首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our investigations indicate the existence of binding sites for [3H]SCH23390 on crude membrane preparations in the anterior and posterior gills of the Chinese crab, Eriocheir sinensis acclimated to freshwater (FW) or seawater (SW). Maximum specific binding in the posterior gills is always higher than in the anterior gills, independent of saline acclimation. Kd values are similar in the two regions, suggesting the same affinity of both types of gills for the ligand, either from FW or from SW crabs.  相似文献   

2.
The phospholipid composition and metabolism are studied in crustacean gills. It is reported that branchiae are rich in PC, PE and DPG and abundant in long chain polyunsaturated fatty acids (20:4 omega 6 and 20:5 omega 3 acids). The pathways of phospholipids synthesis appear similar to those described for vertebrates. It is demonstrated that there exist significant differences in the level of phosphatides between the anterior and posterior gills of Eriocheir sinensis. No matter what the salinity, the three more posterior located gills of Chinese crabs are shown to contain much more unsaturated phospholipids (PE and DPG). This is particularly true when animals are acclimated to dilute media. Moreover, lipids of posterior gills appear more fluid than the anterior ones as reported by the values of the degree of fluorescence polarization and the index of unsaturation of fatty acids. It is suggested that these lipid changes may indicate the existence of a functional difference between the various branchiae of euryhaline Eriocheir sinensis with respect to their ability to transport salt. It is shown that the renewal of DPG and PS is increased in posterior gills isolated from freshwater Chinese crabs. It is postulated that the enhanced formation of DPG in posterior gills is an indicator of an increased synthesis of mitochondria having as principal function to produce the necessary energy for the Na+ uptake. An attempt is made to correlate the PS metabolism and the Na+-K+-ATPase activity which is particularly located in the mitochondrial fractions of the three pairs of posterior gills.  相似文献   

3.
Using the perfusion method, we compared cadmium accumulation and influx across the gills of the euryhaline Chinese mitten crab Eriocheir sinensis, exposed to 4.8 microM cadmium in the incubation medium (OUT). Cadmium influx was not observed across posterior gills while it ranged from 0.15 to 6.82 nmol Cd g(-1) gill w.w. h(-1) across anterior ones. For these respiratory gills, a strong increase (40 times) was observed when calcium was removed in both incubation and perfusion media while the lack of sodium in the perfusion medium resulted in a 46 times decrease. For crabs acclimated 15 days to artificial seawater, cadmium influx across anterior gills showed a 21 times decrease when compared with freshwater acclimated ones. On the other hand, after 3 h of perfusion, we detected cadmium accumulation in both types of gills, ranging from 3.8 to 68 nmol Cd g(-1) gill w.w. in anterior gills and from 2.1 to 39 nmol Cd g(-1) gill w.w. in posterior ones. Such accumulations represent between 61.3 and 100% of the total uptake of cadmium through the gills. From these results, we suggest that cadmium can penetrate more easily into the hemolymph space through the 'respiratory' type epithelium present in the anterior gills but absent in the posterior ones. This metal uptake is likely to occur at least in part through the same pathways as calcium. On the contrary, cadmium seems to be sequestered inside the posterior gills, perhaps in the cuticle of the salt-transporting type epithelium.  相似文献   

4.
Ionic balance in the freshwater-adapted Chinese crab, Eriocheir sinensis   总被引:1,自引:0,他引:1  
Ionic regulation by the gills of the freshwater-adapted Chinese crab, Eriocheir sinensis, was examined. The balance of uptake and loss of NaCl in crabs living in freshwater was established. Urine production was measured directly by cannulating the nephropores. Daily urinary loss of Na+ is equivalent to 16% of the haemolymph Na+ content and is substantially higher than that based on data from indirect measurements reported in the literature. Weight and area of anterior and posterior gills are proportional to body weight. The role of the gills in compensating urinary loss by uptake was determined by analysing changes in Na+ and Cl- concentrations in the external medium in which isolated perfused gills were suspended. In posterior gills, salt loss is quantitatively balanced by NaCl net uptake from an external concentration of 1.3 mmol l(-1) NaCl upwards. The transport constant (Kt) for half maximum saturation of net uptake and saturation of NaCl uptake are 1.5 mmol l(-1) and 4 mmol l(-1), respectively. In contrast to previous studies in which tracer fluxes or transepithelial short-circuit currents were determined, our method of direct ion determination shows that no net uptake of Na+ or Cl- occurs in posterior gills in the absence of the respective counter ion, or when uptake of one ion is blocked by a specific inhibitor. Net uptake of Na+ and Cl- was about equal. We conclude that the uptake of the two ions is coupled. The properties of the branchial ion uptake of E. sinensis correlates with the distribution of this crab in river systems.  相似文献   

5.
中华绒螯蟹对Pb和Cd的富集与释放特性   总被引:5,自引:0,他引:5  
应用生物富集双箱动力学模型模拟了中华绒螯蟹(Eriocheir sinensis)分别在Pb浓度为0.25、0.50、0.75mg/L,Cd浓度为0.025、0.050、0.075mg/L的单一水环境中暴露时,蟹鳃、肝胰腺、肌肉和血淋巴对Pb和Cd的生物富集与释放实验,并通过非线性拟合得到中华绒螯蟹对Pb和Cd的富集速率常数k1、排出速率常数k2、生物富集系数BCF、生物半衰期B1/2、富集平衡时生物体内Pb和Cd含量CAmax等动力学参数。结果表明:(1)中华绒螯蟹对Pb和Cd具有明显的富集,蟹鳃、肝胰腺和肌肉中Pb和Cd的含量与富集时间和水环境中Pb和Cd暴露浓度表现出了很好的正相关,血淋巴在富集阶段没有明显的规律。理论平衡状态下鳃、肝胰腺和肌肉中Pb和Cd含量CAmax随着暴露浓度的增大而增大,且成正相关。(2)Pb和Cd在中华绒螯蟹组织器官中的富集具有选择性,开始实验前,Pb在中华绒螯蟹体内的的分布规律为:肝胰腺>鳃>肌肉>血淋巴;Cd的分布规律为:鳃>肝胰腺>血淋巴>肌肉。在实验浓度的Pb和Cd水环境中暴露16d后,Pb的分布规律为:鳃>肝胰腺>肌肉>血淋巴;Cd的分布规律为:肝胰腺>鳃>肌肉>血淋巴。(3)中华绒螯蟹对Pb和Cd的生物富集和释放都较缓慢。经过16d的生物富集,各组织器官中Pb和Cd的含量均未达到稳态平衡。Pb和Cd在组织器官中的生物富集系数(BCF)范围分别为5-51和6-3148,中华绒螯蟹对Cd的富集能力明显高于Pb(P1/2)范围分别为4-9d和8-57d,中华绒螯蟹对Cd的排出能力明显低于Pb。    相似文献   

6.
The euryhalinity of mitten crab, Eriocheir sinensis, is based on osmoregulation, and thus on the activity of Na(+)-K(+)-ATPase. We studied location and activity of this enzyme in gills of juvenile crabs exposed to 5 per thousand, 25 per thousand, and 40 per thousand salinity. The posterior gills showed always a high number of immunopositive cells (IPC), staining with fluorescent antibody against Na(+)-K(+)-ATPase, covering at 5 per thousand the entire lamellae. At 25 per thousand, they showed fewer IPC which occurred only at the bases of the lamellae. Enzyme activity was consistently higher in posterior than in anterior gills. Low salinity stimulated the activity only in posterior gills. Both histochemical and enzymatic results are consistent with previous ultrastructural observations showing that the epithelial cells of the posterior, but not the anterior gills exhibit typical traits of ionocytes. While an increase in Na(+)-K(+)-ATPase activity at a reduced salinity is consistent with a strong hyper-osmoregulatory capacity in juvenile crabs, a low activity at an enhanced salinity suggests a physiological response, directed towards a reduction of Na(+) uptake. The activity increase of ion-transporting enzymes is directly related to spatial changes in their distribution along the osmoregulatory tissue, i.e. an enhanced number of IPC scattered along the entire lamellae. In juveniles, this allows for successful development and growth at reduced salinities.  相似文献   

7.
The method of mounting split lamellae of crab gills in modified Ussing chambers offers the advantage that active ion transport can be measured as short-circuit current and/or flux of radioactive tracers in relation to the epithelial surface. Moreover, further modern techniques like microelectrode impalements and current-noise analysis can be applied. The epithelium of posterior gills of Chinese crabs (Eriocheir sinensis) acclimated to fresh water actively absorbs Na+ and Cl independent of each other. The epithelium of the gills of shore crabs (Carcinus maenas) acclimated to brackish water actively absorbs NaCl in a coupled mode. The different osmotic gradients maintained by the two crab species are reflected in the characteristics of their gill epithelia. Chinese crabs, migrating to fresh water, have a tight gill epithelium. The gill epithelium of shore crabs, living in brackish water of at least 6–8‰ salinity, is an intermediate between tight and leaky. Regulation of NaCl absorption across the gill epithelium of Chinese crabs is achieved in a hormone-independent way by the haemolymph side osmolarity (autoregulation). Moreover, NaCl absorption is regulated by a hormonal factor of so far unknown chemical nature in the eyestalk extract which stimulates the transport rates via a cAMP-dependent signal transduction pathway, activating apical V-ATPase activity and increasing the number of open apical Na+ channels.  相似文献   

8.
1. Dopamine and dibutyryl cAMP induce a significant hyperpolarization when the so-called anterior and posterior gills isolated from the crab Eriocheir sinensis acclimated to freshwater are perfused with the same saline on both sides.2. When compared to the anterior ones, the posterior gills show higher concentrations of fructose 2,6-biphosphate (Fru 2,6-bP) and a lower ATP/ADP ratio.3. Perfusion with a freshwater or seawater saline decreases both the level of Fru 2,6-bP and the ATP/JADP ratio whereas dopamine and dibutyryl cAMP significantly increase the Fru 2,6-bP content for the posterior and the anterior gills.  相似文献   

9.
Observation of semi-thin and ultrathin sections performed in the gills of green crabs (Carcinus maenas) kept in 100% and in dilute 30% sea water respectively reveals marked differences between the six anterior and the three posterior pairs of gills. The anterior gill lamellae are almost entirely lined by a thin pavement epithelium (0.9 to 3 mum thick) which does not undergo any noticeable change when crabs are acclimated from full to dilute sea water. This supports the view it is chiefly involved in the respiratory function. In addition to the pavement epithelium, the posterior gills exhibit small areas corresponding to a thick prismatic epithelium (10 mum) the ultrastructure of which is similar to that of most of the so-called 'salt transporting epithelia'. When submitted to reduced external salinity, this epithelium undergoes structural changes consisting of elaboration of an extensive apical plasma membrane infolding system, enlargement of the subcuticular compartment and close association of mitochondria with basolateral membrane infoldings. Pilaster cells exhibit ultrastructural features of either thin (respiratory) or thick (salt transporting) epithelial differentiation according to their localization within the gill. Their peculiar organization suggests they ensure, in addition, mechanical reinforcement of the gill lamellae against blood hydrostatic pressure. The fact that salt-transporting epithelium areas do not exceed, at most, 30% of the total lamellar surface is probably related to the weak osmoregulatory capabilities of the shore crab.  相似文献   

10.
An in vitro perfused preparation of gills isolated from the euryhaline Chinese crab Eriocheir sinensis has been used to investigate the uptake of mercury. The results show that mercury crosses the epithelio-cuticular complex of the anterior respiratory gills and of the posterior salt-transporting gills. Mercury passes down its concentration gradient and it may reasonably be concluded that the heavy metal enters the crab via diffusion. However, the mercury influx through the epithelio-cuticular complex is significantly increased when the concentration gradient of mercury is nullified by the addition of mercury to the internal perfusion medium. A mechanism such as exchange-diffusion could then be involved in the transepithelial movements of mercury in crab gills, but this remains a matter of speculation. It is also demonstrated that the metabolic inhibitor 2,4-dinitrophenol, applied in the perfusion medium, drastically and immediately inhibits the influx of mercury through the anterior gills, substantiating the idea that a mechanism requiring metabolic energy is involved in the transepithelial movements of mercury. The nature of the non-diffusional component of mercury transport remains a matter of controversy.  相似文献   

11.
In the present investigation we studied the carbonic anhydrase (CA) in various tissues of Chinese crabEriocheir sinensis which were acclimated to different salinities (0, 10, 20, 30‰). We found only negligible CA activity in haemolymph, heart, hypodermis, antennal gland, leg muscle and digestive gland, irrespective of the acclimation medium. However, high amounts of CA activity were found in the gills. In the case of the posterior gills, a strong dependence on the acclimatization of the animals was demonstrated; the highest activities were found in those adapted to tap water. To investigate the cellular distribution of the CA in the posterior gills, the additional enzyme activities were measured in all fractions of a differential centrifugation of the gill homogenate: Na+/K+-ATP'ase (a marker for the plasmamembrane); lactate dehydrogenase (LDH; as marker for the cytosol); and succinate dehydrogenase (SDH; as marker for mitochondria). Independent of the acclimation salinity (0 or 36‰ salinity), we found about 70% of CA associated with the highest level of the Na+/K+-ATP'ase in the second 100 000 g pellet (membrane fraction), while only 15% were found in the cytosolic fractions (associated with highest levels of LDH). We conclude that the carbonic anhydrase of posterior gills of the Chinese crab is mainly membrane-bound. Furthermore, the activity of CA shows a strong dependence on the salinity of the water in which the crabs were kept.  相似文献   

12.
为研究长期不同水体盐度对中华绒螯蟹(Eriocheir sinensis以下简称河蟹)成体雄蟹渗透压调节和生理代谢的影响, 在不同水体盐度条件下(0、6、12和18)对河蟹雄体进行为期60d的养殖实验, 并分别检测其渗透调节及生理代谢相关指标。结果显示: (1)血清渗透压、Na+、Mg2+和Cl-含量随水体盐度上升而显著上升(P0.05), K+和Ca2+含量有上升趋势, 但各盐度组差异不显著(P0.05); 无论何组雄蟹, 其血清渗透压均显著高于对应的水体渗透压; (2)0组雄蟹后鳃Na+/K+-ATP酶活性显著高于其他组(P0.05), 其他各组间差异不显著(P0.05); (3)就血清生理代谢指标而言, 12组雄蟹血清中甘油三酯(TG)含量显著高于其他组(P0.05), 而尿酸(UA)、葡萄糖(Glu)、丙二醛(MDA)含量和超氧化物歧化酶(SOD)活性相对较低; 所有组尿素(Urea)、碱性磷酸酶(ALP)含量差异不显著(P0.05); (4)就肝胰腺生理代谢指标而言, 6组肝胰腺MDA含量和-谷氨酰转肽酶(-GT)活力最低, 12组酸性磷酸酶(ACP)和-GT活性显著高于其他盐度组(P0.05)。因此, 适当提高水体盐度可提高河蟹成体雄蟹的血清渗透压及其主要离子含量, 同时降低其后鳃中Na+/K+-ATP酶活性。肝胰腺和血清代谢指标暗示12盐度组雄体的代谢水平相对较低, 具有较强的免疫性能和抗氧化能力。  相似文献   

13.
This study integrates results from acute contamination with atrazine of isolated perfused gills, and from in vivo chronic contamination of euryhaline Chinese mitten crabs, Eriocheir sinensis, acclimated to freshwater. Atrazine 1 mg/l in contact with the basolateral membrane (IN) increases the transepithelial potential difference (TEP) from -20.8 +/- 4.9 to -29.7 +/- 3.8 mV in isolated perfused posterior gills (P < 0.01). This effect is only partially explained by a modification of Na(+) and Cl(-) active influxes. No TEP modification is detected when atrazine is added (OUT) indicating that molecular mechanisms located on the basolateral membrane are likely to be the only ones affected. Another explanation would be that cuticular barrier prevents atrazine penetration into the gill. Haemolymph osmolarity, Na(+) and Cl(-) concentrations of crabs living in freshwater contaminated with atrazine 1 mg/l during 14 days are not significantly modified. We conclude that although atrazine can disturb osmoregulatory mechanisms of isolated gills, this pollutant would be of minor importance in affecting osmoregulatory capacities of the Chinese mitten crab in natural conditions.  相似文献   

14.
Summary The phyllobranchiate gills of the green shore crab Carcinus maenas have been examined histologically and ultrastructurally. Each gill lamella is bounded by a chitinous cuticle. The apical surface of the branchial epithelium contacts this cuticle, and a basal lamina segregates the epithelium from an intralamellar hemocoel. In animals acclimated to normal sea water, five epithelial cell types can be identified in the lamellae of the posterior gills: chief cells, striated cells, pillar cells, nephrocytes, and glycocytes. Chief cells are the predominant cells in the branchial epithelium. They are squamous or low cuboidal and likely play a role in respiration. Striated cells, which are probably involved in ionoregulation, are also squamous or low cuboidal. Basal folds of the striated cells contain mitochondria and interdigitate with the bodies and processes of adjacent cells. Pillar cells span the hemocoel to link the proximal and distal sides of a lamella. Nephrocytes are large, spherical cells with voluminous vacuoles. They are rimmed by foot processes or pedicels and frequently associate with the pillar cells. Glycocytes are pleomorphic cells packed with glycogen granules and multigranular rosettes. The glycocytes often mingle with the nephrocytes. Inclusion of the nephrocytes and glycocytes as members of the branchial epithelium is justified by their participation in intercellular junctions and their position internal to the epithelial basal lamina.  相似文献   

15.
不同盐度条件下中华绒螯蟹亲蟹行为及血淋巴生理变化   总被引:5,自引:0,他引:5  
设定淡水对照组、盐度18适应组、盐度30骤变组(18→30)和盐度0骤变组(18→0),采用视频记录分析法研究了不同盐度条件下中华绒螯蟹雌性亲蟹的8项行为学指标变化,并测定了血淋巴渗透压及离子、血蓝蛋白含量。结果表明:中华绒螯蟹亲蟹封闭反应行为仅发生于盐度组(盐度18组和盐度30骤变组),且盐度30骤变组封闭反应时间显著高于盐度18组(P<0.05);腹部开合行为仅见于盐度0骤变组;盐度组第一触角回缩时间显著高于对照组(P<0.05);其他5项行为学指标活动频率均于盐度0骤变组最高。各实验组亲蟹血淋巴渗透压及离子浓度均高于外界实验水体,且均随盐度升高而增大。血蓝蛋白含量随盐度的降低而升高,盐度0骤变组血蓝蛋白含量显著高于盐度30骤变组(P<0.05)。分析认为,中华绒螯蟹亲蟹在0~30盐度范围内进行高渗透压调节,腹部开合行为是其在低盐度环境下暴露尾肠吸收水中离子的一种行为策略,封闭反应有助于机体减少高盐度坏境下水的吸收及扩散失盐。  相似文献   

16.
Aquatic organisms chronically exposed to cadmium can increase their resistance to a subsequent elevated exposure. In order to investigate mechanisms involved in acclimation process in the Chinese crab Eriocheir sinensis, we compared Cd level as well as metallothionein-like protein (MTLP) content in different tissues after direct acute exposure (i.e. 500 microg Cd L(-1) for 3 days), and after acute following chronic (i.e. 10 or 50 microg Cd L(-1) for 30 days) exposure. Cadmium accumulation occurred in the following order: anterior gill>hepatopancreas>posterior gill>carapace>hemolymph>muscle. As high concentrations as 188 microg Cd g(-1) w.w. were reported in anterior gills and seem to reach a saturation level. In these gills, the highest MTLP induction was observed after a direct acute exposure, for which a correlation with Cd content occurred. However, the Cd-binding potential by MTLPs was exceeded for any exposure condition. In hepatopancreas, the highest Cd level was reported for crabs acclimated during 30 days to 50 microg Cd L(-1) before challenging with an acute exposure. Moreover, we showed that MTLPs were induced during the acclimation process. In this organ, MTLPs are theoretically sufficient to bind all Cd. These results suggest that during a chronic exposure to 50 microg Cd L(-1), Chinese crabs acquire the capacity to hold more cadmium in hepatopancreas where it can be sequestrated by MTLPs. On the contrary, MTLP induction seems to be a rapid response to acute exposure in anterior gill, but is not sufficient to sequester all Cd. Other sequestration and/or detoxification mechanisms must take place in anterior gill to cope with high Cd levels.  相似文献   

17.
Some kinetic properties of gill Na(+),K(+)-ATPase of the estuarine crab, Chasmagnathus granulata, and its involvement in osmotic adaptation were analyzed. Results suggest the presence of different Na(+),K(+)-ATPase isoforms in anterior and posterior gills. They have different affinities for Na(+), but similar affinity values for K(+), Mg(2+), ATP and similar enzymatic profiles as a function of temperature of the incubation medium. Ouabain concentrations which inhibit 50% of enzyme activity were also similar in the two types of gills. Enzyme activity and affinity for Na(+) are higher in posterior gills than in anterior ones. Furthermore, affinities of Na(+),K(+)-ATPase of posterior gills for Na(+) and K(+) were similar to or higher than those of gills or other structures involved in the osmoregulation in several euryaline decapod crustaceans. Acclimation to low salinity was related to a significant increase in the maximum Na(+), K(+)-ATPase activity, mainly in posterior gills. On the other hand, crab acclimation to high salinity induced a significant decrease in maximum enzyme activity, both in anterior and posterior gills. These results are in accordance to the osmoregulatory performance showed by C. granulata in diluted media, and point out the major role of posterior gills in the osmoregulation of this species.  相似文献   

18.
The occurrence, localization and response to environmental salinity of carbonic anhydrase (CA) activity were studied in all of the gills of the euryhaline crab Chasmagnathus granulata from Mar Chiquita coastal lagoon (Buenos Aires Province, Argentina). CA activity in all gills appeared to be dependent on salinity. The pattern of distribution of CA activity among gills was different upon transition of C. granulata from osmoionoconformity (more uniform distribution) to hyperregulation (highest activity in posterior gills 6-8). Upon abrupt salinity change a differential response of CA activity occurred among gills which could suggest a differential role of CA in ion transport process in different gills of this crab. Furthermore, CA activity in anterior and posterior gills was found in cytosolic and microsomal fractions, although highest activity appeared to be membrane-associated. Both pools of CA were also strongly influenced by salinity and very sensitive to sulfonamide acetazolamide. The results suggest a differential participation of branchial CA in ionoregulatory mechanisms of C. granulata.  相似文献   

19.
The aim of this study was to evaluate the effects of waterborne cadmium on hyper-osmoregulatory capacity of the Chinese mitten crab Eriocheir sinensis acclimated to freshwater. For this purpose, crabs were submitted to acute (0.5 mg Cd L(-1) for 1, 2 or 3 days), chronic (10 or 50 microg Cd L(-1) for 30 days) or chronic, immediately followed by acute, exposure. While no effect was observed after 1 or 2 days, hemolymph osmolality, Na(+) and Cl(-) concentrations were significantly reduced after 3 days of acute exposure. Under this latter condition, the respiratory anterior gill ultrastructure, Na(+)/K(+)-ATPase and cytochrome c oxidase activities were significantly impaired. In contrast, the osmoregulatory posterior gill was unaffected for all treatments. As a consequence, we suggest that the observed hyper-osmoregulatory capacity impairment is the result of increased dissipative flow of ions and/or water through anterior gills. In contrast to acute exposure, chronic exposure did not induce any observable effect. However, crabs submitted to a known deleterious acute condition (0.5 mg Cd L(-1) for 3 days) directly after chronic exposure to 50 microg Cd L(-1) for 30 days showed normal hyper-osmoregulatory capacity with no change in gill Na(+)/K(+)-ATPase activity, and only little disturbance of anterior gill ultrastructure. These results demonstrate that a chronic cadmium exposure can induce acclimation mechanisms related to osmoregulation in this euryhaline decapod crustacean.  相似文献   

20.
用显微及亚显微方法研究了中华绒螯蟹雌体不同生理阶段(幼蟹、未成熟蟹、成熟蟹、抱卵蟹和流产蟹)腹肢的体壁结构变化和粘液腺发育特征。体壁的上皮细胞层常与粘液腺相连,粘液腺分泌物经导管穿过各层角膜排出。不同生理状况下中华绒螯蟹的腹肢体壁各角膜层结构的比例及致密度有明显的差异,粘液腺细胞及导管的数量不同,粘液腺与上皮细胞的连接程度也不同。粘液腺是否正常分泌、刚毛囊的开闭均与中华绒螯蟹的胚胎附着有关。比较研究发现,太湖抱卵蟹腹肢体腔内腺体比温州本地抱卵蟹腹肢内腺体发达,分泌的粘液也特别多。分析认为中华绒螯蟹腹肢组织结构、粘液腺的发育和分泌状况与胚胎流产有密切的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号