首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The destruction and fragmentation of tropical forests are major sources of global biodiversity loss. A better understanding of anthropogenically altered landscapes and their relationships with species diversity and composition is needed in order to protect biodiversity in these environments. The spatial patterns of a landscape may control the ecological processes that shape species diversity and composition. However, there is little information about how plant diversity varies with the spatial configuration of forest patches especially in fragmented tropical habitats. The northeastern part of Puerto Rico provides the opportunity to study the relationships between species richness and composition of woody plants (shrubs and trees) and spatial variables [i.e., patch area and shape, patch isolation, connectivity, and distance to the Luquillo Experimental Forest (LEF)] in tropical forest patches that have regenerated from pasturelands. The spatial data were obtained from aerial color photographs from year 2000. Each photo interpretation was digitized into a GIS package, and 12 forest patches (24–34 years old) were selected within a study area of 28 km2. The woody plant species composition of the patches was determined by a systematic floristic survey. The species diversity (Shannon index) and species richness of woody plants correlated positively with the area and the shape of the forest patch. Larger patches, and patches with more habitat edge or convolution, provided conditions for a higher diversity of woody plants. Moreover, the distance of the forest patches to the LEF, which is a source of propagules, correlated negatively with species richness. Plant species composition was also related to patch size and shape and distance to the LEF. These results indicate that there is a link between landscape structure and species diversity and composition and that patches that have similar area, shape, and distance to the LEF provide similar conditions for the existence of a particular plant community. In addition, forest patches that were closer together had more similarity in woody plant species composition than patches that were farther apart, suggesting that seed dispersal for some species is limited at the scale of 10 km.  相似文献   

2.
Questions: In a natural grassland‐forest mosaic: What is the influence of phylogeny and diaspore traits related to disperser attraction (DAT) on (1) seed size/number trade‐off (SSNT) in woody species colonizing forest patches; (2) on the frequency of the species? 3. What is the influence of forest patch area on mean seed size and number. 4. Do phylogeny and DAT expressed at the species level affect this relationship? Location: Campos grassland and Araucaria forest in São Francisco de Paula, RS, Brazil, at ca. 29°28’ S; 50° 13’ W. Methods: Forest patches of different sizes in a grassland site recovering for ten years since human disturbances were surveyed by the relative abundance of vertebrate‐dispersed woody saplings. We described colonizer species according to taxonomic phylogenetic relationships and diaspore type, size and color. We analyzed with a variation partitioning method their influence on SSNT and on species frequency in the patches. At the community level we regressed mean seed size and number on forest patch area and evaluated how these relationships were affected by phylogeny and DAT at the species level. Results: 1. Phylogeny and DAT mostly explained seed size and seed number per diaspore variation. 2. By controlling phylogeny and DAT influence the frequency of species in forest patches was positively associated with their seed number in the diaspores, and negatively associated with their seed size. 3. Mean seed size and seed number at the community level were positively associated with patch area. 4. When phylogeny and DAT influences on seed size were removed this relationship was stronger for seed size and weaker for seed number. Conclusions: 1. Energy allocation to dispersal in detriment of offspring survival increased the successful establishment of colonizer species in forest patches, despite phylogenetic relationships and DAT variation in their diaspores. 2. Although patch area exerted a selective pressure on seed size, habitat preferences of dispersers may also influence patch colonization.  相似文献   

3.
Field studies to examine the influence of woody debris on rainbow trout (Oncorhynchus mykiss) abundance through habitat modification were conducted in two small streams, the Horonai and Uenae streams, running through secondary deciduous forest in south-western Hokkaido, northern Japan. Reach-based woody debris volume (total woody debris volume per 100 m2 of study reach) was significantly correlated with the total basal area of riparian stands along the margins of the Horonai stream, but no significant relationship was evident between them for the Uenae stream. This inconsistency between the streams was considered to be a result of the difference in stream size (width, depth and discharge). Woody debris was the principal agent for pool formation, although it had a far smaller volume than that found in streams draining old-growth coniferous forest in North America, where most of the previous studies have been carried out. Untransported debris pieces of larger volume more effectively contributed to pool formation than smaller transported pieces. The volume of individual debris scour pools was positively correlated with the volume of woody debris associated with each. Similarly, reach-based pool volume increased with total woody debris volume, but the relationship was less clear in the Uenae stream, having more abundant transported woody debris than the Horonai stream. The biomass of rainbow trout in individual pools, which were regarded as the most preferred habitat type for stream salmonids, was correlated with pool volume. A positive relationship also existed between reach-based standing crop and pool volume. These results revealed that secondary deciduous forest, like old-growth coniferous forest, plays an important role in enhancing the carrying capacity for rainbow trout by supplying woody debris which promoted preferred habitat formation.  相似文献   

4.
Habitat fragmentation results in landscape configuration, which affects the species that inhabit it. As a consequence, natural habitat is replaced by different anthropogenic plantation types (e.g. pasture, agriculture, forestry plantations and urban areas). Anthropogenic plantations are important for biodiversity maintenance because some species or functional groups can use it as a complementary habitat. However, depending on plantation permeability, it can act as a barrier to the movement of organisms between habitat patches, such as forest fragments, reducing functional connectivity for many species. Anthropogenic plantations are becoming the most common land use and cover type in the Anthropocene and biodiversity conservation in fragmented landscapes requires information on how different plantation types affect the capacity of the species to move through the landscape. In this study, we evaluated the influence of the type and structure of plantations on the movement of two forest‐dependent understory bird species – plain antvireo (Dysithamnus mentalis) and flavescent warbler (Myiothlyps flaveola) – within a highly fragmented landscape of Atlantic Forest hotspot. Knowing that forestry plantation is assumed to be more permeable to dependent forest bird species than open ones, we selected six study areas containing a forest fragment and surrounding plantation: three with sugarcane plantation and three with Eucalyptus sp. plantation. We used playback calls to stimulate the birds to leave forest fragments and traverse the plantations. Control trials were also carried out inside the forest fragments to compare the distances crossed. We observed that individuals moved longer distances inside forest than between plantation types, which demonstrate that plantations do constrict the movements of both species. The two plantation types equally impeded the movements of the species, suggesting the opposite of the general assumption that forestry plantations are more permeable. Our results indicate that, for generalist species, plantation type does not matter, but its presence negatively impacts movement of these bird species. We highlight that plantations have negative influences on the movements of common bird species, and discuss why this is important when setting conservation priorities.  相似文献   

5.
Aim This study tests the hypothesis that linear, woody habitat patches surrounding small, sunken rural roads not only function as an unstable sink but also as a true, sustainable habitat for forest plants. Furthermore, factors affecting the presence of forest plant species in sunken roads are determined. Finally, the implications of these findings for the overall metapopulation dynamics of forest plant species in fragmented agricultural landscapes are assessed. Location The study area, c. 155 km2 in size, is situated in a fragmented agricultural landscape within the loamy region of central Belgium. Methods Forest species presence–absence data were collected for 389 sunken roads. The effect of area, depth, age and isolation on sunken road species richness was assessed using linear regression and analysis of variance (anova ). Analysis of covariance was employed to study the interaction between age and isolation. Differences in plant community dispersal spectra in relation to sunken road age and isolation were analysed by means of linear regression and anova . Results Sunken roads proved to function as an important habitat for forest plants. The sink‐hypothesis was falsified by a clear species accumulation in time: sunken road species richness significantly increased with the age of the elements. Sunken road age mainly affected species richness through effects on both area and depth, affecting habitat quality and diversity. Furthermore, sunken road isolation had a significant impact on species richness as well, with the number of forest species decreasing with increasing isolation of the elements, indicating dispersal limitation in sunken road habitats. Moreover, a significant age × isolation interaction effect was demonstrated. Differences in regression slopes for isolation between age classes revealed that the effect of isolation intensified with increasing age of the elements. Differential colonization in relation to forest species dispersal capacities probably account for this, as confirmed by the analysis of sunken road plant community dispersal spectra, with the fraction of species with low dispersal capacities increasing with increasing age and decreasing isolation of the elements. Main conclusions During sunken road development, area and depth increase and, gradually, suitable habitat conditions for forest plant species arise. Depending on their ecological requirements and dispersal capacities, forest species progressively colonize these habitats as a function of the element's isolation. The functioning of sunken roads as a sustainable habitat for forest species enhances the metapopulation viability of forest plants in agricultural landscapes and has important consequences for forest restoration practices. Moreover, the results of this work call for integrating the presence of forest species in small‐scaled linear habitat patches in forest fragmentation studies.  相似文献   

6.
Forest fragmentation is pervasive in tropical landscapes, and one pathway by which fragmentation may negatively impact populations is via edge effects. Early life‐stages are particularly important for species regeneration as they act as bottlenecks, but how edge effects may act differentially on different life‐stages is unknown. This study evaluated edge effects on multiple early life‐stages of a currently common animal‐dispersed, shade‐tolerant tree Tapirira mexicana (Anacardiaceae). The study was conducted in tropical premontane wet forest fragments in a highly deforested region of Costa Rica. The stages assessed were pre‐dispersal predation, primary dispersal, post‐dispersal predation, secondary dispersal, ex situ germination, in situ seed longevity, first and second year seedling abundance, second year seedling survivorship, and basal diameter growth. Results showed that impacts of edge effects were not equal across stages, but were limited to specific stages and times. One stage which may act as a bottleneck for species regeneration was pre‐dispersal predation. Over 60 percent of the seeds were predated by larvae, and predation was higher near the edge than interior habitat. Seeds lost viability within 10 d in the forest. Germination to first year seedling stage was also lower near edges, but such effect was eliminated within a year after that. Primary dispersal, seedling survivorship, and growth were not affected by proximity to edges, and both secondary dispersal and post‐dispersal predation were rare. This study demonstrates that current population abundance may not guarantee future species persistence and the importance of considering multiple life‐stages for a comprehensive assessment of forest fragmentation effects on species regeneration.  相似文献   

7.
Forest management results in forest patches of varying sizes within a clearcut matrix. The result is a large amount of edge habitat and many small patches across the landscape. Here we describe the spring-active epigeal spider and carabid fauna found at the forest-clearcut edge of spruce forest in northern Ontario, Canada. We include two types of edge: the forest-clearcut interface and the small habitat patches formed by forest residuals within the clearcut. Spring-active forest spiders and carabids appear little affected by adjacent clearcutting activity, and some forest species, such as Agyneta olivacea (Emetron), Diplocentria bidentata (Emetron) and Microneta viaria (Blackwall), are more prevalent at the forested edge. Common and abundant spider species were equally recorded in forest interior and forest edge. Generally, no invasion of open-habitat species was observed within the forest, although smaller forest patches may be at higher risk.  相似文献   

8.
Forest fragmentation and degradation leads to formation of modified habitats whose ability to support existing avifaunal diversity is still largely unknown. Bird diversity in indigenous forest, disturbed forest, plantation forest and farmlands adjacent to North Nandi Forest reserve was studied between January 2015 and June 2015. The distribution of bird feeding guilds in these habitat patches was also evaluated. Birds were surveyed using point counts, timed species counts and line transects and classified into six feeding guilds. A total of 3,232 individual birds of 151 species were recorded in the four habitats. Significant difference on bird abundance across the four habitats (F = 15.141, P ≤ 0.05, df = 3, 1121) was noted. Shannon–Weiner diversity index H′ for bird community ranged from 3.06 for plantation forest to 4.05 for disturbed forest showing a relatively diverse bird community. Insectivores (F = 3.090, P ≤ 0.05, df = 3, 297) dominated the foraging species assemblage in all the habitats significantly. Linear regression analysis revealed a strong linear relationship on bird species richness and abundance with vegetation variables (P < 0.01 in all cases). The results indicate that disturbed forest and indigenous forest support high bird species richness than plantation forest and farmlands. However, high bird abundance was observed in farmlands and plantation forest as opposed to indigenous forest and disturbed forest as they provide dispersal routes over a short distance and are important for creating corridors between primary forests.  相似文献   

9.
Woody debris (WD), including coarse woody debris (CWD) and fine woody debris (FWD), is an essential structural and functional component of many ecosystems, particularly in montane forests. CWD is considered to be the major part in forest WD and it is primarily composed of logs, snags, stumps and large branches, while FWD mainly consists of small twigs. Attributes of dead woody material may change in accordance with trends in stand dynamics. The primary forest (primary montane moist evergreen broad-leaved forest) in Ailao Mountain National Nature Reserve (NNR) preserves the largest tract of natural vegetation in China. The Alnus nepalensis (D. Don) association, Populus bonatii (Levl.) association and secondary Lithocarpus association represent the secondary and chronological types following human disturbance by fires and logging under different intensity. The mass and composition of coarse woody debris (CWD, ≥10 cm in diameter) and fine woody debris (FWD, 2.5–10 cm in diameter) were inventoried in a primary forest and its three secondary counterparts. Estimates of total mass of woody debris across secondary types to primary forest ranged from 2.4 to 74.9 Mg ha−1. The lowest value was found in the A. nepalensis association and the highest values were in the primary forest of which logs are the considerable differences. The ratios of CWD to FWD were low in the secondary types (about 1–4) but high in the primary forest (above 15). Our results suggested that for the recovery of woody debris in the secondary forest, it might last longer than the age of the oldest successional stage studied. Yang Lipan and Ma Wenzhang contributed equally to this work.  相似文献   

10.
Abstract. This study reports temporal (based on cross‐dated dead trees) and spatial patterns of availability of coarse woody debris (CWD) from Picea abies in a Swedish boreal landscape with discrete old‐growth forest patches in a wetland matrix. Data were collected from 29 patches ranging in size from 0.3 to 28 ha. A total of 897 dead trees with a minimum diameter of > 15 cm occurred on the 7.2 ha area analysed. The year of death was established for 50% of these trees. CWD volume ranged from 17 to 65 m3/ha for downed logs and from 0.5 to 13 m3/ha for standing snags. CWD of all decay stages and diameter classes occurred abundantly and the probability of finding logs of all decay stages and sizes was very high at the scale of single hectares. Tree mortality differed among 5 yr periods. However, during the last 50 yr no 5 yr period produced less than 3 logs/ha. Decay rates were highly variable among different logs. Logs with soft wood and some wood pieces lost (decay stage 5) died ca. 34 years ago. This suggests a fairly rapid decay in this northern forest. The data indicate a high and continuous availability of CWD of all types. It is likely, therefore, that selection pressures for efficient dispersal among CWD dependent species may not be very high. Consequently, species with narrow habitat demands and/or low dispersal ability may have evolved and this may contribute to the decrease of certain species in the managed landscape.  相似文献   

11.
An emerging pattern is that population densities of generalist rodents are higher in small compared to large forest patches in fragmented landscapes. We used genetically based measures of migration between patches to test two dispersal-based hypotheses for this negative density-area relationship: (1) emigration rates from small patches should be relatively lower compared to large patches (“inhibited dispersal hypothesis”), or (2) immigration rates should be higher into small than large patches (“immigration hypothesis”). Neither hypothesis was supported using data on dispersal inferred from eight microsatellite loci for 12 populations of Peromyscus leucopus in six small (1.3–2.7 ha) and six large (8–150 ha) forest patches. Emigration rates were not lower from and immigration rates were not higher into small than large patches. In fact, contrary to both hypotheses, emigration rates were higher from populations of P. leucopus in small compared to large patches. Based on a combination of genetic and field data, we speculate that higher reproduction in smaller patches resulted in higher densities which led to higher emigration rates from those patches. Rates of reproduction (presumably driven by better habitat conditions in smaller patches), rather than dispersal, seems to drive density differences in forest patches. We conclude that smaller forest patches within an agricultural matrix act as a source of individuals, and that migration rates are fairly high among forest patches regardless of size.  相似文献   

12.
Seed dispersal by Red fox (Vulpes vulpes), Stone marten (Martes foina), and Wild boar (Sus scrofa) was analyzed in an extensively degraded mosaic landscape in Sierra Nevada (SE Spain). The main objective was to determine whether seed dispersal by mammals was related to habitat degradation within a mosaic of adjacent degraded patches mixed with native forest and thereby to determine the potential role of mammals as seed dispersers in degraded landscape units. For three consecutive years, mammal feces were collected in the fruit production period, extracting all seeds of woody species found therein and analyzing their viability. Feces were collected in three different plots for each of five different landscape units: shrubland, native forest, and dense, cleared, and fenced reforestation stands. Seeds from 16 woody species (which represent more than a half of the total fleshy‐fruited woody species available) were recorded, although some agrarian species are also introduced in a low percentage of the scats. Seeds showed a high viability rate for all dispersed species, irrespective of the mammal disperser. No differences in species composition appeared in the overall landscape units or in the seed density between degraded habitats. Due to the small patch size, the high viability of dispersed seeds, and the large home range of the large mammals, these three animal species act as efficient seed dispersers for a diverse assemblage of woody plant species regardless of the habitat type within this degradation framework. This fact has important consequences for the biodiversity recuperation in these degraded habitats, principally in pine plantations.  相似文献   

13.
An animal's microhabitat requirements can impact its ability to colonize restored areas, particularly species requiring slow developing microhabitats, such as logs and woody debris piles. Introduction of these microhabitats may be required to facilitate colonization by some species. Restored bauxite mine‐pits in the Jarrah (Eucalyptus marginata) forest of south‐western Australia contain introduced log piles at densities of 1 ha?1. However, these have not facilitated colonization by Napoleon's skink (Egernia napoleonis), which rely on logs for habitat and are largely absent from restored sites. We radio‐tracked 12 skinks in unmined forest to determine their microhabitat preferences and examined differences in vegetation structure, and microhabitat and food availability, between restored and unmined forests to identify reasons for their absence. Restored and unmined forests differed in canopy, mid‐ and understory cover and ground substrates, which were all potential barriers to colonization. Food availability was similar between restored and unmined forest, thus not a barrier to colonization. Skinks primarily utilized long logs, large woody debris piles, and large trees; microhabitats that were scarce or absent in restored sites and, therefore, potential barriers to colonization. Using this information, we introduced small woody debris piles into restored sites in close proximity to unmined areas containing skinks to facilitate skink colonization. This showed early signs of success and suggested that the lack of logs and woody debris were barriers to colonization. However, further monitoring is required to accurately determine the long‐term value of woody debris piles in facilitating skink colonization.  相似文献   

14.
Dispersal ability is of great importance for plants, which commonly occupy spatially and temporally limited substrate patches. Mixed reproductive strategies with abundant diaspore production are favoured in a heterogeneous landscape to ensure successful colonisation at different distances. In bryophytes, long-distance dispersal has been thought to take place primarily by spores, while asexual propagules are important in local dispersal and in the maintenance of colonies. In the present study, we investigated the dispersal potential of two equally sized propagules, sexually formed spores and asexually produced gemmae in the dioecious, epixylic hepatic, Anastrophyllum hellerianum, which inhabits spatially and temporally limited substrate patches. We trapped propagules at different distances (0–10 m) and directions from the source colonies in two experiments: one in a natural habitat within a forest and another involving an artificial set-up in an open habitat. Spore dispersal showed only slight distance dependence both in the open and the forest habitats, presumably as a consequence of wind affecting the dispersal pattern. Gemma dispersal was more strongly distance-dependent in the open habitat than in the forest sites. Considerably more gemmae were deposited during rainy than dry periods, possibly because of the effect of rain drops on gemma release. However, weather conditions had no effect on the dispersal patterns of spores or gemmae. In A. hellerianum, the combination of occasional spore production and practically continuous, massive gemma production facilitates dispersal both on local scale and over long distances. Unlike previously assumed, not only spores but also the asexual propagules may contribute to long-distance dispersal, thus allowing considerable gene flow at the landscape level.  相似文献   

15.
We investigated secondary dispersal of propagules of Erodiophyllum elderi (Asteraceae), a short‐lived perennial plant growing in small patches in the arid lands of southern Australia. In spite of its importance for population dynamics, secondary dispersal is a little understood process. We monitored the dispersal of 2280 large woody capitula (seed heads) released in six E. elderi patches for 9 months. Colour‐coded seed heads were located at night using UV light and their distance and direction from the release point were measured. Over the 9‐month period, more seed heads moved, and those that did, moved further in areas with high herbivore activity. Overall dispersal distance across the ground was limited to less than 30 m. Dispersal patterns were related to the topographical slope at the release site: seed heads moved further, and more dispersed on steeper slopes unless the steep slopes had sandy soil in which case seed heads were buried, caught or there was reduced sheet water flow limiting their dispersal potential. After several months, seed head dispersal virtually ceased as seed heads became stuck in the debris and soil after heavy rains or further dispersal became unlikely when seed heads reached locally low‐lying areas. Secondary dispersal patterns suggest two distinctly different influences associated with the presence of herbivores: the direct movement of seed heads by trampling from sheep (an introduced herbivore) and the indirect effect of a reduced standing biomass from grazing. Reduced vegetation cover allows seed head redistribution via sheet water flow during large rainfall events.  相似文献   

16.
This study examined the biomass and carbon pools of the main ecosystem components in an age sequence of five Korean pine plantation forest stands in central Korea. The C contents in the tree and ground vegetation biomass, coarse woody debris, forest floor, and mineral soil were estimated by analyzing the C concentration of each component. The aboveground and total tree biomass increased with increasing stand age. The highest C concentration across this chronosequence was found in the tree branch while the lowest C concentration was found in the ground vegetation. The observed C contents for tree components, ground vegetation, and coarse woody debris were generally lower than the predicted C contents estimated from a biomass C factor of 0.5. Forest floor C content was age-independent. Total mineral soil C content appeared to decline initially after establishing Korean pine plantations and recover by the stand age of 35 years. Although aboveground tree biomass C content showed considerable accumulation with increasing age, the relative contribution of below ground C to total ecosystem C content varied substantially. These results suggest that successional development as temporal factor has a key role in estimating the C storage in Korean pine plantation forests.  相似文献   

17.
Abstract Araucaria Forest expansion over grassland takes place under wet climate conditions and low disturbance and it is hypothesized that isolated trees established on grassland facilitate the establishment of forest woody species beneath their canopies. Forest with Araucaria angustifolia is a particular type of Brazilian Atlantic Forest and the main forest type on the highland plateau in south Brazil, often forming mosaics with natural Campos grassland. The objectives of this paper were to evaluate the role of isolated shrubs and trees as colonization sites for seedlings of Araucaria Forest woody species on grassland, to determine which species function as preferential nurse plants in the process and the importance of vertebrate diaspore dispersal on the structure of seedling communities beneath nurse plants. The study was conducted in São Francisco de Paula, Rio Grande do Sul State, where we sampled isolated shrubs and trees in natural grassland near Araucaria Forest edges. Seedlings were counted and identified, and seedling diaspore dispersal syndromes, size and colour were registered. We detected 11 woody species with a potential role in nucleating grassland colonization by forest species. Beneath the canopies of nurse plants more forest species seedlings were found compared with open field grassland and the seedlings had diaspores mostly dispersed by vertebrates. Also, more seedlings were found under the canopy of A. angustifolia than beneath other nurse plant species. We conclude that A. angustifolia trees established on grassland act as nurse plants, by attracting disperser birds that promote colonization of the site by other forest species seedlings, and that under low level of grassland disturbance, conservation of frugivorous vertebrate assemblages may increase forest expansion over natural grassland and also facilitate the regeneration of degraded forest areas.  相似文献   

18.
As human population, food consumption, and demand for forest products continue to rise over the next century, the pressures of land‐use change on biodiversity are projected to intensify. In tropical regions, countryside habitats that retain abundant tree cover and structurally complex canopies may complement protected areas by providing suitable habitats and landscape connectivity for a significant portion of the native biota. Species with low dispersal capabilities are among the most at risk of extinction as a consequence of land‐use change. We assessed how the spatial distribution of the brown‐throated sloth (Bradypus variegatus), a model species for a vertebrate with limited dispersal ability, is shaped by differences in habitat structure and landscape patterns of countryside habitats in north‐central Costa Rica using a multi‐scale framework. We quantified the influence of local habitat characteristics and landscape context on sloth occurrence using mixed‐effects logistic regression models. We recorded 27 sloths within countryside habitats and found that both local and landscape factors significantly influenced their spatial distribution. Locally, sloths favored structurally complex habitats, with greater canopy cover and variation in tree height and basal area. At the landscape scale, sloths demonstrated a preference for habitats with high proportions of forest and nearby large tracts of forest. Although mixed‐use areas and tree plantations are not substitutes for protected forests, our results suggest they provide important supplemental habitats for sloths. To promote the conservation and long‐term viability of sloth populations in the tropical countryside, we recommend that land managers retain structurally complex vegetation and large patches of native habitat.  相似文献   

19.
In the Mediterranean region of Europe, land-use changes have allowed for rapid colonisation of open habitats by woody species. As a result, it is critical to gather information on how protected species in open habitats respond to forest spread in such areas. Our objective is to quantify whether spatial heterogeneity of the vegetation associated with recent forest closure influences demographic structure and maternal fertility in a population of the protected Paeonia officinalis L. In closed woodland, adult plants of P. officinalis are almost exclusively vegetative, in open habitats seedlings are rare and on the woodland edge there is a relative over-representation of flowering plants and seedlings. Forest closure dramatically reduces flowering frequency, but has no significant effect on maternal fertility of flowering plants. The spatial aggregation of seedlings close to the maternal plants suggests that dispersal is spatially restricted. Together, these results suggest that the viability of the population requires a transitional habitat between open garrigues or grassland with spaced trees and woodland. A management programme incorporating tree and shrub thinning and cutting of parcels in rotation to maximise the length of the forest edge could maintain a habitat mosaic that favours the persistence of this species in the study site.  相似文献   

20.
Compared to natural forests, coarse woody debris (CWD) is typically scarce in restored forests due to the long time it takes to develop naturally. In post‐mining restored forests in the Jarrah forest of south western Australia, CWD is returned at densities of one log pile per hectare. We tested the adequacy of these densities for meeting the micro‐habitat requirements of Napoleon's skink (Egernia napoleonis), a species rarely found within restored sites. Home range size and overlap, and micro‐habitat densities used by skinks, were measured by radio‐tracking 12 individuals in natural, unmined forest. Napoleon's skinks had small home ranges (0.08 ± 0.02 ha), based on 8 individuals with sufficient fixes. All skinks overlapped in home ranges, with average overlaps of 43.5 ± 8.6%. Ten of the 12 skinks shared micro‐habitats and 4 shared them simultaneously, which indicates some social tolerance. This will influence as to how many micro‐habitats are required. Micro‐habitats were used at high densities: logs at 49.2 ± 8.8 ha?1 and woody debris piles at 12.4 ± 4.8 ha?1. Based on these densities, it is recommended that CWD is returned to restored forests at densities of 60 ha?1, which should provide sufficient micro‐habitats for multiple skinks. Due to the infeasibility of returning such CWD densities across large areas of restored forest, CWD could be preferentially returned as patches, large enough for numerous home ranges, adjacent to unmined forest, or as corridors between unmined forest. These recommendations for returning micro‐habitats should be tested for effectiveness in encouraging recolonization of restored forest by Napoleon's skink and other species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号