首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNase PH is one of the exoribonucleases that catalyze the 3' end processing of tRNA in bacteria. RNase PH removes nucleotides following the CCA sequence of tRNA precursors by phosphorolysis and generates mature tRNAs with amino acid acceptor activity. In this study, we determined the crystal structure of Aquifex aeolicus RNase PH bound with a phosphate, a co-substrate, in the active site at 2.3-A resolution. RNase PH has the typical alpha/beta fold, which forms a hexameric ring structure as a trimer of dimers. This ring structure resembles that of the polynucleotide phosphorylase core domain homotrimer, another phosphorolytic exoribonuclease. Four amino acid residues, Arg-86, Gly-124, Thr-125, and Arg-126, of RNase PH are involved in the phosphate-binding site. Mutational analyses of these residues showed their importance in the phosphorolysis reaction. A docking model with the tRNA acceptor stem suggests how RNase PH accommodates substrate RNAs.  相似文献   

2.
3.
The exosome is a 3' --> 5' exoribonuclease complex involved in RNA processing. We report the crystal structure of the RNase PH core complex of the Sulfolobus solfataricus exosome determined at a resolution of 2.8 A. The structure reveals a hexameric ring-like arrangement of three Rrp41-Rrp42 heterodimers, where both subunits adopt the RNase PH fold common to phosphorolytic exoribonucleases. Structure-guided mutagenesis reveals that the activity of the complex resides within the active sites of the Rrp41 subunits, all three of which face the same side of the hexameric structure. The Rrp42 subunit is inactive but contributes to the structuring of the Rrp41 active site. The high sequence similarity of this archaeal exosome to eukaryotic exosomes and its high structural similarity to the bacterial mRNA-degrading PNPase support a common basis for RNA-degrading machineries in all three domains of life.  相似文献   

4.
In this study, we have used various tRNA(Tyr)Su3 precursor (pSu3) derivatives that are processed less efficiently by RNase P to investigate if the 5' leader is a target for RNase E. We present data that suggest that RNase E cleaves the 5' leader of pSu3 both in vivo and in vitro. The site of cleavage in the 5' leader corresponds to the cleavage site for a previously identified endonuclease activity referred to as RNase P2/O. Thus, our findings suggest that RNase P2/O and RNase E activities are of the same origin. These data are in keeping with the suggestion that the structure of the 5' leader influences tRNA expression by affecting tRNA processing and indicate the involvement of RNase E in the regulation of cellular tRNA levels.  相似文献   

5.
RNase PH is a phosphate-dependent exoribonuclease that catalyzes the removal of nucleotides at the 3' end of the tRNA precursor, leading to the release of nucleoside diphosphate, and generates the CCA end during the maturation process. The 1.9-A crystal structures of the apo and the phosphate-bound forms of RNase PH from Pseudomonas aeruginosa reveal a monomeric RNase PH with an alpha/beta-fold tightly associated into a hexameric ring structure in the form of a trimer of dimers. A five ion pair network, Glu-63-Arg-74-Asp-116-Arg-77-Asp-118 and an ion-pair Glu-26-Arg-69 that are positioned symmetrically in the trimerization interface play critical roles in the formation of a hexameric ring. Single or double mutations of Arg-69, Arg-74, or Arg-77 in these ion pairs leads to the dissociation of the RNase PH hexamer into dimers without perturbing the overall monomeric structure. The dissociated RNase PH dimer completely lost its binding affinity and catalytic activity against a precursor tRNA. Our structural and mutational analyses of RNase PH demonstrate that the hexameric ring formation is a critical feature for the function of members of the RNase PH family.  相似文献   

6.
In contrast to Escherichia coli, where all tRNAs have the CCA motif encoded by their genes, two classes of tRNA precursors exist in the Gram-positive bacterium Bacillus subtilis. Previous evidence had shown that ribonuclease Z (RNase Z) was responsible for the endonucleolytic maturation of the 3' end of those tRNAs lacking an encoded CCA motif, accounting for about one-third of its tRNAs. This suggested that a second pathway of tRNA maturation must exist for those precursors with an encoded CCA motif. In this paper, we examine the potential role of the four known exoribonucleases of B.subtilis, PNPase, RNase R, RNase PH and YhaM, in this alternative pathway. In the absence of RNase PH, precursors of CCA-containing tRNAs accumulate that are a few nucleotides longer than the mature tRNA species observed in wild-type strains or in the other single exonuclease mutants. Thus, RNase PH plays an important role in removing the last few nucleotides of the tRNA precursor in vivo. The presence of three or four exonuclease mutations in a single strain results in CCA-containing tRNA precursors of increasing size, suggesting that, as in E.coli, the exonucleolytic pathway consists of multiple redundant enzymes. Assays of purified RNase PH using in vitro-synthesized tRNA precursor substrates suggest that RNase PH is sensitive to the presence of a CCA motif. The division of labor between the endonucleolytic and exonucleolytic pathways observed in vivo can be explained by the inhibition of RNase Z by the CCA motif in CCA-containing tRNA precursors and by the inhibition of exonucleases by stable secondary structure in the 3' extensions of the majority of CCA-less tRNAs.  相似文献   

7.
A strain of Bacillus subtilis lacking two 3'-to-5' exoribonucleases, polynucleotide phosphorylase (PNPase) and RNase R, was used to purify another 3'-to-5' exoribonuclease, which is encoded by the yhaM gene. YhaM was active in the presence of Mn(2+) (or Co(2+)), was inactive in the presence of Mg(2+), and could also degrade single-stranded DNA. The half-life of bulk mRNA in a mutant lacking PNPase, RNase R, and YhaM was not significantly different from that of the wild type, suggesting the existence of additional activities that can participate in mRNA turnover. Sequence homologues of YhaM were found only in gram-positive organisms. The Staphylococcus aureus homologue, CBF1, which had been characterized as a double-stranded DNA binding protein involved in plasmid replication, was also shown to be an Mn(2+)-dependent exoribonuclease. YhaM protein has a C-terminal "HD domain," found in metal-dependent phosphohydrolases. By structure modeling, it was shown that YhaM also contains an N-terminal "OB-fold," present in many oligosaccharide- and oligonucleotide-binding proteins. The combination of these two domains is unique. Thus, YhaM and 10 related proteins from gram-positive organisms constitute a new exonuclease family.  相似文献   

8.
Ribonuclease P (RNase P) is an endoribonuclease that catalyzes the processing of the 5′ leader sequence of precursor tRNA (pre-tRNA). Ribonucleoprotein RNase P and protein-only RNase P (PRORP) in eukaryotes have been extensively studied, but the mechanism by which a prokaryotic nuclease recognizes and cleaves pre-tRNA is unclear. To gain insights into this mechanism, we studied homologs of Aquifex RNase P (HARPs), thought to be enzymes of approximately 23 kDa comprising only this nuclease domain. We determined the cryo-EM structure of Aq880, the first identified HARP enzyme. The structure unexpectedly revealed that Aq880 consists of both the nuclease and protruding helical (PrH) domains. Aq880 monomers assemble into a dimer via the PrH domain. Six dimers form a dodecamer with a left-handed one-turn superhelical structure. The structure also revealed that the active site of Aq880 is analogous to that of eukaryotic PRORPs. The pre-tRNA docking model demonstrated that 5′ processing of pre-tRNAs is achieved by two adjacent dimers within the dodecamer. One dimer is responsible for catalysis, and the PrH domains of the other dimer are responsible for pre-tRNA elbow recognition. Our study suggests that HARPs measure an invariant distance from the pre-tRNA elbow to cleave the 5′ leader sequence, which is analogous to the mechanism of eukaryotic PRORPs and the ribonucleoprotein RNase P. Collectively, these findings shed light on how different types of RNase P enzymes utilize the same pre-tRNA processing.  相似文献   

9.
10.
11.
The maturation of the tRNA 3' end is catalyzed by a tRNA 3' processing endoribonuclease named tRNase Z (RNase Z or 3'-tRNase) in eukaryotes, Archaea, and some bacteria. The tRNase Z generally cuts the 3' extra sequence from the precursor tRNA after the discriminator nucleotide. In contrast, Thermotoga maritima tRNase Z cleaves the precursor tRNA precisely after the CCA sequence. In this study, we determined the crystal structure of T. maritima tRNase Z at 2.6-A resolution. The tRNase Z has a four-layer alphabeta/betaalpha sandwich fold, which is classified as a metallo-beta-lactamase fold, and forms a dimer. The active site is located at one edge of the beta-sandwich and is composed of conserved motifs. Based on the structure, we constructed a docking model with the tRNAs that suggests how tRNase Z may recognize the substrate tRNAs.  相似文献   

12.
Escherichia coli cells lacking both polynucleotide phosphorylase (PNPase) and RNase PH, the only known P(i)-dependent exoribonucleases, were previously shown to grow slowly at 37 degrees C and to display a dramatically reduced level of tRNA(Tyr)su3+ suppressor activity. Here we show that the RNase PH-negative, PNP-negative double-mutant strain actually displays a reversible cold-sensitive phenotype and that tRNA biosynthesis is normal. In contrast, ribosome structure and function are severely affected, particularly at lower temperatures. At 31 degrees C, the amount of 50S subunit is dramatically reduced and 23S rRNA is degraded. Moreover, cells that had been incubated at 42 degrees C immediately cease growing and synthesizing protein upon a shift to 31 degrees C, suggesting that the ribosomes synthesized at the higher temperature are defective and unable to function at the lower temperature. These data indicate that RNase PH and PNPase play an essential role that affects ribosome metabolism and that this function cannot be taken over by any of the hydrolytic exoribonucleases present in the cell.  相似文献   

13.
14.
Here we demonstrate a new regulatory mechanism for tRNA processing in Escherichia coli whereby RNase T and RNase PH, the two primary 3′ → 5′ exonucleases involved in the final step of 3′-end maturation, compete with poly(A) polymerase I (PAP I) for tRNA precursors in wild-type cells. In the absence of both RNase T and RNase PH, there is a >30-fold increase of PAP I-dependent poly(A) tails that are ≤10 nt in length coupled with a 2.3- to 4.2-fold decrease in the level of aminoacylated tRNAs and a >2-fold decrease in growth rate. Only 7 out of 86 tRNAs are not regulated by this mechanism and are also not substrates for RNase T, RNase PH or PAP I. Surprisingly, neither PNPase nor RNase II has any effect on tRNA poly(A) tail length. Our data suggest that the polyadenylation of tRNAs by PAP I likely proceeds in a distributive fashion unlike what is observed with mRNAs.  相似文献   

15.
Jain C 《Journal of bacteriology》2012,194(15):3883-3890
Escherichia coli contains multiple 3' to 5' RNases, of which two, RNase PH and polynucleotide phosphorylase (PNPase), use inorganic phosphate as a nucleophile to catalyze RNA cleavage. It is known that an absence of these two enzymes causes growth defects, but the basis for these defects has remained undefined. To further an understanding of the function of these enzymes, the degradation pattern of different cellular RNAs was analyzed. It was observed that an absence of both enzymes results in the appearance of novel mRNA degradation fragments. Such fragments were also observed in strains containing mutations in RNase R and PNPase, enzymes whose collective absence is known to cause an accumulation of structured RNA fragments. Additional experiments indicated that the growth defects of strains containing RNase R and PNPase mutations were exacerbated upon RNase PH removal. Taken together, these observations suggested that RNase PH could play a role in structured RNA degradation. Biochemical experiments with RNase PH demonstrated that this enzyme digests through RNA duplexes of moderate stability. In addition, mapping and sequence analysis of an mRNA degradation fragment that accumulates in the absence of the phosphorolytic enzymes revealed the presence of an extended stem-loop motif at the 3' end. Overall, these results indicate that RNase PH plays a novel role in the degradation of structured RNAs and provides a potential explanation for the growth defects caused by an absence of the phosphorolytic RNases.  相似文献   

16.
Running rings around RNA: a superfamily of phosphate-dependent RNases.   总被引:18,自引:0,他引:18  
The exosome of Saccharomyces cerevisiae and the degradosome of Escherichia coli are multienzyme complexes involved in the degradation of mRNA. Both contain enzymes that are similar to the phosphate-dependent exoribonuclease RNase PH. These enzymes are phosphorylases that degrade RNA from the 3'-end. A recent X-ray crystallographic study of the polynucleotide phosphorylase (PNPase) from Streptomyces antibioticus reveals, for the first time, the atomic structure of a member of the RNase PH superfamily. Here, information from the structure of PNPase is used to address two related issues. First, the structure supports the idea that PNPase, which is a trimer of multidomain subunits, arose by duplication of a gene encoding an RNase PH-like enzyme. Second, the structure might explain how RNase PH-like enzymes associate into oligomeric rings that degrade RNA in a processive reaction.  相似文献   

17.
K A Ost  M P Deutscher 《Biochimie》1990,72(11):813-818
Escherichia coli RNase PH is a phosphate-dependent exoribonuclease that has been implicated in the 3' processing of tRNA precursors. It degrades RNA chains in a phosphorolytic manner releasing nucleoside diphosphates as products. Here we show that RNase PH also catalyzes a synthetic reaction, the addition of nucleotides to the 3' termini of RNA molecules. The synthetic activity co-purifies with RNase PH throughout an extensive enrichment indicating that it is due to the same enzyme. The synthetic activity can incorporate all nucleoside diphosphates, but not triphosphates, and is strongly inhibited by Pi, but not PPi. Various RNA molecules stimulate nucleotide incorporation, and with tRNA the 3' end of the molecule serves a primer function. RNA chains as long as 40 residues can be synthesized in this system. As with polynucleotide phosphorylase, the synthetic activity of RNase PH apparently represents the reversal of the degradative reaction.  相似文献   

18.
RNase PH is a Pi-dependent exoribonuclease that can act at the 3' terminus of tRNA precursors in vitro. To obtain information about the function of this enzyme in vivo, the Escherichia coli rph gene encoding RNase PH was interrupted with either a kanamycin resistance or a chloramphenicol resistance cassette and transferred to the chromosome of a variety of RNase-resistant strains. Inactivation of the chromosomal copy of rph eliminated RNase PH activity from extracts and also slowed the growth of many of the strains, particularly ones that already were deficient in RNase T or polynucleotide phosphorylase. Introduction of the rph mutation into a strain already lacking RNases I, II, D, BN, and T resulted in inviability. The rph mutation also had dramatic effects on tRNA metabolism. Using an in vivo suppressor assay we found that elimination of RNase PH greatly decreased the level of su3+ activity in cells deficient in certain of the other RNases. Moreover, in an in vitro tRNA processing system the defect caused by elimination of RNase PH was shown to be the accumulation of a precursor that contained 4-6 additional 3' nucleotides following the -CCA sequence. These data indicate that RNase PH can be an essential enzyme for the processing of tRNA precursors.  相似文献   

19.
In the present work we have used a double-hybrid assay in bacteria to identify a putative domain in E. coli PNPase required for in vivo interaction with RNase E. We used a 202 aa fragment of RNase E previously reported as the PNPase binding domain in this enzyme and a collection of 13 different fragments of 105 aa, spanning the entire sequence of 734 aa PNPase (GenBank Accession number NP_417633). Our results indicate that two clones of PNPase including residues 158-262 and residues 473-577 contain interaction sites for RNase E within a betabetaalphabetabetaalpha domain configuration. Three-dimensional modeling of the E. coli PNPase based on the S. antibioticus protein structure indicates that the putative binding domain is located on the monomer surface, facing outward from the trimeric tertiary structure. Since a copy of the betabetaalphabetabetaalpha domain is also found in RNase PH, we investigated and found an interaction with RNase E in a pull-down assay. We suggest this interaction takes place through the similar betabetaalphabetabetaalpha domain present in the tertiary structure of this enzyme. Based on these results, we propose that RNase PH and RNase E could form functional assemblies in E. coli.  相似文献   

20.
Polynucleotide phosphorylase (PNPase) is a phosphate-dependent 3' to 5' exonuclease widely diffused among bacteria and eukaryotes. The enzyme, a homotrimer, can also be found associated with the endonuclease RNase E and other proteins in a heteromultimeric complex, the RNA degradosome. PNPase negatively controls its own gene (pnp) expression by destabilizing pnp mRNA. A current model of autoregulation maintains that PNPase and a short duplex at the 5'-end of pnp mRNA are the only determinants of mRNA stability. During the cold acclimation phase autoregulation is transiently relieved and cellular pnp mRNA abundance increases significantly. Although PNPase has been extensively studied and widely employed in molecular biology for about 50 years, several aspects of structure-function relationships of such a complex protein are still elusive. In this work, we performed a systematic PCR mutagenesis of discrete pnp regions and screened the mutants for diverse phenotypic traits affected by PNPase. Overall our results support previous proposals that both first and second core domains are involved in the catalysis of the phosphorolytic reaction, and that both phosphorolytic activity and RNA binding are required for autogenous regulation and growth in the cold, and give new insights on PNPase structure-function relationships by implicating the alpha-helical domain in PNPase enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号