首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biomechanics of overground vs. treadmill walking in healthy individuals.   总被引:1,自引:0,他引:1  
The goal of this study was to compare treadmill walking with overground walking in healthy subjects with no known gait disorders. Nineteen subjects were tested, where each subject walked on a split-belt instrumented treadmill as well as over a smooth, flat surface. Comparisons between walking conditions were made for temporal gait parameters such as step length and cadence, leg kinematics, joint moments and powers, and muscle activity. Overall, very few differences were found in temporal gait parameters or leg kinematics between treadmill and overground walking. Conversely, sagittal plane joint moments were found to be quite different, where during treadmill walking trials, subjects demonstrated less dorsiflexor moments, less knee extensor moments, and greater hip extensor moments. Joint powers in the sagittal plane were found to be similar at the ankle but quite different at the knee and hip joints. Differences in muscle activity were observed between the two walking modalities, particularly in the tibialis anterior throughout stance, and in the hamstrings, vastus medialis and adductor longus during swing. While differences were observed in muscle activation patterns, joint moments and joint powers between the two walking modalities, the overall patterns in these behaviors were quite similar. From a therapeutic perspective, this suggests that training individuals with neurological injuries on a treadmill appears to be justified.  相似文献   

2.
Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 min of the powered condition and the unpowered condition. After completing three 30-min training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed.  相似文献   

3.
The “walking backward” mode was achieved within a single model of cat hind-limb locomotion with the balance maintenance only due to a change in the controlling actions (in addition to the “forward walking” mode). The skeletal part of the model contains the spine, pelvis, and two limbs consisting of the thigh, shin, and foot. The hip joint and spine mount in the thoracic region have three degrees of freedom; the knee and ankle joints have one degree of freedom. The pelvis is rigidly connected to the spine. Control is performed by model muscles (flexors and extensors of the thigh, shin, and foot). The muscle activation is performed by the effects that are typical for motoneurons that control the muscles. The feet in the support phase touch the treadmill, which moves at a constant speed. The model qualitatively reproduces multiple characteristics of feline movements during forward and backward walking (supporting its validity).  相似文献   

4.
The purpose of the present study was to determine the day-to-day reliability in stride characteristics in rats during treadmill walking obtained with two-dimensional (2D) motion capture. Kinematics were recorded from 26 adult rats during walking at 8 m/min, 12 m/min and 16 m/min on two separate days. Stride length, stride time, contact time, swing time and hip, knee and ankle joint range of motion were extracted from 15 strides. The relative reliability was assessed using intra-class correlation coefficients (ICC(1,1)) and (ICC(3,1)). The absolute reliability was determined using measurement error (ME). Across walking speeds, the relative reliability ranged from fair to good (ICCs between 0.4 and 0.75). The ME was below 91 mm for strides lengths, below 55 ms for the temporal stride variables and below 6.4° for the joint angle range of motion. In general, the results indicated an acceptable day-to-day reliability of the gait pattern parameters observed in rats during treadmill walking. The results of the present study may serve as a reference material that can help future intervention studies on rat gait characteristics both with respect to the selection of outcome measures and in the interpretation of the results.  相似文献   

5.
PurposeThe reliability of lower extremity muscle activation patterns has not been clearly studied in a dual-belt instrumented treadmill environment. The primary study objective was to quantify the day-to-day reliability of quadriceps, hamstrings, gastrocnemius and gluteus medius activation patterns in healthy young adult gait. Secondarily, the reliability of spatiotemporal, and knee/hip motion and moment-based gait outcomes was assessed.Scope: 20 young adults were recruited and tested on two separate days. Using standardized procedures, participants were prepared for surface electromyography and lower extremity motion capture. All individuals walked on a dual-belt instrumented treadmill while muscle activation, segment motions and ground reaction forces were recorded. Sagittal plane motion and net external sagittal and frontal plane moments were calculated. Discrete biomechanical and muscle activation measures were calculated, and non-negative matrix factorization extracted amplitude and temporal muscle activation features. Intraclass Correlation Coefficients, Standard Error of Measurement and Minimum Detectable Change were calculated.ConclusionsHigh to excellent Intraclass correlation coefficients were found between visits for most primary and secondary outcomes. The absolute and relative reliability, including Minimum Detectable Change values, provided in this study support the use of dual-belt instrumented treadmill walking as an acceptable medium to collect biomechanical and lower extremity EMG outcomes for future studies.  相似文献   

6.
In 17 patients with unilateral hip disease who underwent total hip arthroplasty (THA), the gait was analyzed preoperatively and 1, 3, 6, and 12 months after unilateral THA using a Vicon system to assess the recovery of walking speed and symmetrical movement of the hip, knee, ankle, and pelvis. The walking speed of these patients reached that of normal Japanese persons by 12 months after surgery. Walking speed was correlated with the range of hip motion on the operated side at 1 month postoperatively, and was correlated with the hip joint extension moment of force on both sides from 3 to 6 months after surgery. Before THA, asymmetry was observed in the range of the hip motion, maximum hip flexion, maximum hip extension, maximum knee flexion, as well as in pelvic obliquity, pelvic tilt, and pelvic rotation. There were no differences of the stride length or step length between both sides throughout the observation period. The preoperative range of hip flexion on the operated side during a gait cycle (21.3+/-7.9 degrees ) was significantly smaller than on the non-operated side (46.7+/-7.1 degrees ), and the difference between sides was still significant at 12 months after surgery (35.1+/-6.2 degrees on the operated side and 43.6+/-5.7 degrees on the non-operated side). The majority (74%) of the difference in hip motion range during this period was due to the difference in maximum extension of the hip. The increase in the range of pelvic tilt and the range of motion of the opposite hip showed an inverse correlation with the range of motion of the operated hip, suggesting a compensatory preoperative role. However, this correlation became insignificant after 6 months postoperatively. Asymmetry of the range of hip motion persisted at 12 months after THA in patients with unilateral coxoarthropathy during free level walking, while the operation normalized the spatial asymmetry of other joints and the walking speed prior to the recovery of hip motion.  相似文献   

7.
Walking is a task that we seek to understand because it is the most relevant human locomotion. Walking causes complex loading patterns and high load magnitudes within the human body. This work summarizes partially published load data collected in earlier in vivo measurement studies on 9 patients with telemeterized knee endoprostheses, 10 with hip endoprostheses and 5 with vertebral body replacements. Moreover, for the 19 endoprosthesis patients, additional simultaneously measured and previously unreported ground reaction forces are presented.The ground reaction force and the implant forces in the knee and hip exhibited a double peak during each step. The maxima of the ground reaction forces ranged from 100% to 126% bodyweight. In comparison, the greatest implant forces in the hip (249% bodyweight) and knee (271% bodyweight) were much greater. The mean peak force measured in the vertebral body replacement was 39% bodyweight and occurred at different time points of the stance phase.We concluded that walking leads to high load magnitudes in the knee and hip, whereas the forces in the vertebral body replacement remained relatively low. This indicates that the first peak force was greater in the hip than in the knee joint while this was reversed for the second peak force. The forces in the spinal implant were considerably lower than in the knee and hip joints.  相似文献   

8.
In this paper, a new method of determining spatial and temporal gait parameters by using centre of pressure (CoP) data is presented. A treadmill is used which was developed to overcome limitations of regular methods for the analysis of spatio-temporal gait parameters and ground reaction forces during walking and running. The design of the treadmill is based on the use of force transducers underneath a separate left and right plate, which together form the treadmill walking surface. The results of test procedures and measurements show that accurate recordings of vertical ground reaction force can be obtained. These recordings enable a separate analysis of vertical ground reaction forces during double support phases in walking, and the analysis of changes in the centre of pressure (CoP) position during subsequent foot placements. From the CoP data, temporal gait parameters (e.g. duration of left/right support and swing phases) and spatial gait parameters (i.e. left/right step lengths and widths) can be derived.  相似文献   

9.
Changes in knee function associated with treadmill ambulation   总被引:2,自引:2,他引:0  
A comparison of level walking, on a walkway and on a treadmill, was performed using ten normal subjects. Motion about the knee was measured using a triaxial electrogoniometer, and foot-floor contact patterns were recorded by means of four foot switches attached to the sole of each shoe. On the walkway, the data were collected with the subject moving at a comfortable walking speed. The treadmill was then set at the average velocity obtained on the walkway. Knee joint rotation in the coronal and transverse planes did not change significantly between the walkway and the treadmill. In the sagittal plane, significant differences were found for total motion (p less than 0.01), swing phase motion (p less than 0.01), knee position at heel strike (p less than 0.05), and maximum swing phase extension (p less than 0.01). A comparison of the foot-floor contact patterns between walkway and treadmill ambulation revealed reduced heel contact time, with an increase in toe contact while on the treadmill. It was concluded that sagittal plane knee kinematics during level treadmill walking differ significantly from level overground walking.  相似文献   

10.
The purpose of the present study was to determine the effects of orthoses designed to support the forefoot and rearfoot on the kinematics and kinetics of the lower extremity joints during walking. Fifteen participants volunteered for this study. Kinematic and kinetic variables during overground walking were compared with the participants wearing sandals without orthoses or sandals with orthoses. Orthoses increased knee internal abduction moment during late stance and knee abduction angular impulse, and reduced the medial ground reaction force during late stance, adduction free moment, forefoot eversion angle, ankle inversion moment and angular impulse, hip adduction angle, hip abduction moment, and hip external rotation moment and angular impulse (p<0.05). Orthoses decreased the torsional forces on the lower extremity and reduced the loading at the hip during walking. These findings combined with our previous studies and those of others suggest that forefoot abnormalities are critically important in influencing lower extremity kinematics and kinetics, and may underlie some non-traumatic lower extremity injuries.  相似文献   

11.
Hip and knee functions are intimately connected and reduced hip abductor function might play a role in development of knee osteoarthritis (OA) by increasing the external knee adduction moment during walking. The purpose of this study was to test the hypothesis that reduced function of the gluteus medius (GM) muscle would lead to increased external knee adduction moment during level walking in healthy subjects. Reduced GM muscle function was induced experimentally, by means of intramuscular injections of hypertonic saline that produced an intense short-term muscle pain and reduced muscle function. Isotonic saline injections were used as non-painful control. Fifteen healthy subjects performed walking trials at their self-selected walking speed before and immediately after injections, and again after 20 min of rest, to ensure pain recovery. Standard gait analyses were used to calculate three-dimensional trunk and lower extremity joint kinematics and kinetics. Surface electromyography (EMG) of the glutei, quadriceps, and hamstring muscles were also measured. The peak GM EMG activity had temporal concurrence with peaks in frontal plane moments at both hip and knee joints. The EMG activity in the GM muscle was significantly reduced by pain (?39.6%). All other muscles were unaffected. Peaks in the frontal plane hip and knee joint moments were significantly reduced during pain (?6.4% and ?4.2%, respectively). Lateral trunk lean angles and midstance hip joint adduction and knee joint extension angles were reduced by ?1°. Thus, the gait changes were primarily caused by reduced GM function. Walking with impaired GM muscle function due to pain significantly reduced the external knee adduction moment. This study challenge the notion that reduced GM function due to pain would lead to increased loads at the knee joint during level walking.  相似文献   

12.
Successful community and household ambulation require the ability to navigate corners and maneuver around obstacles, posing unique challenges compared to straight-line walking. The challenges associated with turning may contribute to an increased incidence of falling and the occurrence of fall-related injuries. A measure of stability applied to turning gait may be able to quantify a system's response to naturally occurring disturbances associated with turning and identify subjects at greater risk of falling. An index of stability has been used previously to assess the rate of kinematic separation (local dynamic stability) during straight-line gait. The purpose of this study was to determine if local dynamic stability during constant speed turning is reduced compared to straight-line treadmill walking. Maximum finite-time Lyapunov exponents (λ) were used to estimate the local stability of able-bodied subjects’ (n=19) sagittal plane hip, knee, and ankle trajectories for turning compared to straight-line walking at two different walking speeds. Turning λ was greater than straight λ for the hip, right knee, and ankle (p<0.05). Turning λ for the left knee angle was similar to straight λ. There were no differences in λ between left and right limbs for the hip and ankle and also no differences between the inside and outside limbs during turning for all joints. These findings indicate able-bodied subjects’ hip, right knee, and ankle kinematics are less locally stable while turning than walking in a straight line and may be used as a comparative tool for determining the efficacy of therapeutic interventions for mobility-impaired populations.  相似文献   

13.
Methods to determine the hip joint centre (HJC) location are necessary in gait analysis. It has been demonstrated that the methods proposed in the literature involve large mislocation errors. The choice should be made according to the extent by which HJC location errors distort the estimates of angles and resultant moments at the hip and knee joints. This study aimed at quantifying how mislocation errors propagate to these gait analysis results. Angles and moments at the hip and knee joint were calculated for five able-bodied subjects during level walking. The nominal position of the HJC was determined as the position of the pivot point of a 3D movement of the thigh relative to the pelvis. Angles and moments were then re-calculated after having added to HJC co-ordinates errors in the range of +/-30 mm. Angles and moments at both hip and knee joints were affected by HJC mislocation. The hip moments showed the largest propagation error: a 30 mm HJC anterior mislocation resulted in a propagated error into flexion/extension component of about -22%. The hip abduction/adduction moment was found the second largest affected quantity: a 30 mm lateral HJC mislocation produced a propagated error of about -15%. Finally, a 30 mm posterior HJC mislocation produced a delay of the flexion-to-extension timing in the order of 25% of the stride duration. HJC estimation methods with minimum antero-posterior error should therefore be preferred.  相似文献   

14.
15.
Mechanical tuning of an ankle-foot orthosis (AFO) is important in improving gait in individuals post-stroke. Alignment and resistance are two factors that are tunable in articulated AFOs. The aim of this study was to investigate the effects of changing AFO ankle alignment on lower limb joint kinematics and kinetics with constant dorsiflexion and plantarflexion resistance in individuals post-stroke. Gait analysis was performed on 10 individuals post-stroke under four distinct alignment conditions using an articulated AFO with an ankle joint whose alignment is adjustable in the sagittal plane. Kinematic and kinetic data of lower limb joints were recorded using a Vicon 3-dimensional motion capture system and Bertec split-belt instrumented treadmill. The incremental changes in the alignment of the articulated AFO toward dorsiflexion angles significantly affected ankle and knee joint angles and knee joint moments while walking in individuals post-stroke. No significant differences were found in the hip joint parameters. The alignment of the articulated AFO was suggested to play an important role in improving knee joint kinematics and kinetics in stance through improvement of ankle joint kinematics while walking in individuals post-stroke. Future studies should investigate long-term effects of AFO alignment on gait in the community in individuals post-stroke.  相似文献   

16.
Treadmill vs. floor walking: kinematics, electromyogram, and heart rate   总被引:2,自引:0,他引:2  
To identify the degree of difference between treadmill and floor walking, kinematic, electromyographic (EMG), and heart rate measurements were recorded in seven normal female subjects during walking at three speeds on the treadmill and on the floor. During treadmill walking, subjects tended to use a faster cadence and shorter stride length than during floor walking. In addition the displacements of the head, hip, and ankle in the sagittal plane showed statistically significant differences between floor and treadmill walking. Average EMG activity was usually greater on the treadmill than on the floor; however, this difference was only significant for the quadriceps. Heart rate was significantly higher during fast treadmill walking than floor walking. In general, treadmill walking was not found to differ markedly from floor walking in kinematic measurements or EMG patterns.  相似文献   

17.
Joint forces in the human pelvis-leg skeleton during walking   总被引:1,自引:0,他引:1  
For the calculation of the forces in the hip, knee and ankle joints during walking the knowledge of the three-dimensional movements of the human body and of the forces between foot and ground is a prerequisite. It is shown how this information may be obtained and what accuracy is obtainable. For the calculation of the statically indeterminate system of the lower limbs, consisting of muscles, bones and joints an optimization method is applied. The optimization criterion is the minimization of the muscle forces. Measurements were taken with seventeen male and five female persons. The maximum joint forces are plotted against gait speed, body weight and body size. In addition some statistical distributions are presented.  相似文献   

18.
Many methodologies exist to predict the hip joint center (HJC), of which regression based on anatomical landmarks appear most common. Despite the fact that predicted HJC locations vary depending upon chosen method, inter-study comparisons and inferences about populations are commonly made. The purpose of this study was to create a normative database of hip and knee biomechanics during walking, running, and single leg landings based on five commonly utilized HJC methods to serve as a reference for inter-study comparisons. Secondarily, we devised to provide comparisons of peak knee angles and hip angles, moments, and powers from the five HJC methods. Thirty healthy young adults performed walking, running, and single leg landing tasks at self-selected speeds (walking/running) and at 90% of their maximum jump height (landing). Three-dimensional motion capture and ground reaction forces were collected during all tasks. Five different HJC prediction methods: Bell, Davis, Hara, Harrington, and Greater Trochanter were implemented separately in a 6 degree of freedom model. Predicted HJC locations, direct kinematics, and inverse dynamics were computed for all tasks. Predicted HJC mediolateral, anteroposterior, and superior-inferior locations differed between methods by an average of 1.3, 2.9, and 1.4 cm, respectively. A database was created using the mean of all subjects for all five methods. In addition, one-way ANOVAs were used to compare triplanar peak angles, moments, and powers between the methods. The database of hip and knee biomechanics illustrates (1) variability between methods increases with more dynamic tasks (running/landing vs. walking) and (2) frontal and transverse plane hip and knee biomechanics are more variable between methods. Comparisons between methods found 38 and 16 main effect differences in hip and knee biomechanics, respectively. The Greater Trochanter method provided the most differences compared with other methods, while the Davis method provided the least differences. The database constructed provides an important reference for inter-study comparisons and details the impact of anatomical regression methods for predicting the HJC.  相似文献   

19.
Inverse dynamics are the cornerstone of biomechanical assessments to calculate knee moments during walking. In knee osteoarthritis, these outcomes have been used to understand knee pathomechanics, but the complexity of an inverse dynamic model may limit the uptake of joint moments in some clinical and research structures. The objective was to determine whether discrete features of the sagittal and frontal plane knee moments calculated using inverse dynamics compare to knee moments calculated using a cross product function. Knee moments from 74 people with moderate knee osteoarthritis were assessed after ambulating at a self-selected speed on an instrumented dual belt treadmill. Standardized procedures were used for surface marker placement, gait speed determination and data processing. Net external frontal and sagittal plane knee moments were calculated using inverse dynamics and the three-dimensional position of the knee joint center with respect to the center of pressure was crossed with the three-dimensional ground reaction forces in the cross product function. Correlations were high between outcomes of the moment calculations (r > 0.9) and for peak knee adduction moment, knee adduction moment impulse and difference between peak flexion and extension moments, the cross product function resulted in absolute values less than 10% of those calculated using inverse dynamics in this treadmill walking environment. This computational solution may allow the integration of knee moment calculations to understand knee osteoarthritis gait without data collection or computational complexity.  相似文献   

20.
Instrumented treadmills offer significant advantages for analysis of human locomotion, including recording consecutive steady-state gait cycles, precisely controlling walking speed, and avoiding force plate targeting. However, some studies of hemiparetic walking on a treadmill have suggested that the moving treadmill belt may fundamentally alter propulsion mechanics. Any differences in propulsion mechanics during treadmill walking would be problematic since recent studies assessing propulsion have provided fundamental insight into hemiparetic walking. The purpose of this study was to test the hypothesis that there would be no difference in the generation of anterior/posterior (A/P) propulsion by performing a carefully controlled comparison of the A/P ground reaction forces (GRFs) and impulses in healthy adults during treadmill and overground walking. Gait data were collected from eight subjects walking overground and on a treadmill with speed and cadence controlled. Peak negative and positive horizontal GRFs in early and late stance, respectively, were reduced by less than 5% of body weight (p<0.05) during treadmill walking compared to overground walking. The magnitude of the braking impulse was similarly lower (p<0.05) during treadmill walking, but no significant difference was found between propulsion impulses. While there were some subtle differences in A/P GRFs between overground and treadmill walking, these results suggest there is no fundamental difference in propulsion mechanics. We conclude that treadmill walking can be used to investigate propulsion generation in healthy and by implication clinical populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号