首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Kinetics of thymineless death for Escherichia coli 15 TAU-bar from plating on solid medium were compared with those from direct observations of single cells under a microscope. The latter method did not involve any physical change of the medium. The kinetics obtained for the two methods were identical. This rules out the assumption that in E. coli 15 TAU-bar death from the thymine deprivation is directly associated with the plating procedure.  相似文献   

4.
On the basis of the course of loss of colony-forming ability it was possible to disting guish at least three phases of thymineless death in a culture ofEscherichia coli 15 TAU starved in a thymine-free medium enriched with arginine and uracil. The main differences between the individual phases were: (a) half-time of the loss of colony-forming ability; (b) only in the first phase was thymineless death reversible; (c) beginning in the second phase, part of the cells lysed after thymine was added to the liquid medium or when cells were plated on agar with complete medium; (d) lysis was much slower in the third phase than in the second; (e) in the presence of caffeine the course of the first and second phase was not affected but cells did not die in the third phase. Cells surviving in the third phase in the presence of caffeine are probably those which did not die even in medium T?A?U? (Maaløe & Hanawalt, 1961). Transition from one phase to another was caused neither by change in the composition of medium during thymine starvation nor by heterogeneity of this culture from a genetical point of view.  相似文献   

5.
6.
In 1954, Cohen and Barner discovered that a thymine auxotrophic (thyA) mutant of Escherichia coli undergoes cell death in response to thymine starvation. This phenomenon, called thymineless death (TLD), has also been found in many other organisms, including prokaryotes and eukaryotes. Though TLD has been studied intensively, its molecular mechanism has not yet been explained. Previously we reported on the E. coli mazEF system, a regulatable chromosomal suicide module that can be triggered by various stress conditions. MazF is a stable toxin, and MazE is an unstable antitoxin. Here, we show that cell death that is mediated by the mazEF module can also be activated by thymine starvation. We found that TLD depends on E. coli mazEF and that under thymine starvation, the activity of the mazEF promoter P(2) is significantly reduced. Our results, which describe thymine starvation as a trigger for a built-in death program, have implications for programmed cell death in both prokaryotes and eukaryotes.  相似文献   

7.
Nakayama H 《Mutation research》2005,577(1-2):228-236
DNA helicases of the RecQ family are distributed among most organisms and are thought to play important roles in various aspects of DNA metabolism. The founding member of the family, RecQ of Escherichia coli, was identified in a study aimed at clarifying the mechanism of thymineless death, a phenomenon underlying the mechanism for the cytotoxicity of the anticancer drug 5-fluorouracil. The present article is concerned solely with E. coli RecQ and tries to offer an integrated picture of the past and present of its study. Finally a brief discussion is given on how RecQ is involved in thymineless death.  相似文献   

8.
Inhibition of DNA replication with hydroxyurea during thymine starvation of Escherichia coli shows that active DNA synthesis is not required for thymineless death (TLD). Hydroxyurea experiments and thymine starvation of lexA3 and uvrA DNA repair mutants rule out unbalanced growth, the SOS response, and nucleotide excision repair as explanations for TLD.  相似文献   

9.
10.
11.
12.
Thymineless death (TLD) is the rapid loss of viability in bacterial, yeast, and human cells starved of thymine. TLD is the mode of action of common anticancer drugs and some antibiotics. TLD in Escherichia coli is accompanied by blocked replication and chromosomal DNA loss and recent work identified activities of recombination protein RecA and the SOS DNA-damage response as causes of TLD. Here, we examine the basis of hypersensitivity to thymine deprivation (hyper-TLD) in mutants that lack the UvrD helicase, which opposes RecA action and participates in some DNA repair mechanisms, RecBCD exonuclease, which degrades double-stranded linear DNA and works with RecA in double-strand-break repair and SOS induction, and RuvABC Holliday-junction resolvase. We report that hyper-TLD in uvrD cells is partly RecA dependent and cannot be attributed to accumulation of intermediates in mismatch repair or nucleotide-excision repair. These data imply that both its known role in opposing RecA and an additional as-yet-unknown function of UvrD promote TLD resistance. The hyper-TLD of ruvABC cells requires RecA but not RecQ or RecJ. The hyper-TLD of recB cells requires neither RecA nor RecQ, implying that neither recombination nor SOS induction causes hyper-TLD in recB cells, and RecQ is not the sole source of double-strand ends (DSEs) during TLD, as previously proposed; models are suggested. These results define pathways by which cells resist TLD and suggest strategies for combating TLD resistance during chemotherapies.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
Canavanine death in Escherichia coli   总被引:20,自引:0,他引:20  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号