首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Brassica napus cv. Topas microspores can be diverted from pollen development toward haploid embryo formation in culture by subjecting them to a heat stress treatment. We show that this switch in developmental pathways is accompanied by the induction of high levels of napin seed storage protein gene expression. Changes in the plant growth or microspore culture conditions were not by themselves sufficient to induce napin gene expression. Specific members of the napin multigene family were cloned from a cDNA library prepared from microspores that had been induced to undergo embryogenesis. The majority of napin clones represented three members (BnmNAP2, BnmNAP3 and BnmNAP4) that, along with a previously isolated napin genomic clone (BngNAP1), constitute the highly conserved BnmNAP subfamily of napin genes. Both RNA gel blot analysis, using a subfamily-specific probe, and histochemical analysis of transgenic plants expressing a BngNAP1 promoter--glucuronidase gene fusion demonstrated that the BnmNAP subfamily is expressed in embryogenic microspores as well as during subsequent stages of microsporic embryo development.  相似文献   

2.
Summary Rice is one of the most important crops in the world with 35% of the total population (over two billion people) depending on it as their source of food. It is therefore essential to develop efficient methods for the transformation and regeneration of rice plants in order to delineate the exact regulatory sequences responsible for gene expression and to transfer beneficial genes into this plant. Here, for the first time, we present definitive evidence for the regeneration of a large number of transgenic rice plants after introduction of the bacterial -glucuronidase gene into rice protoplasts. The presence of integrated copies of this gene was detected in the genome of transgenic plants by DNA hybridization analysis. Furthermore, under the control of regulatory regions from a maize alcohol dehydrogenase sequence, -glucuronidase gene expression was detected in the roots of transgenic plants. This expression was stimulated up to six fold under anaerobic conditions.  相似文献   

3.
The 5-upstream region of the pea plastocyanin gene (petE) directed 5–10-fold higher levels of -glucuronidase (GUS) activity than the cauliflower mosaic virus 35S promoter in transgenic tobacco plants, although the levels of GUS mRNA were similar. The sequence (AAAAAUGG) around the translation initiation codon of petE enhanced translation of the GUS mRNA 10-fold compared to translation from the GUS translation initiation codon in transgenic tobacco plants and transfected protoplasts.  相似文献   

4.
The expression of extA, an extensin gene from Brassica napus L. (oilseed rape) was examined in transgenic Nicotiana tabacum L. (tobacco) and untransformed Brassica juncea L. and B. napus tissues. Northern analysis showed that this gene maintained its normal pattern of expression when transferred to tobacco. In transgenic tobacco plants containing an extA promoter/-glucuronidase coding sequence fusion, expression of extA was detected in the external and internal phloem of the main stem. High expression levels were seen in cortical parenchyma cells at the point where the axillary flowering branch joined the main stem. Expression was greatest in regions where the maximum tensile stress would seem to be exerted on the main stem by the weight of the axillary branch. It was confirmed that this expression pattern was due to tensile stress by using weights to induce expression of the fusion gene in axillary flowering stalks. In B. juncea pods, in-situ hybridisation studies showed that the extensin gene was strongly expressed in cells of the carpel walls within which considerable tensile stresses develop.Abbreviations GUS -glucuronidase - X-GLUC 5-bromo-4-chloro-3-indolyl glucuronide - SSC saline sodium citrate We thank the Biotechnology and Biological Sciences Research Council for funding this research, and Mrs. W. Grail for her expertise in histochemical technique. Ms. J. Spence is the recipient of a Biotechnology and Biological Sciences Research Council post-graduate studentship award.  相似文献   

5.
The promoter region of the Agrobacterium tumefaciens T-cyt gene was fused to a -glucuronidase (gusA) reporter gene and introduced into tobacco plants. Detection of gusA expression in transgenic F1 progeny revealed that the T-cyt promoter is active in many, if not all, cell types in leaves, stems and roots of fully developed plants. Developmental stage-dependent promoter activity was observed in seedlings. Analysis of 5-deleted promoter fragments showed that sequences located between positions–185 and –139 with respect to the T-cyt translational start codon are essential for T-cyt promoter activity in transfected tobacco protoplasts as well as in transformed tobacco plants.  相似文献   

6.
7.
The regulatory activity of a 826 bp DNA fragment located upstream of the pTiBo542 TL-DNA gene 6b coding region was analysed in transgenic tobacco, using -glucuronidase (gus) as a reporter gene. The region was shown to drive organ-specific, wound- and auxin-inducible expression of the reporter, the effect being dependent on the type and concentration of auxin.  相似文献   

8.
A 647-bp 5-flanking fragment obtained from genomic clone Sta 44G(2) belonging to a family of polygalacturonase genes expressed inBrassica napus pollen was fused to the-glucuronidase (GUS) marker gene. This fusion construct was introduced intoB. napus plants viaAgrobacterium tumefaciens transformation. Analysis of the transgenicB. napus plants revealed that this promoter fragment is sufficient to direct GUS expression specifically in the anther and that GUS activity increases in pollen during maturation.Abbreviation GUS -Glucuronidase  相似文献   

9.
Douglas-fir (Pseudotsuga menziesii [Mirb] Franco) metallothionein (PmMT) cDNA encodes a novel cysteine- and serine-rich MT, indicating a new subtype or prototype MT from which other plant MTs may have evolved. A genomic library of Douglas-fir was screened using MT cDNA probes, and genomic sequences that mediate tissue-specific, temporal as well as inducible expression of the embryo-specific MT-gene were analyzed. The promoter region of the PmMT genomic clone (gPmMT) contained a hexameric G-box, two putative ethylene-responsive elements and an inverted repeat of a motif similar to the core metal regulatory element. Interestingly, comparison of the upstream region of Douglas-fir gPm2S1 and gPmMTa genes revealed a conserved motif, CATTATTGA, not found in any known angiosperm gene promoter. Chimeric gene constructs containing a series of deletions in the gPmMTa promoter fused to the uidA reporter gene were assayed in Douglas-fir and transgenic tobacco (Nicotiana tabacum L.). Transient-expression assays in Douglas-fir megagametophyte and zygotic embryos indicated that the sequence –190 to +88 of gPmMTa was sufficient to drive the expression of the reporter gene and that the 225-bp fragment (–677 to –453) contained sequences necessary for high-level expression. In transgenic tobacco seedlings the -glucuronidase activity was localized in the vacuolar tissue and proliferating tissue of the auxiliary buds and stem elongation zone. The gPmMTa promoter was not active in the seeds of transgenic tobacco or in the roots of seedlings up to 3 weeks old. Detailed studies of transient expression and stable transformation provided important information on evolutionary conservation as well as novel features found in the conifer promoter. This is the first report of an MT-like gene promoter from conifers.  相似文献   

10.
To manipulate the quantity and quality of storage components in Brassica napus seeds, we have constructed an antisense gene for the storage protein napin. The antisense gene was driven by the 5-flanking region of the B. napus napin gene to express antisense RNA in a seed-specific manner. Seeds of transgenic plants with antisense genes often contained reduced amounts of napin. In some transgenic plants, no accumulation of napin was observed. However, the total protein content of transgenic and wild-type seeds did not differ significantly. Seeds lacking napin accumulated 1.4 to 1.5 times more cruciferin than untransformed seeds, although the oleosin content was not affected. Fatty acid content and composition in the seeds of transgenic plants were also analyzed by gas chromatography. Though the total fatty acid content of the transformants was the same as that of non-transformants, there was a reduction in 18:1 contents and a concomitant increase of 18:2 in seeds with reduced napin levels. This observed change in fatty acid composition was inherited in the next generation.  相似文献   

11.
A strong oxidative stress-inducible peroxidase (POD) promoter was cloned from sweetpotato (Ipomoea batatas) and characterized in transgenic tobacco plants and cultured cells in terms of environmental stress. A POD genomic clone (referred to as SWPA2) consisted of 1824 bp of sequence upstream of the translation start site, two introns (743 bp and 97 bp), and a 1073 bp coding region. SWPA2 had previously been found to encode an anionic POD which was highly expressed in response to oxidative stress. The SWPA2 promoter contained several cis-element sequences implicated in oxidative stress such as GCN-4, AP-1, HSTF, SP-1 reported in animal cells and a plant specific G-box. Employing a transient expression assay in tobacco protoplasts, with five different 5-deletion mutants of the SWPA2 promoter fused to the -glucuronidase (GUS) reporter gene, the 1314 bp mutant deletion mutant showed about 30 times higher GUS expression than the CaMV 35S promoter. The expression of GUS activity in transgenic tobacco plants under the control of the –1314 SWPA2 promoter was strongly induced in response to environmental stresses including hydrogen peroxide, wounding and UV treatment. Furthermore, GUS activity in suspension cultures of transgenic cells derived from transgenic tobacco leaves containing the –1314 bp SWPA2 promoter-GUS fusion was strongly expressed after 15 days of subculture compared to other deletion mutants. We anticipate that the –1314 bp SWPA2 promoter will be biotechnologically useful for the development of transgenic plants with enhanced tolerance to environmental stress and particularly transgenic cell lines engineered to produce key pharmaceutical proteins.  相似文献   

12.
Colonial bentgrass (Agrostis tenuis Sibth. Fl. Oxen.) is a cool-season turfgrass used on fairways in golf courses. The object of this study was to develop a more efficient, reliable and repeatable approach in transforming the grass using Agrobacterium (strain LBA4404), in which -glucuronidase (gus) gene was used as a reporter and hygromycin phosphotransferase (hpt) gene as a selectable marker. This vector was effective in transforming 7-week-old calluses derived from mature seeds cultured on MS medium supplemented with 2,4-D. A two-step solid medium selection with increasing hygromycin concentration (from 50 to 70 mg l–1) was used to obtain resistant calluses. Hundreds of transgenic plants have been produced from several independent transformed calluses. The presence of functional -glucuronidase (GUS) was detected in hygromycin-resistant calluses, young leaves and roots of transgenic plants. The transgenic plants collected from greenhouse showed strong resistance to 50 mg l–1 hygromycin solution. Four putative transgenic plants and one control plant were randomly chosen and analyzed by Southern blot analysis. Bands corresponding to the hpt gene were clearly shown in transgenic plants.  相似文献   

13.
The Brassica napus cDNA clone A9 and the corresponding Arabidopsis thaliana gene have been sequenced. The B. napus cDNA and the A. thaliana gene encode proteins that are 73% identical and are predicted to be 10.3 kDa and 11.6 kDa in size respectively. Fusions of an RNase gene and the reporter gene -glucuronidase to the A. thaliana A9 promoter demonstrated that in tobacco the A9 promoter is active solely in tapetal cells. Promoter activity is first detectable in anthers prior to sporogenous cell meiosis and ceases during microspore premitotic interphase.The deduced A9 protein sequence has a pattern of cysteine residues that is present in a superfamily of seed plant proteins which contains seed storage proteins and several protease and -amylase inhibitors.  相似文献   

14.
Summary Genetically transformed plants of Brassica napus L. (oilseed rape) were obtained from hypocotyl expiants using Agrobacterium tumefaciens vectors. Hypocotyl explants were inoculated with disarmed or oncogenic A. tumefaciens strains, EHA101 and A281, and then cultured on media containing kanamycin. The A. tumefaciens strains harbored a binary vector, which contained a neomycin phosphotransferase II (NPTII) gene driven by the 35S promoter of cauliflower mosaic virus and an engineered napin (seed storage protein) gene with its own promoter (300 nucleotides 5 to the start of translation). Transformation of B. napus plants was confirmed by detection of NPT II enzyme activity, Southern blot analysis and inheritance of the kanamycin-resistance trait (NPT II gene) in the progeny. Expression of the engineered napin gene in embryos but not in leaves of transgenic plants was observed by Northern analysis. These data demonstrate that morphologically normal, fertile transgenic B. napus plants can be obtained using Agrobacterium as a gene vector and that developmentally regulated expression of reintroduced genes can be achieved.  相似文献   

15.
Summary A procedure for the regeneration of fertile transgenic white mustard (Sinapis alba L.) is presented. The protocol is based on infection of stem explants of 7–9 day old plants with an Agrobacterium tumefaciens strain harboring a disarmed binary vector with chimeric genes encoding neomycin phosphotransferase and -glucuronidase. Shoots are regenerated from callus-forming explants within 3–4 weeks. Under selection, 10% of the explants with transgenic embryonic callus develop into fertile transgenic plants. Rooting shoots transferred to soil yield seeds within 14–16 weeks following transformation. Integration and expression of the T-DNA encoded marker genes was confirmed by histochemical glucuronidase assays and Southern-DNA hybridization using primary transformants and S1-progeny. The analysis showed stable integration and Mendelian inheritance of trans-genes in transformed Sinapis lines.Abbreviations BAP 6-benzylaminopurine - CaMV cauliflower mosaic virus - GUS -glucuronidase - IBA indole-3-butyric acid - IM infection medium - NAA 1-naphthalene acetic acid - neo gene encoding NPTII - NPTII neomycin phosphotransferase - RIM root-inducing medium - SEM shoot-elongation medium - SIM shoot-inducing medium - t-nos polyadenylation site of the nopaline synthase gene - uidA gene encoding GUS - WM wash medium - X-Gluc 5-bromo-4-chloro-3-indolyl -D-glucuronide  相似文献   

16.
The GUS gene of E. coli, encoding -glucuronidase, has been widely used as a reporter gene in plant transformation. However, -glucuronidase activity in transgenic wheat leaf or root tissue is rarely observed or reported. To address this question, we investigated three wheat lines transformed with the GUS reporter gene. We found all three lines expressed GUS mRNA as well as -glucuronidase protein in their leaf and root tissues as detected by RNA gel blot, ELISA, and immunoblot analyses. However, -glucuronidase enzyme activity was only detected in pollen grains from the transgenic plants. Fluorometric and histochemical assays performed in the presence of wheat tissue extracts indicated that wheat leaf and root tissues contain inhibitor(s) of -glucuronidase activity, but pollen grains contain much lower concentrations. Further characterizations indicated that the inhibitor(s) is of low molecular weight (<10 kDa) and is non-proteinaceous.  相似文献   

17.
Two putative promoters from Australian banana streak badnavirus (BSV) isolates were analysed for activity in different plant species. In transient expression systems the My (2105 bp) and Cv (1322 bp) fragments were both shown to have promoter activity in a wide range of plant species including monocots (maize, barley, banana, millet, wheat, sorghum), dicots (tobacco, canola, sunflower, Nicotiana benthamiana, tipu tree), gymnosperm (Pinus radiata) and fern (Nephrolepis cordifolia). Evaluation of the My and Cv promoters in transgenic sugarcane, banana and tobacco plants demonstrated that these promoters could drive high-level expression of either the green fluorescent protein (GFP) or the -glucuronidase (GUS) reporter gene (uidA) in vegetative plant cells. In transgenic sugarcane plants harbouring the Cv promoter, GFP expression levels were comparable or higher (up to 1.06% of total soluble leaf protein as GFP) than those of plants containing the maize ubiquitin promoter (up to 0.34% of total soluble leaf protein). GUS activities in transgenic in vitro-grown banana plants containing the My promoter were up to seven-fold stronger in leaf tissue and up to four-fold stronger in root and corm tissue than in plants harbouring the maize ubiquitin promoter. The Cv promoter showed activities that were similar to the maize ubiquitin promoter in in vitro-grown banana plants, but was significantly reduced in larger glasshouse-grown plants. In transgenic in vitro-grown tobacco plants, the My promoter reached activities close to those of the 35S promoter of cauliflower mosaic virus (CaMV), while the Cv promoter was about half as active as the CaMV 35S promoter. The BSV promoters for pregenomic RNA represent useful tools for the high-level expression of foreign genes in transgenic monocots.  相似文献   

18.
A family of genes, the so-called msr genes (multiple stimulus response), has recently been identified on the basis of sequence homology in various plant species. Members of this gene family are thought to be regulated by a number of environmental or developmental stimuli, although it is not known whether any one member responds more specifically to one stimulus, or whether each gene member responds to various environmental stimuli. In this report, we address this question by studying the tobacco msr gene str246C. Using transgenic tobacco plants containing 2.1 kb of 5 flanking DNA sequence from the str246C gene fused to the -glucuronidase (GUS) coding region, the complex expression pattern of the str246C promoter has been characterized. Expression of the str246C promoter is strongly and rapidly induced by bacterial, fungal and viral infection and this induction is systemic. Elicitor preparations from phytopathogenic bacteria and fungi activate the str246C promoter to high levels, as do wounding, the application of auxin, auxin and cytokinin, salicylic acid or copper sulfate, indicating the absence of gene specialization within the msr gene family, at least for str246C. In addition, GUS activity was visualized. histochemically in root meristematic tissues of tobacco seedlings and is restricted to roots and sepals of mature plants. Finally, analysis of a series of 5 deletions of the str246C promoter-GUS gene fusion in transgenic tobacco plants confirms the involvement of multiple regulatory elements. A region of 83 by was found to be necessary for induction of promoter activity in response to Pseudomonas solanacearum, while auxin inducibility and root expression are apparently not controlled by this element, since its removal does not abolish either response. An element of the promoter with a negative effect on promoter activation by P. solanacearum was also identified.Joint first authors  相似文献   

19.
Transgenic creeping bentgrass (Agrostis palustris Huds., cv. Pencross; Poaceae) plants have been obtained by microprojectile bombardment of and regeneration from embryogenic calli with a vector designed to deliver the -glucuronidase (GUS) gene under the control of rice actin 1 5' regulatory sequences. Southern analysis of polymerase chain reaction (PCR)-amplified and restriction-digested genomic DNA of four transgenic plants regenerated from these cultures showed the unscrambled integration of the gus fragment. Northern blot analysis confirmed the expression of gus mRNA in one of the transgenic plants. Western blot analysis revealed a high level of accumulation of gus protein. Histochemical assays showed enzymatic activity of -glucuronidase in all parts of the transgenic turfgrass plant. The order of gus expression level in different tissues of the transgenic plant is as follows: stem node > first young leaf > root tip > second / third / fourth young leaf > stem internode > root hair-zone.Abbreviation GUS -glucuronidase - MS Murashige and Skoog(1962) medium - BA 6-benzyladenine - dicamba 3, 6 -dichloro-o-anisic acid - PCR polymerase chain reaction  相似文献   

20.
In this study, six plasmids were constructed to study the effects of the tobacco Rb7 matrix attachment region (MAR) sequence on rice transgene expression. Among them, each of four plasmids contained two identical copies of the MAR sequence flanking two different reporter genes, which encode the green fluorescent protein and -glucuronidase. Two control plasmids contained no MAR sequences. Microprojectile bombardment was used to separately introduce these six plasmids into rice calli. Transgenic rice plants were regenerated, and gene expression was measured in rice leaf extracts of two-month-old transgenic plants. By comparing transgenic plants with the corresponding control plants, transgenic plants harboring each of four plasmids that included the MAR sequence resulted in average gene expression levels enhanced by 3.3-fold, 18-fold, 376-fold and 650-fold. These results suggest that the same MAR sequence can affect the expression of different genes to different extents. One goal of plant scientists and breeders is to maximize expression levels of transgenes, especially in the production of transgene-encoded protein. Therefore, inclusion of the Rb7 MAR sequence would be beneficial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号