首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
1. The basal decay of the carotenoid shift of chromatophores from photosynthetic bacteria following short flash excitation is approximately biphasic. The decay indicates the dissipation of the transmembrane electrical potential. 2. The H+ efflux following rapid H+ binding after a flash, measured from the colour change of added cresol red, shows very similar kinetics to the carotenoid shift decay suggesting that the dissipation of the electric potential decay is a consequence of the H+ efflux. 3. The electric potential decay is stimulated when the chromatophore suspension is supplemented with ADP and Pi (in either the presence or absence of antimycin A). 4. The stimulated electric potential decay by ADP and Pi has a similar pH dependence to that of phosphorylation in continuous light. 5. The stimulation of the electric potential decay by ADP and Pi is reversed, by aurovertin, an antibiotic which inhibits phosphorylation. 6. The stimulation of the electric potential decay by ADP+Pi is also reversed by the inhibitors oligomycin and venturicidin. These inhibitors, but not aurovertin, also inhibit the fast phase of the decay under non-phosphorylating conditions. 7. Valinomycin accelerates the overall rate of decay of the electric potential, inhibits the ADP and Pi stimulated electric potential decay, and inhibits the flash-induced phosphorylation. The decay rate of the H+ efflux however, is slower in the presence of this ionophore. 8. Nigericin-type ionophores accelerate the overall decay rate of the H+ efflux and inhibit the ADP and Pi stimulated electric potential decay. The basal rate of the electric potential decay is unaffected by treatment with these ionophores. 9. When a coupling factor associated with the chromatophore ATPase is removed from the membrane, both the stimulation of the electric potential decay by ADP and Pi and ADP phosphorylation are inhibtied. Both reactions are completely restored after reconstitution with the crude coupling factor extract. The basal electric potential decay rate is not affected by the removal of coupling factor.  相似文献   

3.
The shift of the carotenoid absorption spectrum induced by illumination and valinomycin-K+ addition was investigated in membrane structures with different characteristics and opposite sidednesses isolated from Rhodopseudomonas sphaeroides. Right-side-out membrane structures were prepared by isotonic lysozyme-EDTA treatment of the cells (spheroplasts) and by hypotonic treatment of spheroplasts (spheroplast membrane vesicles). Inside-out membrane structures ("chromatophores") were obtained by treating spheroplast membrane vesicles by French press or sonication. The membrane structures with either sidedness showed the same light-induced change of the "red shift" type. However, the absorbance change by K+ addition in the presence of valinomycin in the right-side-out membrane structures were opposite to that in the inverted vesicles, "blue shift" in the former and "red shift" in the latter. The carotenoid absorbance change was linear to membrane potential, calculated from the concentration of KCl added, with a reference on the cytoplasmic side, through positive and negative ranges.  相似文献   

4.
1. When cytochrome c2 is available for oxidation by the photosynthetic reaction centre, the decay of the carotenoid absorption band shift generated by a short flash excitation of Rhodopseudomonas capsulata chromatophores is very slow (half-time approximately 10 s). Otherwise the decay is fast (half-time approximately 1 s in the absence and 0.05 s in the presence of 1,10-ortho-phenanthroline) and coincides with the photosynthetic back reaction.2. In each of these situations the carotenoid shift decay, but not electron transport, may be accelerated by ioniophores. The ionophore concentration dependence suggests that in each case the carotenoid response is due to a delocalised membrane potential which may be dissipated either by the electronic back reaction or by electrophoretic ion flux.3. At high redox potentials, where cytochrome c2 is unavailable for photo-oxidation, electron transport is believed to proceed only across part of the membrane dielectric. Under such conditions it is shown that the driving force for carbonyl cyanide trifluoromethoxyphenyl hydrazone-mediated H+ efflux is nevertheless decreased by valinomycin/K+; demonstrating that the [BChl]2 → Q electron transfer generates a delocalised membrane potential.  相似文献   

5.
S. Saphon  J.B. Jackson  H.T. Witt 《BBA》1975,408(1):67-82
1. The basal decay of the carotenoid shift of chromatophores from photosynthetic bacteria following short flash excitation is approximately biphasic. The decay indicates the dissipation of the transmembrane electrical potential.2. The H+ efflux following rapid H+ binding after a flash, measured from the colour change of added cresol red, shows very similar kinetics to the carotenoid shift decay suggesting that the dissipation of the electric potential decay is a consequence of the H+ efflux.3. The electric potential decay is stimulated when the chromatophore suspension is supplemented with ADP and Pi (in either the presence or absence of antimycin A).4. The stimulated electric potential decay by ADP and Pi has a similar pH dependence to that of phosphorylation in continuous light.5. The stimulation of the electric potential decay by ADP and Pi is reversed, by aurovertin, an antibiotic which inhibits phosphorylation.6. The stimulation of the electric potential decay by ADP+Pi is also reversed by the inhibitors oligomycin and venturicidin. These inhibitors, but not aurovertin, also inhibit the fast phase of the decay under non-phosphorylating conditions.7. Valinomycin accelerates the overall rate of decay of the electric potential, inhibits the ADP and Pi stimulated electric potential decay, and inhibits the flash-induced phosphorylation. The decay rate of the H+ efflux however, is slower in the presence of this ionophore.8. Nigericin-type ionophores accelerate the overall decay rate of the H+ efflux and inhibit the ADP and Pi stimulated electric potential decay. The basal rate of the electric potential decay is unaffected by treatment with these ionophores.9. When a coupling factor associated with the chromatophore ATPase is removed from the membrane, both the stimulation of the electric potential decay by ADP and Pi and ADP phosphorylation are inhibited. Both reactions are completely restored after reconstitution with the crude coupling factor extract. The basal electric potential decay rate is not affected by the removal of coupling factor.  相似文献   

6.
ATP synthesis and the acceleration of the decay of the carotenoid absorption band shift after single flash excitation of Rhodopseudomonas capsulata chromatophores were compared. The two processes behave similarly with respect to: (1) ADP and Pi concentration; (2) inhibition by efrapeptin and venturicidin, and (3) inhibition by valinomycin/K+ and by ionophores. Taken together with earlier evidence for the electrochromic nature of the carotenoid band shift the data support the contention that positive charge moves outwards across the chromatophore membrane during ATP synthesis and justify the method for determination of the H+/ATP ratio (Petty, K.M. and Jackson, J.B. (1979) FEBS Lett. 97, 367-372). The ability of nucleotide diphosphates in the presence of Pi and Mg2+ to give rise to the acceleration of the carotenoid shift decay closely correlates with the rate of phosphorylation of the nucleotides in steady-state light. Nucleotide triphosphates enhance the decay in parallel with their rate of hydrolysis. Adenylyl imidodiphosphate is itself without effect on the decay of the carotenoid shift and it does not prevent the ADP-induced acceleration. The analogue does prevent the ATP effect but only after repeated flashes.  相似文献   

7.
The shift of the carotenoid absorption spectrum induced by illumination and valinomycin-K+ addition was investigated in membrane structures with different characteristics and opposite sidednesses isolated from Rhodopseudomonas sphaeroides. Right-side-out membrane structures were prepared by isotonic lysozyme-EDTA treatment of the cells (spheroplasts) and by hypotonic treatment of spheroplasts (spheroplast membrane vesicles). Inside-out membrane structures (“chromatophores”) were obtained by treating spheroplast membrane vesicles by French press or sonication.The membrane structures with either sidedness showed the same light-induced change of the “red shift” type. However, the absorbance change by K+ addition in the presence of valinomycin in the right-side-out membrane structures were opposite to that in the inverted vesicles, “blue shift” in the former and “red shift” in the latter. The carotenoid absorbance change was linear to membrane potential, calculated from the concentration of KCl added, with a reference on the cytoplasmic side, through positive and negative ranges.  相似文献   

8.
Light-induced absorbance changes were measured at temperatures between --30 and --55 degrees C in chromatophores of Rhodopseudomonas sphaeroides. Absorbance changes due to photooxidation of reaction center bacteriochlorophyll (P-870) were accompanied by a red shift of the absorption bands of a carotenoid. The red shift was inhibited by gramicidin D. The kinetics of P-870 indicated electron transport from the "primary" to a secondary electron acceptor. This electron transport was slowed down by lowering the temperature or increasing the pH of the suspension. Electron transport from soluble cytochrome c to P-870+ occurred in less purified chromatophore preparations. This electron transport was accompanied by a relatively large increase of the carotenoid absorbance change. This agrees with the hypothesis that P-870 is located inside the membrane, so that an additional membrane potential is generated upon transfer of an electron from cytochrome to P-870+. A strong stimulation of the carotenoid changes (more than 10-fold in some experiments) and pronounced band shifts of bacteriochlorophyll B-850 were observed upon illumination in the presence of artifical donor-acceptor systems. Reduced N-methylphenazonium methosulphate (PMS) and N,N,N',N'-tetramethyl-p-phenylene-diamine (TMPD) were fairly efficient donors, whereas endogenous ubiquinone and oxidized PMS acted as secondary acceptor. These results indicate the generation of large membrane potentials at low temperature, caused by sustained electron transport across the chromatophore membrane. The artificial probe, merocyanine MC-V did not show electrochromic band shifts at low temperature.  相似文献   

9.
ATP hydrolysis-induced proton translocation and electric potential generation have been studied in ATPase proteoliposomes by means of various optical probes. The proteoliposomes consisted of reconstituted ATPase complex and native lipid mixture isolated from the thermophilic cyanobacterium Synechococcus 6716 [Van Walraven et al. (1983) Eur. J. Biochem. 137, 101-106]. The native cartenoids and added oxonol VI served as probes for the electric membrane potential generated by the net charge separation (negative outside, positive inside). Their responses, with similar half-times as 9-tetradecylamino-6-chloro-2-methoxyacridine, are sensitive to valinomycin and stimulated by nigericin, as expected. The proton concentrations of extraliposomal and intraliposomal aqueous spaces were monitored by neutral red and cresol red; for internal measurements these pH indicators were trapped inside the vesicles during detergent dialysis. Internal acidification and external alkalinization induced by ATP hydrolysis are inhibited by nigericin and enhanced by valinomycin; at the commonly used higher valinomycin concentrations the neutral red response becomes transient, while the much slower cresol red response is diminished right from its onset. At smaller preset pH gradients both ATP hydrolysis activity and neutral red response are diminished. At increasing MgCl2 concentrations the neutral red responses are slowed down and the cresol red responses are slightly enhanced; this is observed for both internal and external dye responses. Neutral red permeation through the membrane is insignificant under our experimental conditions but is enhanced at temperatures below the lipid-phase transition. In the case of externally added neutral red the non-permeant buffer Hepes is only effective at high MgCl2 concentration, whereas some external cresol red response is visible only at high MgCl2 concentration in the presence of Hepes. The kinetics of the pH indicator and electric potential probe responses clearly distinguish fast interfacial and intra-membrane proton displacements from slow bulk proton equilibration. The data are summarized in a model that supports the importance of localized proton displacements for the primary energy-transducing events.  相似文献   

10.
Proteoliposomes were reconstituted from detergent-solubilized pigment · protein complexes of chromatophores of Rhodopseudomonas sphaeroides and soybean phospholipids. The reconstituted vesicles showed a photooxidation of reaction center bacteriochlorophyll and a light-induced spectral shift of carotenoid to longer wavelengths. The red shift similar to that in intact cells or chromatophores, indicates the generation of local fields in the membrane of proteoliposomes. When inside-positive membrane potential was induced by adding valinomycin and potassium salt, a shift of carotenoid spectrum to shorter wavelengths was observed. Therefore, the reconstituted vesicles, at least in the major part of population, produced the light-induced local field in the same direction as in intact cells, which is inside negative. Sidedness of the membrane structure and the direction of electric field formation in reconstituted vesicles were opposite to those in chromatophores (inside-out vesicles).  相似文献   

11.
Proteoliposomes were reconstituted from detergent-solubilized pigment.protein complexes of chromatophores of Rhodopseudomonas sphaeroides and soybean phospholipids. The reconstituted vesicles showed a photooxidation of reaction center bacteriochlorophyll and a light-induced spectral shift of carotenoid to longer wave-lengths. The red shift similar to that in intact cells or chromatophores, indicates the generation of local fields in the membrane of proteoliposomes. When inside-positive membrane potential was induced by adding valinomycin and potassium salt, a shift of carotenoid spectrum to shorter wavelengths was observed. Therefore, the reconstituted vesicles, at least in the major part of population, produced the light-induced local field in the same direction as in intact cells, which is inside negative. Sidedness of the membrane structure and the direction of electric field formation in reconstituted vesicles were opposite to those in chromatophores (inside-out vesicles.  相似文献   

12.
K.M. Petty  J.B. Jackson 《BBA》1979,547(3):463-473
ATP synthesis and the acceleration of the decay of the carotenoid absorption band shift after single flash excitation of Rhodopseudomonas capsulata chromatophores were compared. The two processes behave similarly with respect to: (1) ADP and Pi concentration; (2) inhibition by efrapeptin and venturicidin, and (3) inhibition by valinomycin/K+ and by ionophores.Taken together with earlier evidence for the electrochromic nature of the carotenoid band shift the data support the contention that positive charge moves outwards across the chromatophore membrane during ATP synthesis and justify the method for determination of the H+/ATP ratio (Petty, K.M. and Jackson, J.B. (1979) FEBS Lett. 97, 367–372).The ability of nucleotide diphosphates in the presence of Pi and Mg2+ to give rise to the acceleration of the carotenoid shift decay closely correlates with the rate of phosphorylation of the nucleotides in steady-state light. Nucleotide triphosphates enhance the decay in parallel with their rate of hydrolysis.Adenylyl imidodiphosphate is itself without effect on the decay of the carotenoid shift and it does not prevent the ADP-induced acceleration. The analogue does prevent the ATP effect but only after repeated flashes.  相似文献   

13.
1. In chromatophores from Rps. sphaeroides, the stimulation by ADP and Pi of the electric potential decay indicated by the carotenoid shift is greater than the stimulation of the decay of pH change indicated by the colour change of added cresol red under similar conditions. This difference is attributed to H+ consumption during the synthesis of ATP. The ratio of H+ translocated across the membrane to ATP synthesized was estimated to be approximately 1.7 H+/ATP. 2. The stimulation of the electrical potential decay by ADP and Pi was found to be a constant fraction (10%) of the total decay when the flash intensity was varied. No 'critical' or 'threshold' potential was observed. 3. The stimulated electrical potential decay after a second flash, given within a few seconds of the first, was related to the amplitude of the electrical potential produced by the second flash (10%) but neither to the dark time between the flashes, nor to the total extent of the electrical potential above the dark level. These results are consistent with two hypotheses (a) the chromatophores are a mixed population of vesicles, only a small fraction (10%) of which possess an active ATP synthesizing system (b) the activity of the ATP synthesizing system, though driven by a proton motive force, is controlled by electron transport processess. If alternative (a) is correct then the overall single turnover flash yield of 1 ATP per 1470 bacteriochlorophyll measured in (1) would mean that the yield of the active vesicles is approximately 10 ATP per 1470 bacteriochlorophyll or 30 ATP per vesicle. 4. The stimulation of the electrical potential decay by ADP and Pi is approximately 40% less in antimycin-treated chromatophores. It is shown that this is probably a consequence of antimycin-inhibited H+-release on the inside of the chromatophore vesicles following a flash.  相似文献   

14.
From a study of the decay of the pH difference across vesicular membranes (delta pH) it has been possible to show that H+ and alkali metal ion (M+) concentration gradients across bilayer membranes (which are responsible for driving important biochemical processes) can be selectively perturbed by anaesthetics such as chloroform and benzyl alcohol by combining them with a suitable exchange ionophore. On adding the anaesthetic to the membrane in an environment containing metal ions M+ = K+, the rate of delta pH decay by H+/M+ exchange increases by a larger factor or by a smaller factor (when compared to that in a membrane environment with M+ = Na+) depending on whether the exchange ionophore chosen is monensin or nigericin. A rational explanation of this "metal ion specificity" can be given using the exchange ionophore mediated ion transport scheme in which the equilibrations at the "interfaces" are fast compared to the "translocation equilibration" between the species in the two layers of the membrane. The following three factors are responsible for the observed "specificity": On adding the anaesthetic (i) translocation rate constants increase, (ii) the concentrations of the M+ bound ionophores increase at the expense of H+ bound ionophores. (iii) Under our experimental conditions the rate determining species are the complexes monensin-K (Mon-K) and nigericin-H (Nig-H) for M+ = K+ whereas they are monensin-H (Mon-H) and nigericin-Na (Nig-Na) for M+ = Na+. Possible anaesthetic induced membrane perturbations contributing to the above mentioned changes in the membrane are (A), the loosening of the membrane structure and (B), an associated increase in the membrane hydration (and membrane dielectric constant). An analysis of the consequent changes in the various transport step shows the following: (a), The anaesthetic induced changes in the translocation rates of electrically charged species are not relevant in the explanation of the observed changes in the delta pH decay rates. (b), Changes in the rates of fast equilibria at the interface contribute to changes in KH and KM. (c), A suggestion made in the literature, that a significant interaction between the dipole moment of the monensin-K complex and the membrane slows down its translocation, is not valid. (d), The ability to explain rationally all the delta pH decay data confirms the validity of the transport scheme used. In our experiments delta pH across the vesicular membrane was created by pH jump coming from a temperature jump.  相似文献   

15.
《BBA》1985,806(1):161-167
The change in surface potential induced by addition of mono- or divalent cations to a chromatophore suspension was monitored by carotenoid absorbance changes (a probe which is intrinsic to the membrane). The change in carotenoid absorbance elicited by an alteration of the surface potential is strongly dependent on the presence of ionophores; the absorbance changes (due to addition of MgCl2) in the presence of valinomycin or gramicidin are larger than those in the presence of carbonyl cyanide m-chlorophenylhydrazone or cabonyl cyanide p-trifluoromethoxyphenylhydrazone. These differences in carotenoid absorbance change reflect the degree in which the membrane resistance has been shunted. Gramicidin or high concentrations of valinomycin (10−6 M) appear to be sufficiently effective as shunt in order that the totality of the change in external surface potential is seen as an intramembrane potential difference as sensed by the carotenoids. It is also shown that the decay of the carotenoid changes induced by the addition of salt to the medium is a measure of the intrinsic permeability of the chromatophore membrane for the added cation.  相似文献   

16.
An artificially produced electrochemical potential difference for protons (portonmotive force) provided the energy for the transport of galactosides in Escherichia coli cells which were depleted of their endogenous energy reserves. The driving force for the entry of protons was provided by either a transmembrane pH gradient or a membrane potential. The pH gradient across the membrane was created by acidifying the external medium. The membrane potential (inside negative) was established by the outward diffusion of potassium (in the presence of valinomycin) or by the inward diffusion of the permeant thiocyanate ion. The magnitude of the electrochemical potential difference for protons agreed well with magnitude of the chemical potential difference of the lactose analog, thiomethylgalactoside. The observations are consistent with the view that the carrier-mediated entry of each galactoside molecule is accompanied by the entry of one proton.  相似文献   

17.
Fluorescent amines, 9-aminoacridine, acridine orange and quinacrine, were used as probes for a pH gradient (deltapH) across gastric microsomal vesicles. Analysis of probe uptake data indicates that 9-aminoacridine distributes across the membrane as a weak base in accordance with the deltapH. On the other hand, acridine orange and quinacrine show characteristics of binding to membrane sites in addition to the accumulation in response to deltapH. A discussion of the advantages and limitations of the probes is presented. Application of these probes to pig gastric microsomal vesicles indicates that that K+-stimulated ATPase is responsible for the transport of H+ into the vesicles and thus develops a deltapH across the membrane. The deltapH generated by the K+-ATPase has a definite requirement for internal K+. The proton gradient can be discharged slowly after ATP depletion or rapidly either by detergent disruption of the vesicles or by increasing their leakiness using both H+ and K+ ionophores. On the other hand, the sole use of the K+ ionophore, valinomycin, stimulates the ATP-induced formation of deltapH by increasing the availability of K+ to internal sites. This stimulation by valinomycin requires the presence of permeable anions like Cl-. Analysis of the Cl- requirement indicates that in the presence of valinomycin the net effect is the accumulation of HCl inside the gastric vesicles. With an external pH of 7.0, the ATP-generated deltapH was calculated to be from 4 to 4.5 pH units. The results are consistent with the hypothesis that the K+-stimulated ATPase drives a K+/H+ exchange across the gastric vesicles. Since other lines of evidence suggest that these gastric microsomes are derived from the tubulovesicular system of the oxyntic cell, the participation of the ATP-driven transport processes in gastric HCl secretion is of interest.  相似文献   

18.
B.G. De Grooth  J. Amesz 《BBA》1977,462(2):247-258
An analysis was made of the changes of pigment absorption upon illumination of chromatophores of Rhodopseudomonas sphaeroides at ?35 °C, described in the preceding paper (de Grooth, B. G. and Amesz, J. (1977) Biochim. Biophys. Acta 462, 237–246). Comparison of the light-induced difference spectra in the carotenoid region obtained without additions, and in the presence of N-methylphenazonium methosulphate and ascorbate as donor-acceptor system showed that the latter spectrum was not only about 10 times larger in amplitude, but also red-shifted with respect to the first one. Together with the shape of the difference spectrum, this indicated that the spectrum obtained in the presence of a donor-acceptor system is due to an electrochromic shift of the absorption spectrum of a carotenoid by a few nm towards longer wavelength, caused by a delocalized potential across the chromatophore membrane. The results of an analysis of the kinetics of the absorbance changes near the zero points of the spectrum were in quantitative agreement with the extent of the red shift and indicated a shift of 0.25 nm for a single electron transfer per reaction center, and shifts of up to 4 nm when the electron transport is stimulated by a donor-acceptor system. For bacteriochlorophyll B-850 the shift is three times smaller.Analysis of the overall absorption spectrum showed that there are at least two pools of carotenoid. The carotenoid that shows electrochromism has absorption bands at 452, 481 and 515 nm, and comprises about one-third of the total carotenoid present; the remaining pool absorbs at about 7 nm shorter wavelength and does not show an electrochromic response to illumination. Both pools presumably consist of spheroidene; the differences in band location may be explained by the assumption that only the first pool is subjected to a local electric field which induces an electric dipole even at zero membrane potential. Similar results were obtained at room temperature and with a mutant of Rps. sphaeroides (G1C)-containing neurosporene.  相似文献   

19.
S. Saphon  J.B. Jackson  V. Lerbs  H.T. Witt 《BBA》1975,408(1):58-66
1. From electron micrographs of chromatophores from Rhodopseudomonas sphaeroides and from the estimated bacteriochlorophyll content of the sample a mean value of 4700 bacteriochlorophyll per chromatophore was estimated. The mean diameter of the chromatophore vesicles was 600 Å.2. The decay of the flash-induced electric potential across the chromatophore membrane measured by the carotenoid band shift was 20% accelerated by about one valinomycin molecule per 4700 bacteriochlorophyll, i.e. by one ionophore molecule per chromatophore.3. The inhibition of the flash-induced ATP formation by valinomycin followed a similar pattern to the accelerated decay of the electric potential.4. The single turnover flash yield of ATP synthesis gave a mean value of one ATP per 1470 bacteriochlorophyll or about 3 ATP per vesicle.5. With regard to the partitioning of the ionophore between the membrane (85%) and aqueous phase (15%) we conclude that one molecule of valinomycin per chromatophore is sufficient to begin to collapse the electrical potential and inhibit ATP synthesis. It is therefore suggested that the membrane potential is an essential component of the energized state which is used for phosphorylation.The results correspond to those obtained for the 100-fold larger vesicles in chloroplasts (thylakoids) where one molecule of ionophore is also sufficient to quench both events.  相似文献   

20.
B.G. De Grooth  J. Amesz 《BBA》1977,462(2):237-246
Light-induced absorbance changes were measured at temperatures between ?30 and ?55 °C in chromatophores of Rhodopseudomonas sphaeroides. Absorbance changes due to photooxidation of reaction center bacteriochlorophyll (P-870) were accompanied by a red shift of the absorption bands of a carotenoid. The red shift was inhibited by gramicidin D. The kinetics of P-870 indicated electron transport from the “primary” to a secondary electron acceptor. This electron transport was slowed down by lowering the temperature or increasing the pH of the suspension. Electron transport from soluble cytochrome c to P-870+ occurred in less purified chromatophore preparations. This electron transport was accompanied by a relatively large increase of the carotenoid absorbance change. This agrees with the hypothesis that P-870 is located inside the membrane, so that an additional membrane potential is generated upon transfer of an electron from cytochrome to P-870+.A strong stimulation of the carotenoid changes (more than 10-fold in some experiments) and pronounced band shifts of bacteriochlorophyll B-850 were observed upon illumination in the presence of artificial donor-acceptor systems. Reduced N-methylphenazonium methosulphate (PMS) and N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) were fairly efficient donors, whereas endogenous ubiquinone and oxidized PMS acted as secondary acceptor. These results indicate the generation of large membrane potentials at low temperature, caused by sustained electron transport across the chromatophore membrane. The artificial probe, merocyanine MC-V did not show electrochromic band shifts at low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号