首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tbx2 and Tbx3 are considered to be cognate genes within a Tbx2/3/4/5 subfamily of T-box genes and are expressed in closely overlapping areas in a variety of tissues, including the eye. Herein, we show that misexpression of Tbx2 and Tbx3 in Xenopus embryos gave rise to defective eye morphogenesis, which was reminiscent of the defect caused by attenuated Sonic hedgehog (Shh) signaling. Indeed, Tbx2/3 misexpression suppressed Gli1, Gli2, Ptc2 and Pax2, mediators or targets of Hedgehog (Hh) signals. From these data, Tbx2/3 may have a shared function in inhibiting Gli-dependent Shh signaling during eye development. Conversely, the expression of Tbx2/3 was severely affected by both Shh and a putative dominant negative form of Hh, as well as by both transactivator and transrepressor forms of Gli-fusion proteins, suggesting that the expression of Tbx2/3 may be regulated by a Gli-dependent Hh signal transduction pathway. Because the Shh signal has been considered to play crucial roles in the formation of the proximal-distal and dorsal-ventral axes in the eyes, these findings about the mutual regulatory mechanism between Tbx2/3 and Gli-dependent Hh signaling provide valuable insight into the cause of the localized expression of Tbx2/3 and their role during the formation of these axes. In addition, our findings also imply the conserved regulation and shared activity between the cognate genes of Tbx2 and Tbx3.  相似文献   

2.
3.
4.
Results from previous studies using an inbred strain of Xenopus laevis have led to the proposition that metamorphosis includes the events by which the newly differentiating adult immune system, including T lymphocytes, recognizes and eliminates larval skin cells as 'non-self'. More recently, a larval antigen targeted by adult T cells was identified as a 59 kDa protein with a specific peptide sequence. Using antisera directed against the larval antigen and the peptide, immunohistochemistry and western blotting were done to examine expression of the 59 kDa larval antigen in the skin during larval and metamorphic periods. There was no expression before Nieuwkoop and Faber stage 53. Expression was first seen at the beginning of metamorphic stage 54, when hind limbs appear, and increased thereafter, in apical and skein cells of both trunk and tail regions. In the trunk region, expression started to decrease at stage 58, until it completely disappeared at stage 62 (metamorphic climax). In the tail skin, however, expression persisted throughout the metamorphic stages. Treatment of larvae with thyroid hormone (TH) resulted in repression of expression of the 59 kDa molecule in a dose-dependent manner. Downregulation occurred earlier in the trunk than in the tail skin. These results suggest involvement in metamorphic events of an immunological mechanism: differential expression of the larval antigen in the trunk and tail skin cells due to their differing concentration of TH results in the tail, but not the trunk skin, being selectively attacked by the newly differentiating adult-type immune system.  相似文献   

5.
6.
The present study used a molecular approach toward understanding the mechanism of hormone- and region-dependent remodeling of the small intestine during metamorphosis of Xenopus laevis . A protein spot was noticed on a two-dimensional polyacrylamide gel as a protein whose expression was metamorphic stage- and region-dependent. The protein was identified as the Xenopus homolog (Xcalbindin) of chick calbindin D28k. Xcalbindin expression in the intestine was restricted to absorptive cells in the posterior part, being detectable at stages 49–61, not detectable at stages 62–63, detectable again at stages 64–66, and finally becoming undetectable in the adult. During spontaneous metamorphosis, the level of Xcalbindin mRNA was significantly increased between stages 57 and 58, dramatically reduced at stage 59, and the mRNA was undetectable from stages 60–63, after which it was weakly re-expressed until the end of metamorphosis. Such up- and down-regulation of Xcalbindin mRNA was induced precociously by exogenous thyroid hormone. These results indicated that Xcalbindin is a specific marker of the differentiated absorptive cells of the intestine. Immunohistochemistry with specific antibodies against Xcalbindin demonstrated that precursor cells of adult intestinal epithelial cells expressed Xcalbindin. Considering these results, the origin of adult intestinal epithelial cells was discussed.  相似文献   

7.
The biological effects of thyroid hormone (T3) are mediated by the thyroid hormone receptor (TR). Amphibian metamorphosis is one of the most dramatic processes that are dependent on T3. T3 regulates a series of orchestrated developmental changes, which ultimately result in the conversion of an aquatic herbivorous tadpole to a terrestrial carnivorous frog. T3 is presumed to bind to TRs, which in turn recruit coactivators, leading to gene activation. The best-studied coactivators belong to the p160 or SRC family. Members of this family include SRC1/ NCoA-1, SRC2/TIF2/GRIP1, and SRC3/pCIP/ACTR/AIB-l/RAC-3/TRAM-1. These SRCs interact directly with liganded TR and function as adapter molecules to recruit other coactivators such as p300/CBP. Here, we studied the expression patterns of these coactivators during various stages of development. Amongst the coactivators cloned in Xenopus laevis, SRC3 was found to be dramatically upregulated during natural and T3-induced metamorphosis, and SRC2 and p300 are express  相似文献   

8.
Studies with gene knockout mice have shown that Sonic hedgehog (Shh) is required for early development of hair follicles, but the role of this gene in the late stages of follicle development is not clear. By using an organ culture system of embryonic mouse skin, the role of Shh signaling in the early and late stages of follicle development was investigated. In the early stage of follicle development, the downward growth of the follicular epithelium was suppressed by cyclopamine, an inhibitor of Shh signaling, and accelerated by recombinant Shh. In addition, cyclopamine impaired dermal papilla formation, accompanied by the rearrangement of papilla cells, but not the elongation of the follicular epithelium at the later stage. These results suggest that Shh signaling is required for the proliferation of epithelial cells in the early development of hair follicles and for the morphogenetic movement of mesenchymal cells at the later stage of follicle development.  相似文献   

9.
10.
Development of the cartilaginous capsule of the inner ear is dependent on interactions between otic epithelium and its surrounding periotic mesenchyme. During these tissue interactions, factors endogenous to the otic epithelium influence the differentiation of the underlying periotic mesenchyme to form a chondrified otic capsule. We report the localization of Sonic hedgehog (Shh) protein and expression of the Shh gene in the tissues of the developing mouse inner ear. We demonstrate in cultures of periotic mesenchyme that Shh alone cannot initiate otic capsule chondrogenesis. However, when Shh is added to cultured periotic mesenchyme either in combination with otic epithelium or otic epithelial-derived fibroblast growth factor (FGF2), a significant enhancement of chondrogenesis occurs. Addition of Shh antisense oligonucleotide (AS) to cultured periotic mesenchyme with added otic epithelium decreases levels of endogenous Shh and suppresses the chondrogenic response of the mesenchyme cells, while supplementation of Shh AS-treated cultures with Shh rescues cultures from chondrogenic inhibition. We demonstrate that inactivation of Shh by targeted mutation produces anomalies in the developing inner ear and its surrounding capsule. Our results support a role for Shh as a regulator of otic capsule formation and inner ear development during mammalian embryogenesis.  相似文献   

11.
BACKGROUND: Ethanol is known to induce a wide variety of gestational anomalies, including skeletal malformations. Gestational ethanol exposure in mice has been shown to induce postaxial digit loss (ectrodactyly). How ethanol induces limb malformations is not understood. To better understand how ethanol effects limb development, we have utilized a transgenic line of mice that expresses beta-galactosidase in the apical ectodermal ridge (AER) of the limbs throughout gestation. METHODS: Pregnant female mice were injected with 2.9, 3.4, or 3.9 gm/kg ethanol at E9.3 and E9.5; embryos were isolated at E11.25, stained for beta-galactosidase activity, and evaluated for AER defects. Based upon the pattern of defects seen, expression of FGF8 in the AER and Sonic hedgehog in the postaxial mesoderm was evaluated by in situ hybridization. RESULTS: Two distinct phenotypes were seen in response to ethanol that were dose dependent. At 2.9 gm/kg ethanol, the most prevalent phenotype was a mislocalization of the AER to regions both dorsal and ventral to the midline. A higher dosage of 3.4 gm/kg ethanol did not increase the mislocalization phenotype, but resulted in a higher frequency of postaxial loss of the AER and associated mesenchymal tissue. The highest dosage utilized (3.9 gm/kg) resulted in a high frequency of both preaxial and postaxial loss of the AER. Through in situ hybridization, we found that ethanol exposure resulted in a concomitant reduction in FGF8 expression in the AER and Sonic hedgehog expression from the zone of polarizing activity (ZPA). CONCLUSIONS: We propose a model where ethanol disrupts the AER/ZPA positive feedback loop to induce postaxial malformations. Preaxial malformations seen at higher ethanol dosage suggest FGF8 as a critical target of ethanol in producing limb defects.  相似文献   

12.
The zebrafish enteric nervous system (ENS), like those of all other vertebrate species, is principally derived from the vagal neural crest cells (NCC). The developmental controls that govern the migration, proliferation and patterning of the ENS precursors are not well understood. We have investigated the roles of endoderm and Sonic hedgehog (SHH) in the development of the ENS. We show that endoderm is required for the migration of ENS NCC from the vagal region to the anterior end of the intestine. We show that the expression of shh and its receptor ptc-1 correlate with the development of the ENS and demonstrate that hedgehog (HH) signaling is required in two phases, a pre-enteric and an enteric phase, for normal ENS development. We show that HH signaling regulates the proliferation of vagal NCC and ENS precursors in vivo. We also show the zebrafish hand2 is required for the normal development of the intestinal smooth muscle and the ENS. Furthermore we show that endoderm and HH signaling, but not hand2, regulate gdnf expression in the intestine, highlighting a central role of endoderm and SHH in patterning the intestine and the ENS.  相似文献   

13.
HoxD expression and cartilage pattern formation were compared after application of a recombinant amino-terminal peptide of Sonic hedgehog protein (Shh-N) and implantation of cells expressing the Sonic hedgehog (Shh) gene. During digit duplication after implantation of a Shh-N-soaked bead, BMP-2 and Patched expression was transiently induced in the anterior limb mesenchyme 20 h after grafting, but was reduced to the basal level 48 h after grafting. On the contrary, when Shh-expressing cells were grafted to the anterior limb bud, expression domains of the BMP-2 and Patched genes were initially induced in the restricted region in close proximity to the grafted cells. Induced expression of BMP-2 and Patched was maintained in the anterior-peripheral region of the limb bud for 42 h after grafting. In either case, HoxD12 and HoxD13 were consistently induced in the anterior-distal limb mesenchyme, accompanying mirror-image duplication of the digit pattern. Induction and maintenance of HoxD expression were consistent with the resultant digit pattern. A steep gradient of Shh activity provided by Shh-expressing cells is most adequate to induce complete digit pattern, as compared to the shallow gradient provided by Shh-N protein released from a bead. These results suggest that positional identity is respecified by Shh-N activity within the first 24 h during digit duplication, and that Shh-N on its own is not acting as a long-range signaling molecule to determine positional identity at a distance in the limb bud.  相似文献   

14.
15.
WW domain containing oxidoreductase, designated WWOX, FOR or WOX1, is a known pro-apoptotic factor when ectopically expressed in various types of cancer cells, including glioblastoma multiforme (GBM). The activation of sonic hedgehog (Shh) signaling, especially paracrine Shh secretion in response to radiation, is associated with impairing the effective irradiation of cancer cells. Here, we examined the role of Shh signaling and WOX1 overexpression in the radiosensitivity of human GBM cells. Our results showed that ionizing irradiation (IR) increased the cytoplasmic Shh and nuclear Gli-1 content in GBM U373MG and U87MG cells. GBM cells with exogenous Shh treatment exhibited similar results. Pretreatment with Shh peptides protected U373MG and U87MG cells against IR in a dose-dependent manner. Cyclopamine, a Hedgehog/Smoothened (SMO) inhibitor, reversed the protective effect of Shh in U87MG cells. Cyclopamine increased Shh plus IR-induced H2AX, a marker of DNA double-strand breaks, in these cells. To verify the role of Shh signaling in the radiosensitivity of GBM cells, we tested the effect of the Gli family zinc finger 1 (Gli-1) inhibitor zerumbone and found that it could sensitize GBM cells to IR. We next examined the role of WOX1 in radiosensitivity. Overexpression of WOX1 enhanced the radiosensitivity of U87MG (possessing wild type p53 or WTp53) but not U373MG (harboring mutant p53 or MTp53) cells. Pretreatment with Shh peptides protected both WOX1-overexpressed U373MG and U87MG cells against IR and increased the cytoplasmic Shh and nuclear Gli-1 content. Zerumbone enhanced the radiosensitivity of WOX1-overexpressed U373MG and U87MG cells. In conclusion, overexpression of WOX1 preferentially sensitized human GBM cells possessing wild type p53 to radiation therapy. Blocking of Shh signaling may enhance radiosensitivity independently of the expression of p53 and WOX1. The crosstalk between Shh signaling and WOX1 expression in human glioblastoma warrants further investigation.  相似文献   

16.
BACKGROUND INFORMATION: There are significant indications that amphibians require TH (thyroid hormones) prior to their involvement in the regulation of metamorphosis and before the development of a functional thyroid. RESULTS: In order to investigate the potential role for TH in pre-metamorphic Xenopus tropicalis we have cloned cDNAs for, and analysed the expression of, TPO (thyroid peroxidase), 5'DII (type II iodothyronine deiodinase) and 5DIII (type III iodothyronine deiodinase), enzymes involved in TH metabolism. Zygotic expression of TPO was detected in neurula stage embryos. Expression was observed in the notochord and later in the thyroid. The notochord was also a common site of expression for 5'DII and 5DIII. Other sites of 5'DII expression are the otic vesicles, retina, liver, blood-forming region, branchial arches and brain. 5DIII is also expressed in the brain, retina, liver, developing pro-nephros, blood-forming region and branchial arches. Embryos exposed to the TPO inhibitor methimazole showed a distinctive dose-dependent phenotype of a crimped notochord and shortened axis, together with alterations in (125)I(-) uptake. CONCLUSIONS: These data suggest a novel extrathyroidal role for TH during early development, and support the proposal that embryos require thyroid signalling for normal development prior to metamorphosis.  相似文献   

17.
Summary— We have isolated and characterized a cDNA which contains the entire coding sequence of Xenopus laevis cyclin D2 protein. Cyclin D2 mRNA is identified as a member of the class of maternal RNAs. It is rare and stable during embryonic development at least until tadepole. In addition, a second cDNA coding for a truneated version of cyclin D2 was also isolated. Mieroinjection of cyclin D2 into oocytes undergoing meiotic maturation and parthenogenetic activation reveals that the protein is stable for several hours, independently of the ubiquitin-mediated degradation of cyclin B2 that takes place periodically during this process. Microinjected cyclin D2 localizes both in the cytoplasm and in the nucleus of oocyte. In somatic cells, it is well established that cyclin D2 is almost exclusively nuclear and very labile. The unusual behaviour of cyclin D2 upon injection into oocytes may provide indications about a possible role for this protein during meiosis and early development.  相似文献   

18.
19.
20.
We have identified one of the genes that are up-regulated by thyroid hormone (TH) in Xenopus laevis small intestine as the Xenopus homolog of bone morphogenetic protein-4 (BMP-4). To clarify possible roles of BMP-4 in intestinal remodeling during metamorphosis, we have examined its expression in X. laevis intestine by using in situ hybridization and organ culture techniques. At the beginning of metamorphic climax, BMP-4 mRNA first becomes detectable in the connective tissue, concurrently with the appearance of adult epithelial primordia. Subsequently, when the adult epithelial primordia are actively proliferating, BMP-4 mRNA becomes more abundant only in the connective tissue with a gradient toward the epithelium. Thereafter, as the adult primordia differentiate, the level of BMP-4 mRNA gradually decreases. Thus, BMP-4 expression correlates well with cell proliferation and/or initial differentiation of the adult epithelium, but not with apoptosis of the larval epithelium. Furthermore, the present culture study indicates that (1) TH-induced expression of BMP-4 mRNA is higher in the anterior part of the intestine than in the posterior part, which agrees with the better development of the adult epithelium in the more anterior part, and that (2) the expression of BMP-4 mRNA is up-regulated by TH in the presence of epithelium, but not in its absence. Therefore, BMP-4, which is indirectly induced by TH through some epithelial factor(s), probably plays important roles in adult epithelial development during amphibian intestinal remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号