

10.
11.
12.
13.
Intelectins are a recently identified group of animal lectins involved in innate immune surveillance. This paper describes the primary structure, expression and immunohistochemical localization of a rainbow trout plasma intelectin (RTInt). RTInt exhibited calcium-dependent binding to N-acetylglucosamine (GlcNAc) and mannose conjugated Toyopearl Amino 650 M matrices. When GlcNAc eluates from chromatography matrices were analyzed by reducing 1D PAGE and Western blots, the lectin appeared as approximately 37 kDa and approximately 72 kDa bands. Similar analysis of plasma revealed a single 72 kDa band under reducing conditions. MALDI-TOF MS demonstrated five, approximately 37 kDa isoforms (pI 5.3-6.1) separated by 2D-PAGE. A 975 bp cDNA sequence obtained by RT-PCR from liver and spleen tissue encoded a 325 amino acid secretory protein with homology to human and murine intelectins, which bind bacterial components and are induced during parasitic infections. Gene expression and immunohistochemistry detected RTInt in gill, spleen, hepatic sinusoid, renal interstitium, intestine, skin, swim bladder and within leukocytes. Direct binding assays demonstrated the ability of RTInt to bind relevant bacterial and chitinous targets. These findings suggest that RTInt plays a role in innate immune defense against bacterial and chitinous microbial organisms.  相似文献   

14.
Intelectin is a mammalian Ca2+-dependent, D-galactosyl-specific lectin expressed in Paneth and goblet cells of the small intestine and proposed to serve a protective role in the innate immune response to parasite infection. In addition, it is structurally identical to the intestinal lactoferrin receptor known to reside in the enterocyte brush border. To clarify this apparent discrepancy with regard to localization, the aim of this work was to study the cellular and subcellular distribution of small intestinal intelectin by immunofluorescence and immunogold electron microscopy. Secretory granules of lysozyme-positive Paneth cells in the bottom of the crypts as well as goblet cells along the crypt-villus axis were intensively labeled with intelectin antibodies, but quantitatively, the major site of intelectin deposition was the enterocyte brush border. This membrane is organized in stable glycolipid-based lipid raft microdomains, and like the divalent lectin galectin-4, intelectin was enriched in microvillar "superrafts", i.e., membranes that resist solubilization with Triton X-100 at 37 degrees C. This strategic localization suggests that the trimeric intelectin, like galectin-4, serves as an organizer and stabilizer of the brush border membrane, preventing loss of digestive enzymes to the gut lumen and protecting the glycolipid microdomains from pathogens.  相似文献   

15.
Poly(A)-rich RNA isolated from ripening ovaries of snowdrop (Galanthus nivalis L.) yielded a single 17-kDa lectin polypeptide upon translation in a wheat-germ cell-free system. This lectin was purified by affinity chromatography. Translation of the same RNA in Xenopus leavis oocytes revealed a lectin polypeptide which was about 2 kDa smaller than the in vitro synthesized precursor, suggesting that the oocyte system had removed a 2-kDa signal peptide. A second post-translational processing step was likely to be involved since both the in vivo precursor and the Xenopus translation products were about 2 kDa larger than the mature lectin polypeptide. This hypothesis was confirmed by the structural analysis of the amino acid sequence of the mature protein and the cloned mRNA. Edman degradation and carboxypeptidase Y digestion of the mature protein, and structural analysis of the peptides obtained after chemical cleavage and modification, allowed determination of the complete 105 amino acid sequence of the snowdrop lectin polypeptide. Comparison of this sequence with the deduced amino acid sequence of a lectin cDNA clone revealed that besides the mature lectin polypeptide, the lectin mRNA also encoded a 23 amino acid signal-sequence and a C-terminal extension of 29 amino acids, which confirms the results from in vitro translation experiments.  相似文献   

16.
Ficolins are proteins characterized by the presence of collagen- and fibrinogen-like domains. Two of three human ficolins, L-ficolin and H-ficolin, are serum lectins and are thought to play crucial roles in host defense through opsonization and complement activation. To elucidate the evolution of ficolins and the primordial complement lectin pathway, we cloned four ficolin cDNAs from Xenopus laevis, termed Xenopus ficolin (XeFCN) 1, 2, 3 and 4. The deduced amino acid sequences of the four ficolins revealed the conserved collagen- and fibrinogen-like domains. The full sequences of the four ficolins showed a 42-56% identity to human ficolins, and 60-83% between one another. Northern blots showed that XeFCN1 was expressed mainly in liver, spleen and heart, and XeFCN2 and XeFCN4 mainly in peripheral blood leukocytes, lung and spleen. We isolated ficolin proteins from Xenopus serum by affinity chromatography on N-acetylglucosamine-agarose, followed by ion-exchange chromatography. The final eluate showed polymeric bands composed of two components of 37 and 40 kDa. The N-terminal amino acid sequences and treatment with endoglycosidase F showed that the two bands are the same XeFCN1 protein with different masses of N-linked sugar. The polymeric form of the two types of XeFCN1 specifically recognized GlcNAc and GalNAc residues. These results suggest that like human L-ficolin, XeFCN1 functions in the circulation through its lectin activity.  相似文献   

17.
18.
A homeo-box-containing gene expressed during oogenesis in Xenopus   总被引:17,自引:0,他引:17  
We report the isolation of a second Xenopus gene containing a homeo domain homologous to those of Drosophila. Out of 60 amino acids, 59 are conserved with Antennapedia, and 54 with a previously isolated frog gene. The predicted carboxy-terminus of this homeotic-like protein is 21 amino acids downstream from the conserved domain, ending with six glutamic acids in a row. The main interest of this gene lies in the fact that it is abundantly transcribed in large Xenopus oocytes, where it might be translated into proteins potentially involved in the early determination of embryonic cell types.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号