首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Entry of an enveloped virus such as Epstein-Barr virus (EBV) into host cells involves fusion of the virion envelope with host cell membranes either at the surface of the cell or within endocytic vesicles. Previous work has indirectly implicated the EBV glycoprotein gp85 in this fusion process. A neutralizing monoclonal antibody to gp85, F-2-1, failed to inhibit binding of EBV to its receptor but interfered with virus fusion as measured with the self-quenching fluorophore octadecyl rhodamine B chloride (R18) (N. Miller and L. M. Hutt-Fletcher, J. Virol. 62:2366-2372, 1988). To test further the hypothesis that gp85 functions as a fusion protein, EBV virion proteins including or depleted of gp85 were incorporated into lipid vesicles to form virosomes. Virosomes were labeled with R18, and those that were made with undepleted protein were shown to behave in a manner similar to that of R18-labeled virus. They bound to receptor-positive but not to receptor-negative cells and fused with Raji cells but not with receptor-positive, fusion-incompetent Molt 4 cells; monoclonal antibodies that inhibited binding or fusion of virus inhibited binding and fusion of virosomes, and virus competed with virosomes for attachment to cells. In contrast, virosomes made from virus proteins depleted of gp85 by immunoaffinity chromatography remained capable of binding to receptor-positive cells but failed to fuse. These results are compatible with the hypothesis that gp85 is actively involved in the fusion of EBV with lymphoblatoid cell lines and suggest that the ability of antibody F-2-1 to neutralize infectivity of EBV represents a direct effect on the function of gp85 as a fusion protein.  相似文献   

2.
Relief of fluorescence self-quenching was used to monitor fusion (14) of Epstein Barr virus (EBV) with Raji cells after exposure of the virus to a variety of experimental conditions such as neutral or low pH, enzymatic modification of the viral spike glycoproteins, or inhibition of the protein kinase C (PKC) activity. Incubation of the virus at pH 5.9 prior to the binding to the cell membrane led to a significant enhancement of fusion with the plasma membrane. Treatment of Raji cells with an agent known to elevate the endosomal and lysosomal pH (lysosomotropic agent) (3, 12) partially prevented fusion at neutral pH. Desialylation of EBV significantly reduced the extent of fusion with Raji cells. Protein kinase C inhibitor reduced EBV fusion with Raji cells, while treatment with the tumor promotor and the PKC activator TPA caused an increase in the final extent of fusion. Our results suggest that EBV fuses with lymphoblastoid cells in the endocytic vesicles after being rapidly internalized and that protein kinase C is involved in the process of viral entry into cells.  相似文献   

3.
The characteristics of fusion of respiratory syncytial virus (RSV) with HEp-2 cells were studied by the R18 fluorescence dequenching assay of membrane fusion. A gradual increase in fluorescence intensity indicative of virion-cell fusion was observed when R18-labeled RSV was incubated with HEp-2 cells. Approximately 35% dequenching of the probe fluorescence was observed in 1 h at 37 degrees C. Fusion showed a temperature dependence, with significant dequenching occurring above 18 degrees C. The dequenching was also dependent on the relative concentration of target membrane. Thus, increasing the concentration of target membrane resulted in increased levels of dequenching. In addition, viral glycoproteins were shown to be involved in this interaction, since dequenching was significantly reduced by pretreatment of labeled virus at 70 degrees C for 5 min or by trypsinization of R18-labeled virions prior to incubation with HEp-2 cells at 37 degrees C. The fusion of RSV with HEp-2 cells was unaffected over a pH range of 5.5 to 8.5, with some increase seen at lower pH values. Treatment of HEp-2 cells with ammonium chloride (20 and 10 mM), a lysosomotropic agent, during early stages of infection did not inhibit syncytium formation or progeny virion production by RSV. At the same concentrations of ammonium chloride, the production of vesicular stomatitis virus was reduced approximately 4 log10 units. These results suggest that fusion of the virus with the cell surface plasma membrane is the principal route of entry.  相似文献   

4.
Relief of fluorescence self-quenching was used to monitor fusion (14) of Epstein Barr virus (EBV) with Raji cells after exposure of the virus to a variety of experimental conditions such as neutral or low pH, enzymatic modification of the viral spike glycoproteins, or inhibition of the protein kinase C (PKC) activity. Incubation of the virus at pH 5.9 prior to the binding to the cell membrane led to a significant enhancement of fusion with the plasma membrane. Treatment of Raji cells with an agent known to elevate the endosomal and lysosomal pH (lysosomotropic agent) (3, 12) partially prevented fusion at neutral pH. Desialylation of EBV significantly reduced the extent of fusion with Raji cells. Protein kinase C inhibitor reduced EBV fusion with Raji cells, while treatment with the tumor promoter and the PKC activator TPA caused an increase in the final extent of fusion. Our results suggest that EBV fuses with lymphoblastoid cells in the endocytic vescicles after being rapidly internalized and that protein kinase C is involved in the process of viral entry into cells.  相似文献   

5.
The core fusion machinery of all herpesviruses consists of three conserved glycoproteins, gB and gHgL, suggesting a common mechanism for virus cell fusion, but fusion of Epstein-Barr virus (EBV) with B cells and epithelial cells is initiated differently. Fusion with B cells requires a fourth protein, gp42, which complexes with gHgL and interacts with HLA class II, the B-cell coreceptor. Fusion with an epithelial cell does not require gp42 but requires interaction of gHgL with a novel epithelial cell coreceptor. Epithelial cell fusion can be inhibited by gp42 binding to gHgL and by antibodies to gH that fail to block B-cell fusion. This suggests that regions of gHgL initiating fusion with each cell are separable from each other and from regions involved in fusion itself. To address this possibility we mapped the region of gH recognized by a monoclonal antibody to gH that blocks EBV fusion with epithelial cells but not B cells by making a series of chimeras with the gH homolog of rhesus lymphocryptovirus. Proteins with mutations engineered within this region included those that preferentially mediate fusion with B cells, those that preferentially mediate fusion with epithelial cells, and those that mediate fusion with neither cell type. These results support the hypothesis that the core fusion function of gH is the same for B cells and epithelial cells and that it differs only in the way in which it is triggered into a functionally active state.  相似文献   

6.
Fusion of Pseudaletia unipuncta nucleopolyhedrovirus with an armyworm cell line (SIE-MSH-805-F) was studied by means of three fluorescence assays that are based on the relief of fluorescence self-quenching of octadecylrhodamine B chloride (R18). A gradual increase in fluorescence intensity indicative of virus-cell fusion was observed by spectrofluorometry when R18-labeled polyhedron-derived virus was incubated with cultured cells. The fusion was enhanced by the virus enhancing factor (EF) from Pseudaletia separata entomopoxvirus. Lysosomotropic agents had little effect on the virus-cell fusion. The percentage of positively fluorescent cells, as determined by flow cytometry, gradually increased after the addition of labeled virus and was higher in the presence of the EF than in its absence. Confocal microscopy of cultured cells that had been combined with labeled virus showed that the fluorescence appeared first on their surface. The plasma membrane of cultured cells had specific affinity to the EF, as revealed by indirect immunofluorescence microscopy.  相似文献   

7.
Epstein Barr virus (EBV) exhibits a distinct tropism for both B cells and epithelial cells. The virus persists as a latent infection of memory B cells in healthy individuals, but a role for infection of normal epithelial is also likely. Infection of B cells is initiated by the interaction of the major EBV glycoprotein gp350 with CD21 on the B cell surface. Fusion is triggered by the interaction of the EBV glycoprotein, gp42 with HLA class II, and is thereafter mediated by the core fusion complex, gH/gL/gp42. In contrast, direct infection of CD21-negative epithelial cells is inefficient, but efficient infection can be achieved by a process called transfer infection. In this study, we characterise the molecular interactions involved in the three stages of transfer infection of epithelial cells: (i) CD21-mediated co-capping of EBV and integrins on B cells, and activation of the adhesion molecules, (ii) conjugate formation between EBV-loaded B cells and epithelial cells via the capped adhesion molecules, and (iii) interaction of EBV glycoproteins with epithelial cells, with subsequent fusion and uptake of virions. Infection of epithelial cells required the EBV gH and gL glycoproteins, but not gp42. Using an in vitro model of normal polarized epithelia, we demonstrated that polarization of the EBV receptor(s) and adhesion molecules restricted transfer infection to the basolateral surface. Furthermore, the adhesions between EBV-loaded B cells and the basolateral surface of epithelial cells included CD11b on the B cell interacting with heparan sulphate moieties of CD44v3 and LEEP-CAM on epithelial cells. Consequently, transfer infection was efficiently mediated via CD11b-positive memory B cells but not by CD11b–negative naïve B cells. Together, these findings have important implications for understanding the mechanisms of EBV infection of normal and pre-malignant epithelial cells in vivo.  相似文献   

8.
Epstein-Barr virus (EBV) infects B lymphocytes and epithelial cells. While the glycoproteins required for entry into these two cell types differ, the gH/gL glycoprotein complex is essential for entry into both epithelial and B cells. Analysis of gH protein sequences from three gammaherpesviruses (EBV, marmoset, and rhesus) revealed a potential coiled-coil domain in the N terminus. Four leucines located in this region in EBV gH were replaced by alanines by site-directed mutagenesis and analyzed for cell-cell membrane fusion with B cells and epithelial cells. Reduction in fusion activity was observed for mutants containing L65A and/or L69A mutations, while substitutions in L55 and L74 enhanced the fusion activity of the mutant gH/gL complexes with both cell types. All of the mutants displayed levels of cell surface expression similar to those of wild-type gH and interacted with gL and gp42. The observation that a conservative mutation of leucine to alanine in the N terminus of EBV gH results in fusion-defective mutant gH/gL complexes is striking and points to an important role for this region in EBV-mediated membrane fusion with B lymphocytes and epithelial cells.  相似文献   

9.
We have studied fusion between membranes of vesicular stomatitis virus (VSV) and Vero cells using an assay for lipid mixing based on the relief of self-quenching of octadecylrhodamine (R18) fluorescence. We could identify the two pathways of fusion by the kinetics of R18 dequenching, effects of inhibitors, temperature dependence, and dependence on osmotic pressure. Fusion at the plasma membrane began immediately after lowering the pH below 6 and showed an approximately exponential time course, whereas fusion via the endocytic pathway (pH 7.4) became apparent after a time delay of about 2 min. Fusion via the endocytic pathway was attenuated by treating cells with metabolic inhibitors and agents that raise the pH of the endocytic vesicle. A 10-fold excess of unlabeled virus arrested R18VSV entry via the endocytic pathway, whereas R18 dequenching below pH 6 (fusion at the plasma membrane) was not affected by the presence of unlabeled virus. The temperature dependence for fusion at pH 7.4 (in the endosome) was much steeper than that for fusion at pH 5.9 (with the plasma membrane). Fusion via the endocytic pathway was attenuated at hypo-osmotic pressures, whereas fusion at the plasma membrane was not affected by this treatment. The pH profile of Vero-VSV fusion at the plasma membrane, as measured by the dequenching method, paralleled that observed for VSV-induced cell-cell fusion. Fusion was blocked by adding neutralizing antibody to the Vero-VSV complexes. Activation of the fusion process by lowering the pH was reversible, in that the rate of fusion was arrested by raising the pH back to 7.4. The observation that pH-dependent fusion occurred at similar rates with fragments and with intact cells indicates that pH, voltage, or osmotic gradients are not required for viral fusion.  相似文献   

10.
Epstein-Barr Virus (EBV) glycoprotein B (gB) is essential for viral fusion events with epithelial and B cells. This glycoprotein has been studied extensively in other herpesvirus family members, but functional domains outside of the cytoplasmic tail have not been characterized in EBV gB. In this study, a total of 28 linker insertion mutations were generated throughout the length of gB. In general, the linker insertions did not disrupt intracellular expression and variably altered cell surface expression. Oligomerization was disrupted by insertions located between residues 561 and 620, indicating the location of a potential site of oligomer contacts between EBV gB monomers. In addition, a novel N-glycosylated form of wild-type gB was identified under nonreducing Western blot conditions that likely represents a mature form of the protein. Fusion activity was abolished in all but three variants containing mutations in the N-terminal region (gB30), within the ectodomain (gB421), and in the intracellular C-terminal domain (gB832) of the protein. Fusion activity with variants gB421 and gB832 was comparable to that of the wild type with epithelial and B cells, and only these two mutants, but not gB30, were able to complement gB-null virus and subsequently function in virus entry. The mutant gB30 exhibited a low level of fusion activity with B cells and was unable to complement gB-null virus. The mutations generated here indicate important structural domains, as well as regions important for function in fusion, within EBV gB.  相似文献   

11.
There is controversy as to whether the cell entry mechanism of Sindbis virus (SIN) involves direct fusion of the viral envelope with the plasma membrane at neutral pH or uptake by receptor-mediated endocytosis and subsequent low-pH-induced fusion from within acidic endosomes. Here, we studied the membrane fusion activity of SIN in a liposomal model system. Fusion was followed fluorometrically by monitoring the dilution of pyrene-labeled lipids from biosynthetically labeled virus into unlabeled liposomes or from labeled liposomes into unlabeled virus. Fusion was also assessed on the basis of degradation of the viral core protein by trypsin encapsulated in the liposomes. SIN fused efficiently with receptor-free liposomes, consisting of phospholipids and cholesterol, indicating that receptor interaction is not a mechanistic requirement for fusion of the virus. Fusion was optimal at pH 5.0, with a threshold at pH 6.0, and undetectable at neutral pH, supporting a cell entry mechanism of SIN involving fusion from within acidic endosomes. Under optimal conditions, 60 to 85% of the virus fused, depending on the assay used, corresponding to all of the virus bound to the liposomes as assessed in a direct binding assay. Preincubation of the virus alone at pH 5.0 resulted in a rapid loss of fusion capacity. Fusion of SIN required the presence of both cholesterol and sphingolipid in the target liposomes, cholesterol being primarily involved in low-pH-induced virus-liposome binding and the sphingolipid catalyzing the fusion process itself. Under low-pH conditions, the E2/E1 heterodimeric envelope glycoprotein of the virus dissociated, with formation of a trypsin-resistant E1 homotrimer, which kinetically preceded the fusion reaction, thus suggesting that the E1 trimer represents the fusion-active conformation of the viral spike.  相似文献   

12.
Entry of Epstein-Barr virus (EBV) into B cells is initiated by attachment of glycoprotein gp350 to the complement receptor type 2 (CR2). A complex of three glycoproteins, gH, gL, and gp42, is subsequently required for penetration. Gp42 binds to HLA class II, which functions as an entry mediator or coreceptor and, by analogy with other herpesviruses, gH is then thought to be involved virus-cell fusion. However, entry of virus into epithelial cells is thought to be different. It can be initiated by attachment by an unknown glycoprotein in the absence of CR2. There is no interaction between gp42 and HLA class II and instead a distinct complex of only the two glycoproteins gH and gL interacts with a novel entry mediator. Again, by analogy with other viruses gH is thought to be critical to fusion. To investigate further the different roles of gH in infection of the two cell types and to examine its influence on the assembly of the gH-gL-gp42 complex, we constructed two viruses, one in which the gH open reading frame was interrupted by a cassette expressing a neomycin resistance gene and the gene for green fluorescent protein and one as a control in which the neighboring nonessential thymidine kinase gene was interrupted with the same cassette. Virus lacking gH exited from cells normally, although loss of gH resulted in rapid turnover of gL and gp42 as well. The virus bound normally to B lymphocytes but could not infect them unless cells and bound virus were treated with polyethylene glycol to induce fusion. In contrast, virus that lacked the gH complex was impaired in attachment to epithelial cells and the effects of monoclonal antibodies to gH implied that this resulted from loss of gH rather than other members of the complex. These results suggest a role for gH in both attachment and penetration into epithelial cells.  相似文献   

13.
Epstein-Barr virus (EBV) uses different virus and cell proteins to enter its two major targets, B lymphocytes and epithelial cells. The routes that the virus takes into the two cell types are also different. To determine if these differences extend to movement from the cell surface to the nucleus, we examined the fate of incoming virus. Essentially all virus that entered a B cell remained stable for at least 8 h. In contrast, up to 80% of virus entering an epithelial cell was degraded in a compartment sensitive to inhibitors of components involved in autophagy. Inhibitors of actin remodeling blocked entry into a B cell but had no effect or enhanced entry into an epithelial cell. Inhibitors of the microtubule network reduced intracellular transport in both cell types, but movement to the nucleus in an epithelial cell also required involvement of the actin cytoskeleton. Deletion of the cytoplasmic tail of CR2, which in an epithelial cell interacts with the actin nucleator FHOS/FHOD when cross-linked by EBV, had no effect on infection. However, inhibitors of downstream signaling by integrins reduced intracellular transport. Cooperation of the microtubule and actin cytoskeletons, possibly activated by interaction with integrin binding proteins in the envelope of EBV, is needed for successful infection of an epithelial cell.  相似文献   

14.
Epstein-Barr virus (EBV) initially enters the body through the oropharyngeal mucosa and subsequently infects B lymphocytes through their CD21 (CR2) complement receptor. Mechanisms of EBV entry into and release from epithelial cells are poorly understood. To study EBV infection in mucosal oropharyngeal epithelial cells, we established human polarized tongue and pharyngeal epithelial cells in culture. We show that EBV enters these cells through three CD21-independent pathways: (i) by direct cell-to-cell contact of apical cell membranes with EBV-infected lymphocytes; (ii) by entry of cell-free virions through basolateral membranes, mediated in part through an interaction between beta1 or alpha5beta1 integrins and the EBV BMRF-2 protein; and (iii) after initial infection, by virus spread directly across lateral membranes to adjacent epithelial cells. Release of progeny virions from polarized cells occurs from both their apical and basolateral membranes. These data indicate that multiple approaches to prevention of epithelial infection with EBV will be necessary.  相似文献   

15.
J M Gilbert  D Mason    J M White 《Journal of virology》1990,64(10):5106-5113
We investigated whether Rous sarcoma virus (RSV) infects cells through a pH-independent or a low-pH-dependent pathway. To do this, the effects of lysosomotropic agents and acid pretreatment on RSV infectivity of, and fusion with, chicken embryo fibroblasts (CEFs) were studied. High concentrations of lysosomotropic agents (ammonium chloride and monensin) did not inhibit virus infectivity: equal titers of RSV were produced in the presence and absence of these agents. Similarly, low-pH pretreatment did not inhibit RSV infectivity. In parallel experiments, lysosomotropic agents and acid pretreatment completely abolished the ability of influenza virus to infect CEFs. To monitor the fusion activity of RSV directly, the viral membrane was labeled with the fluorescent lipid probe octadecyl rhodamine at a self-quenching concentration. Upon fusion with a host cell, the probe is diluted in the cell membrane, resulting in fluorescence dequenching (D. Hoekstra, T. de Boer, K. Klappe, and J. Wilschut, Biochemistry 23:5675-5681, 1984). In this assay, fusion of RSV with CEFs was found to occur in both a time-dependent and a strictly temperature-dependent fashion. No fusion occurred unless cells with prebound virus were warmed to temperatures greater than 20 degrees C. Fusion, but not binding, was abolished if virus was pretreated with low concentrations of glutaraldehyde. High concentrations of ammonium chloride had no effect on fusion of RSV with CEFs but greatly diminished the ability of influenza virus and Semliki Forest virus to fuse with CEFs. Similarly, acid pretreatment of RSV had no effect on fusion with CEFs while markedly inhibiting fusion of both influenza and Semliki Forest viruses. Collectively, our results show that RSV fusion with and hence infection of CEFs does not require exposure of the virus to low pH. In this respect, RSV resembles another retrovirus, human immunodeficiency virus.  相似文献   

16.
Coronaviruses are the causative agents of respiratory disease in humans and animals, including severe acute respiratory syndrome. Fusion of coronaviruses is generally thought to occur at neutral pH, although there is also evidence for a role of acidic endosomes during entry of a variety of coronaviruses. Therefore, the molecular basis of coronavirus fusion during entry into host cells remains incompletely defined. Here, we examined coronavirus-cell fusion and entry employing the avian coronavirus infectious bronchitis virus (IBV). Virus entry into cells was inhibited by acidotropic bases and by other inhibitors of pH-dependent endocytosis. We carried out fluorescence-dequenching fusion assays of R18-labeled virions and show that for IBV, coronavirus-cell fusion occurs in a low-pH-dependent manner, with a half-maximal rate of fusion occurring at pH 5.5. Fusion was reduced, but still occurred, at lower temperatures (20 degrees C). We observed no effect of inhibitors of endosomal proteases on the fusion event. These data are the first direct measure of virus-cell fusion for any coronavirus and demonstrate that the coronavirus IBV employs a direct, low-pH-dependent virus-cell fusion activation reaction. We further show that IBV was not inactivated, and fusion was unaffected, by prior exposure to pH 5.0 buffer. Virions also showed evidence of reversible conformational changes in their surface proteins, indicating that aspects of the fusion reaction may be reversible in nature.  相似文献   

17.
CD4 functions as the cell-surface receptor for human immunodeficiency virus (HIV); however, the mechanism of virus entry into susceptible cells is unknown. To explore this question we used a human T lymphoblastic cell line (VB) expressing high levels of surface CD4. Neutralization of endosomal compartments (pH greater than 6.4) with lysosomotropic agents did not effectively inhibit HIV nucleocapsid entry into the cytoplasm, and virus treated at low pH (5.5) failed to induce rapid cell-to-cell fusion in uninfected cells. Electron microscopy of VB cells acutely exposed to HIV at neutral pH revealed direct fusion of the virus envelope with the plasma membrane within minutes at 4 degrees C. No endocytosed virions were visualized upon rewarming the HIV-exposed cells to 37 degrees C for as long as 60 min. These results indicate that HIV penetrates CD4-positive T cells via pH-independent membrane fusion.  相似文献   

18.
Fusion between membranes of 3T3 fibroblasts expressing hemagglutinin (HA) from the Japan strain of influenza virus and human red blood cells (RBC) was measured using an assay for lipid mixing based on the relief of self-quenching (dequenching) of fluorescence of the lipid probe octadecylrhodamine (R18). The probe was incorporated into the membrane of intact RBC at self-quenching concentrations, and the RBCs were bound to the 3T3 cells. Fusion, which allowed movement of R18 into 3T3 cell membranes, was monitored by spectrofluorometry as an increase in fluorescence. Upon lowering the pH below 5.4, the fluorescence increased after a delay of about 30 s at 37 degrees C, and leveled off within 2 min. In control experiments where R18 RBCs bound to 3T3 cells expressing the uncleaved precursor hemagglutinin (HA0) were incubated at 37 degrees C and low pH, no fluorescence increase was observed. This indicated that the R18 dequenching occurred as a result of HA-induced fusion of plasma membranes. Fusion showed a very steep pH dependence with a threshold at pH 5.4 and a maximum at pH 5.0, similar to HA-induced fusion seen previously using cell biological techniques. The fusion rate increased and the delay for the onset of fusion decreased as the temperature was raised above 20 degrees C. Low pH activation of the fusion process at 37 degrees C could be partially arrested by raising the pH after 2-10 s, but not after 15 s, indicating that the irreversible pH-activated conformational change of HA necessary for fusion was complete within about 15 s. Analysis of the data indicates that the pH-induced membrane fusion activity of HA is a highly cooperative event.  相似文献   

19.
Various human Burkitt lymphoma and LCL lines established in vitro and their derived somatic cell hybrids were tested for their comparative EBV receptor levels in a virus binding assay. Their graded C3b and C3d complement receptor expression was estimated simultaneously by means of isotope labeled rosette marker cells. The receptor concentration of each cell line was related to Raji as the standard of comparison, K 562, P3HR-1, and YACUT were used as negative controls. In general, the charging curves for EBV and C3d receptors parallelled each other (r = 0.97) while C3b receptor charging showed no correlation (r < 0.60). In the Raji hybrids between the C3b receptor positive Raji parent and various patents that were negative for this receptor, C3b receptor expression was low or negative. In contrast, the C3d negative P3HR-1 line gave rise to hybrids, after fusion with receptor-positive cells, that were intermediate with regard to their C3d receptor expression. The host range restriction of the Epstein-Barr virus is determined at the receptor level. The close relationship between the EBV receptor and the C3d receptor, a B-lymphocyte-specific moiety, suggests that the moderate interaction with EBV with the B lymphocytes may have had a selective advantage, favoring the presence of EBV. Since EBV causes lytic infections after artificial introduction into nonnatural host cells, it may represent a B-lymphocyte-specific host range mutant, derived from an originally lytic herpesvirus with a much broader target cell range.  相似文献   

20.
The mode of entry of herpes simplex virus type 1 into Vero cells   总被引:3,自引:0,他引:3  
The mode of entry of herpes simplex virus type 1 (HSV-1) into Vero cells was investigated quantitatively with biological techniques. The entry of virus occurred rapidly when the virus-adsorbed cells were incubated at 37 C. The kinetics of virus entry was found to be similar to that of the process of uncoating, indicating that the uncoating of HSV-1 occurs simultaneously with the entry of virus into the cell. Experiments with ammonium chloride revealed that acidity in endosomes is not necessary for the entry or uncoating of HSV-1, in contrast with the cases of enveloped RNA viruses. In addition, endocytosis of the virus seems to be one of the processes of entry for HSV-1. However, the kinetics of endocytosis showed that the cell-bound virus is endocytosed gradually and suggested that the endocytosis of HSV-1 does not lead the virus to an uncoating process. These results are most consistent with a mechanism of entry for HSV-1 involving fusion of the viral envelope with the plasma membrane of the host cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号