首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cerebral palsy (CP) is a nonprogressive motor disorder caused by white matter damage in the developing brain. Recent epidemiological and clinical data suggest intrauterine infection/inflammation as the most common cause of preterm delivery and neonatal complications, including CP. Cyclooxygenases are key enzymes in the conversion of arachidonic acid to prostaglandins. The COX family consists of two isoforms, COX-1 and COX-2. In the brain, COX-2 is constitutively expressed at high levels on pyramidal neurons, while COX-1 is predominantly expressed by microglia and can be upregulated in pathological conditions, such as infection, ischemia and traumatic brain injury. Single nucleotide polymorphisms in the COX-1 and COX-2 gene could have profound effects on COX-1 and COX-2 expression and, directly or indirectly, influence the pathogenesis, development and severity of CP. In this study we investigated the association between single nucleotide polymorphisms of the COX-1 and COX-2 gene and susceptibility to cerebral palsy in very preterm infants. The results of our study showed the association between COX-1 high expression genotype (?842 AA) and COX-1 high expression allele ?842A and risk of CP in infants with cystic periventricular leucomalacia (cPVL). Our results support an important role of COX-1 enzyme on microglial activation during neuroinflammation resulting in huge neuroinflammatory response and the proinflammatory mediator overproduction, with the serious white matter damage and CP development as a consequence.  相似文献   

2.
Several studies suggest that cyclooxygenase (COX)-2 plays a pivotal role in the progression of ischaemic brain damage. In the present study, we investigated the effects of selective inhibition of COX-2 with nimesulide (12 mg/kg) and selective inhibition of COX-1 with valeryl salicylate (VAS, 12-120 mg/kg) on prostaglandin E(2) (PGE(2)) levels, myeloperoxidase (MPO) activity, Evans blue (EB) extravasation and infarct volume in a standardized model of transient focal cerebral ischaemia in the rat. Post-ischaemic treatment with nimesulide markedly reduced the increase in PGE(2) levels in the ischaemic cerebral cortex 24 h after stroke and diminished infarct size by 48% with respect to vehicle-treated animals after 3 days of reperfusion. Furthermore, nimesulide significantly attenuated the blood-brain barrier (BBB) damage and leukocyte infiltration (as measured by EB leakage and MPO activity, respectively) seen at 48 h after the initial ischaemic episode. These studies provide the first experimental evidence that COX-2 inhibition with nimesulide is able to limit BBB disruption and leukocyte infiltration following transient focal cerebral ischaemia. Neuroprotection afforded by nimesulide is observed even when the treatment is delayed until 6 h after the onset of ischaemia, confirming a wide therapeutic window of COX-2 inhibitors in experimental stroke. On the contrary, selective inhibition of COX-1 with VAS had no significant effect on the evaluated parameters. These data suggest that COX-2 activity, but not COX-1 activity, contributes to the progression of focal ischaemic brain injury, and that the beneficial effects observed with non-selective COX inhibitors are probably associated to COX-2 rather than to COX-1 inhibition.  相似文献   

3.
Role of cyclooxygenase isoforms in gastric mucosal defence.   总被引:7,自引:0,他引:7  
A complex system of interacting mediators exists in the gastric mucosa to strengthen its resistance against injury. In this system prostaglandins play an important role. Prostaglandin biosynthesis is catalysed by the enzyme cyclooxygenase (COX), which exists in two isoforms, COX-1 and COX-2. Initially the concept was developed that COX-1 functions as housekeeping enzyme, whereas COX-2 yields prostaglandins involved in pathophysiological reactions such as inflammation. In the gastrointestinal tract, the maintenance of mucosal integrity was attributed exclusively to COX-1 without a contribution of COX-2 and ulcerogenic effects of non-steroidal anti-inflammatory drugs (NSAIDs) were believed to be the consequence of inhibition of COX-1. Recent findings, however, indicate that both COX-1 and COX-2 either alone or in concert contribute to gastric mucosal defence. Thus, in normal rat gastric mucosa specific inhibition of COX-1 does not elicit mucosal lesions despite near-maximal suppression of gastric prostaglandin formation. When a selective COX-2 inhibitor which is not ulcerogenic when given alone is added to the COX-1 inhibitor, severe gastric damage develops. In contrast to normal gastric mucosa which requires simultaneous inhibition of COX-1 and COX-2 for breakdown of mucosal resistance, in the acid-challenged rat stomach inhibition of COX-1 alone results in dose-dependent injury which is further increased by additional inhibition of COX-2 enzyme activity or prevention of acid-induced up-regulation of COX-2 expression by dexamethasone. COX-2 inhibitors do not damage the normal or acid-challenged gastric mucosa when given alone. However, when nitric oxide formation is suppressed or afferent nerves are defunctionalized, specific inhibition of COX-2 induces severe gastric damage. Ischemia-reperfusion of the gastric artery is associated with up-regulation of COX-2 but not COX-1 mRNA. COX-2 inhibitors or dexamethasone augment ischemia-reperfusion-induced gastric damage up to four-fold, an effect abolished by concurrent administration of 16,16-dimethyl-PGE(2). Selective inhibition of COX-1 is less effective. Furthermore, COX-2 inhibitors antagonize the protective effect of a mild irritant or intragastric peptone perfusion in the rat stomach, whereas the protection induced by chronic administration of endotoxin is mediated by COX-1. Finally, an important function of COX-2 is the acceleration of ulcer healing. COX-2 is up-regulated in chronic gastric ulcers and inhibitors of COX-2 impair the healing of ulcers to the same extent as non-selective NSAIDs. Taken together, these observations show that both COX isoenzymes are essential factors in mucosal defence with specific contributions in various physiological and pathophysiological situations.  相似文献   

4.
Role of cyclooxygenase-2 in gastric mucosal defense.   总被引:5,自引:0,他引:5  
Two isoenzymes of cyclooxygenase (COX), the key enzyme in prostaglandin (PG) biosynthesis, COX-1 and COX-2, have been identified. COX-1 was proposed to regulate physiological functions, COX-2 to mediate pathophysiological reactions such as inflammation. In particular, it was suggested that maintenance of gastric mucosal integrity relies exclusively on COX-1. Recently, it was shown that a selective COX-1 inhibitor does not damage the mucosa in the healthy rat stomach, although mucosal prostaglandin formation is near-maximally suppressed. However, concurrent treatment with a COX-1 and a COX-2 inhibitor induces severe gastric damage. This indicates that in normal mucosa both COX-1 and COX-2 have to be inhibited to evoke ulcerogenic effects. In the acid-challenged rat stomach inhibition of COX-1 alone is associated with dose-dependent injury which is aggravated by additional inhibition of COX-2 activity or prevention of acid-induced up-regulation of COX-2 expression by dexamethasone. After acid exposure, COX-2 inhibitors cause substantial gastric injury when nitric oxide formation is suppressed or afferent nerves are defunctionalized. Ischemia-reperfusion of the gastric artery increases levels of COX-2 but not COX-1 mRNA. COX-2 inhibitors or dexamethasone aggravate ischemia-reperfusion-induced mucosal damage up to 4-fold, an effect abolished by concurrent administration of 16,16-dimethyl-PGE2. Furthermore, the protective effects elicited by a mild irritant or intragastric peptone perfusion are antagonized by COX-2 inhibitors. Finally, COX-2 expression is increased in experimental ulcers. COX-2 inhibitors delay the healing of chronic gastric ulcers in experimental animals and decrease epithelial cell proliferation, angiogenesis and maturation of the granulation tissue to the same extent as non-steroidal anti-inflammatory drugs. These observations indicate that, in contrast to the initial concept, COX-2 plays an important role in gastric mucosal defense.  相似文献   

5.
Besides secondary injury at the lesional site, Traumatic brain injury (TBI) can cause a systemic inflammatory response, which may cause damage to initially unaffected organs and potentially further exacerbate the original injury. Here we investigated plasma levels of important inflammatory mediators, oxidative activity of circulating leukocytes, particularly focusing on neutrophils, from TBI subjects and control subjects with general trauma from 6 hours to 2 weeks following injury, comparing with values from uninjured subjects. We observed increased plasma level of inflammatory cytokines/molecules TNF-α, IL-6 and CRP, dramatically increased circulating leukocyte counts and elevated expression of TNF-α and iNOS in circulating leukocytes from TBI patients, which suggests a systemic inflammatory response following TBI. Our data further showed increased free radical production in leukocyte homogenates and elevated expression of key oxidative enzymes iNOS, COX-2 and NADPH oxidase (gp91phox) in circulating leukocytes, indicating an intense induction of oxidative burst following TBI, which is significantly greater than that in control subjects with general trauma. Furthermore, flow cytometry assay proved neutrophils as the largest population in circulation after TBI and showed significantly up-regulated oxidative activity and suppressed phagocytosis rate for circulating neutrophils following brain trauma. It suggests that the highly activated neutrophils might play an important role in the secondary damage, even outside the injured brain. Taken together, the potent systemic inflammatory response induced by TBI, especially the intensively increase oxidative activity of circulating leukocytes, mainly neutrophils, may lead to a systemic damage, dysfunction/damage of bystander tissues/organs and even further exacerbate secondary local damage. Controlling these pathophysiological processes may be a promising therapeutic strategy and will protect unaffected organs and the injured brain from the secondary damage.  相似文献   

6.
7.
Yang HW 《生理科学进展》2009,40(4):317-320
环氧合酶-2 (cyclooxygenase-2,COX-2)是催化花生四烯酸转化为前列腺素的限速酶,广泛参与脑创伤、缺血诱导的神经元损伤、炎症反应及神经变性性疾病等.COX-2在神经病理学中的作用与神经元的突触变化有关.增强或抑制COX-2表达可增强或抑制兴奋性谷氨酸能神经元的神经传递和长时程增强 (LTP),这些效应由COX-2的主要产物前列腺素E2(PGE2)及其受体亚型EP2所介导.因此,阐明COX-2在突触信号中的作用机制将有助于设计新的药物来预防、治疗及减轻神经源性炎症相关的神经紊乱性疾病.  相似文献   

8.
Cyclooxygenase-2 (COX-2) is a prostanoid-synthesizing enzyme that is critically implicated in a variety of pathophysiological processes. Using a COX-2-deficient mouse model, we present data that suggest that COX-2 has an active role in liver ischemia/reperfusion (I/R) injury. We demonstrate that COX-2-deficient mice had a significant reduction in liver damage after I/R insult. The inability of COX-2(-/-) to elaborate COX-2 products favored a Th2-type response in these mice. COX-2(-/-) livers after I/R injury showed significantly decreased levels of IL-2, as well as IL-12, a cytokine known to have a central role in Th1 effector cell differentiation. Moreover, such livers expressed enhanced levels of the anti-inflammatory cytokine IL-10, shifting the balance in favor of a Th2 response in COX-2-deficient mice. The lack of COX-2 expression resulted in decreased levels of CXCL2, a neutrophil-activating chemokine, reduced infiltration of MMP-9-positive neutrophils, and impaired late macrophage activation in livers after I/R injury. Additionally, Bcl-2 and Bcl-x(L) were normally expressed in COX-2(-/-) livers after injury, whereas respective wild-type controls were almost depleted of these two inhibitors of cell death. In contrast, caspase-3 activation and TUNEL-positive cells were depressed in COX-2(-/-) livers. Therefore, our data support the concept that COX-2 is involved in the pathogenic events occurring in liver I/R injury. The data also suggest that potential valuable therapeutic approaches in liver I/R injury may result from further studies aimed at identifying specific COX-2-derived prostanoid pathways.  相似文献   

9.
Bradykinin (BK) is an inflammatory mediator, elevated levels in the region of several brain injury and inflammatory diseases. It has been shown to induce cyclooxygenase-2 (COX-2) expression implicating in inflammatory responses in various cell types. However, the signaling mechanisms underlying BK-induced COX-2 expression in astrocytes remain unclear. First, RT-PCR and Western blotting analysis showed that BK induced the expression of COX-2 mRNA and protein, which was inhibited by B(2) BK receptor antagonist Hoe140, suggesting the involvement of B(2) BK receptors. BK-induced COX-2 expression and translocation of PKC-delta from cytosol to membrane fraction were inhibited by rottlerin, suggesting that PKC-delta might be involved in these responses. This hypothesis was further supported by the transfection with a dominant negative plasmid of PKC-delta significantly blocked BK-induced COX-2 expression. BK-stimulated p42/p44 MAPK phosphorylation, COX-2 mRNA expression, and prostaglandin E(2) (PGE(2)) release were attenuated by PD98059, indicating the involvement of MEK/p42/p44 MAPK in this pathway. Accordingly, BK-stimulated phosphorylation of p42/p44 MAPK was attenuated by rottlerin, indicating that PKC-delta might be an upstream component of p42/p44 MAPK. Moreover, BK-induced COX-2 expression might be mediated through the translocation of NF-kappaB into nucleus which was blocked by helenalin, rottlerin and PD98059, implying the involvement of NF-kappaB. These results suggest that in RBA-1 cells, BK-induced COX-2 expression and PGE(2) release was sequentially mediated through PKC-delta-dependent activation of p42/p44 MAPK and NF-kappaB. Understanding the regulation of COX-2 expression and PGE(2) release induced by BK in astrocytes might provide a new therapeutic strategy of brain injury and inflammatory diseases.  相似文献   

10.
Using intracerebral microdialysis, we reported previously that acute in vivo activation of NMDA glutamate receptors triggers rapid and transient releases of prostaglandin E2 (PGE2) and F2-isoprostane 15-F(2t)-IsoP in the hippocampus of freely moving rats. The formation of the two metabolites--produced through cyclo-oxygenase (COX) enzymatic activity and free radical-mediated peroxidation of arachidonic acid (AA), respectively,--was prevented by the specific NMDA antagonist MK-801, and was largely dependent on COX-2 activity. Here, we demonstrate that besides COX-2, which is the prominent COX isoform in the brain and particularly in the hippocampus, the constitutive isoform, COX-1 also contributes to prostaglandin (PG) synthesis and oxidative damage following in vivo acute activation of hippocampal NMDA glutamate receptors. The relative contribution of the two isoforms is dynamically regulated, as the COX-2 selective inhibitor NS398 immediately prevented PGE2 and 15-F(2t)-IsoP formation during the application of NMDA, whereas the COX-1 selective inhibitor SC560 was effective only 1 h after agonist infusion. Our data suggest that, although COX-2 is the prominent isoform, COX-1 activity may significantly contribute to excitotoxicity, particularly when considering the amount of lipid peroxidation associated with its catalytic cycle. We suggest that both isoforms should be considered as possible therapeutic targets to prevent brain damage caused by excitotoxicity.  相似文献   

11.
Cyclooxygenase-2 (COX-2), a rate-limiting enzyme for prostanoid synthesis, has been implicated in the neurotoxicity resulting from hypoxia-ischemia, and its inhibition has therapeutic potential for ischemic stroke. However, COX-2 inhibitors increase the risk of cardiovascular complications. We therefore sought to identify the downstream effectors of COX-2 neurotoxicity, and found that prostaglandin E(2) EP1 receptors are essential for the neurotoxicity mediated by COX-2-derived prostaglandin E(2). EP1 receptors disrupt Ca(2+) homeostasis by impairing Na(+)-Ca(2+) exchange, a key mechanism by which neurons cope with excess Ca(2+) accumulation after an excitotoxic insult. Thus, EP1 receptors contribute to neurotoxicity by augmenting the Ca(2+) dysregulation underlying excitotoxic neuronal death. Pharmacological inhibition or gene inactivation of EP1 receptors ameliorates brain injury induced by excitotoxicity, oxygen glucose deprivation and middle cerebral artery (MCA) occlusion. An EP1 receptor inhibitor reduces brain injury when administered 6 hours after MCA occlusion, suggesting that EP1 receptor inhibition may be a viable therapeutic option in ischemic stroke.  相似文献   

12.
Female sex is associated with improved outcome in experimental brain injury models, such as traumatic brain injury, ischemic stroke, and intracerebral hemorrhage. This implies female gonadal steroids may be neuroprotective. A mechanism for this may involve modulation of post-injury neuroinflammation. As the resident immunomodulatory cells in central nervous system, microglia are activated during acute brain injury and produce inflammatory mediators which contribute to secondary injury including proinflammatory cytokines, and nitric oxide (NO) and prostaglandin E2 (PGE2), mediated by inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively. We hypothesized that female gonadal steroids reduce microglia mediated neuroinflammation. In this study, the progesterone’s effects on tumor necrosis factor alpha (TNF-α), iNOS, and COX-2 expression were investigated in lipopolysaccharide (LPS)-stimulated BV-2 microglia. Further, investigation included nuclear factor kappa B (NF-κB) and mitogen activated protein kinase (MAPK) pathways. LPS (30 ng/ml) upregulated TNF-α, iNOS, and COX-2 protein expression in BV-2 cells. Progesterone pretreatment attenuated LPS-stimulated TNF-α, iNOS, and COX-2 expression in a dose-dependent fashion. Progesterone suppressed LPS-induced NF-κB activation by decreasing inhibitory κBα and NF-κB p65 phosphorylation and p65 nuclear translocation. Progesterone decreased LPS-mediated phosphorylation of p38, c-Jun N-terminal kinase and extracellular regulated kinase MAPKs. These progesterone effects were inhibited by its antagonist mifepristone. In conclusion, progesterone exhibits pleiotropic anti-inflammatory effects in LPS-stimulated BV-2 microglia by down-regulating proinflammatory mediators corresponding to suppression of NF-κB and MAPK activation. This suggests progesterone may be used as a potential neurotherapeutic to treat inflammatory components of acute brain injury.  相似文献   

13.
Summary Infarction in adult rat brain was induced by middle cerebral arterial occlusion (MCAO) followed by reperfusion to examine whether taxifolin could reduce cerebral ischemic reperfusion (CI/R) injury. Taxifolin administration (0.1 and 1.0 μg/kg, i.v.) 60 min after MCAO ameliorated infarction (by 42%±7% and 62%±6%, respectively), which was accompanied by a dramatic reduction in malondialdehyde and nitrotyrosine adduct formation, two markers for oxidative tissue damage. Overproduction of reactive oxygen species (ROS) and nitric oxide (NO) via oxidative enzymes (e.g., COX-2 and iNOS) was responsible for this oxidative damage. Taxifolin inhibited leukocyte infiltration, and COX-2 and iNOS expressions in CI/R-injured brain. Taxifolin also prevented Mac-1 and ICAM-1 expression, two key counter-receptors involved in firm adhesion/transmigration of leukocytes to the endothelium, which partially accounted for the limited leukocyte infiltration. ROS, generated by leukocytes and microglial cells, activated nuclear factor-kappa B (NF-κB) that in turn signaled up-regulation of inflammatory proteins. NF-κB activity in CI/R was enhanced 2.5-fold over that of sham group and was inhibited by taxifolin. Production of both ROS and NO by leukocytes and microglial cells was significantly antagonized by taxifolin. These data suggest that amelioration of CI/R injury by taxifolin may be attributed to its anti-oxidative effect, which in turn modulates NF-κB activation that mediates CI/R injury. Yea-Hwey Wang, Wen-Yen Wang, Chia-Che Chang, and Kuo-Tong Liou contributed equally to this work.  相似文献   

14.
目的:研究高压氧预处理对大鼠脑缺血再灌注损伤的保护作用。方法:36只SD大鼠随机分为假手术组、模型组及高压氧预处理组,每组12只。高压氧预处理组大鼠在造模前5天给予高压氧预处理。采用线栓法建立大鼠脑缺血再灌注模型,观察高压氧预处理对脑缺血再灌注损伤大鼠神经功能缺损评分、脑梗死面积的影响,检测大鼠缺血脑组织COX-2 mRNA和蛋白的表达以及IL-1β、TNF-α、MDA的含量。结果:高压氧预处理可明显改善脑缺血再灌注大鼠神经功能缺损评分,减少脑梗死面积,降低COX-2m RNA和蛋白表达量,抑制IL-1β、TNF-α的表达,降低MDA水平。结论:高压氧预处理对大鼠脑缺血再灌注损伤具有明显的保护作用,其机制可能与抑制IL-1β、TNF-α、COX-2的表达以及减弱脂质过氧化反应有关。  相似文献   

15.
Roles of prostaglandin synthesis in excitotoxic brain diseases   总被引:2,自引:0,他引:2  
Cyclooxygenase (COX) is a rate-limiting enzyme in prostaglandin synthesis. COX consists of two isoforms, constitutive COX-1 and inducible COX-2. We have first found that COX-2 expression in the brain is tightly regulated by neuronal activity under physiological conditions, and electroconvulsive seizure robustly induces COX-2 mRNA in the brain. Our recent in-depth studies reveal COX-2 expression is divided into two phases, early in neurons and late in non-neuronal cells, such as endothelial cells or astrocytes. In this review, we present that early synthesized COX-2 facilitates the recurrence of hippocampal seizures in rapid kindling model, and late induced COX-2 stimulates hippocampal neuron loss after kainic acid treatment. Hence, we consider the potential role of COX-2 inhibitors as a new therapeutic drug for a neuronal loss after seizure or focal cerebral ischemia. The short-term and sub-acute medication of selective COX-2 inhibitors that suppresses an elevation of prostaglandin E(2) (PGE(2)) may be an effective treatment to prevent neuronal loss after onset of neuronal excitatory diseases. This review also discusses a novel role of vascular endothelial cells in brain diseases. We found that these cells produce PGE(2) by synthesizing COX-2 and microsomal prostaglandin E synthase-1 (mPGES-1) in response to excitotoxicity and neuroinflammation. We also show a possible mechanisms of neuronal damage associated with seizure via astrocytes and endothelial cells. Further analysis of the interaction among neurons, astrocytes and endothelial cells may provide a better understanding of the processes of neuropathological disorders, as well as facilitating the development of new treatments.  相似文献   

16.
Bradykinin (BK) is released in the brain during injury and inflammation. Activation of endothelial BK receptors produces acute dilatation of cerebral arterioles that is mediated by reactive oxygen species (ROS). ROS can also modulate gene expression, including expression of the inducible isoform of cyclooxygenase (COX-2). We hypothesized that exposure of the brain to BK would produce acute dilatation, which would be followed by a delayed dilatation mediated by COX-2. To test this hypothesis in anesthetized rats, BK was placed twice in cranial windows for 7 min, after which the windows were flushed to remove residual BK. The two BK exposures were separated by 30 min. Each BK exposure produced acute dilatation of cerebral arterioles, after which diameter rapidly returned to baseline. Over the subsequent 4.5 h after the second BK exposure, arterioles dilated 48 +/- 8%. Treatment of the cranial window with NS-398, a selective COX-2 inhibitor, or dexamethasone, significantly attenuated the delayed dilatation. Aminoguanidine, a selective inhibitor of inducible nitric oxide synthase, did not alter the delayed dilatation. Cotreatment of cranial windows with BK, superoxide dismutase, and catalase also prevented the delayed dilatation. In separate experiments, exposure of the cortical surface to BK upregulated leptomeningeal expression of COX-2 mRNA. Our results suggest that acute, time-limited exposure of the brain to BK produces delayed dilatation of cerebral arterioles dependent on expression and activity of COX-2.  相似文献   

17.
Aceylation of cyclooxygenase (COX)-2 by aspirin can trigger the formation of 15(R)-epilipoxin A4, or aspirin-triggered lipoxin (ATL). ATL exerts protective effects in the stomach. Selective COX-2 inhibitors block ATL synthesis and exacerbate aspirin-induced gastric damage. Nitric oxide-releasing aspirins, including NCX-4016, have antiplatelet effects similar to aspirin but do not cause gastric damage. In the present study, we examined whether or not NCX-4016 triggers ATL synthesis and/or upregulates gastric COX-2 expression and the effects of coadministration of NCX-4016 with a selective COX-2 inhibitor on gastric mucosal injury and inflammation. Rats were given aspirin or NCX-4016 orally and either vehicle or a selective COX-2 inhibitor (celecoxib) intraperitoneally. Gastric damage was blindly scored, and granulocyte infiltration into gastric tissue was monitored through measurement of myeloperoxidase activity. Gastric PG and ATL synthesis was measured as was COX-2 expression. Whereas celecoxib inhibited gastric ATL synthesis and increased the severity of aspirin-induced gastric damage and inflammation, coadministration of celecoxib and NCX-4016 did not result in damage or inflammation. NCX-4016 did not upregulate gastric COX-2 expression nor did it trigger ATL synthesis (in contrast to aspirin). Daily administration of aspirin for 5 days resulted in significantly less gastric damage than that seen with a single dose, as well as augmented ATL synthesis. Celecoxib reversed this effect. In contrast, repeated administration of NCX-4016 failed to cause gastric damage, whether given alone or with celecoxib. These studies support the notion that NCX-4016 may be an attractive alternative to aspirin for indications such as cardioprotection, including in individuals also taking selective COX-2 inhibitors.  相似文献   

18.
AimsHyperthermia is a characteristic functional effect of sleep deprivation (SD). We hypothesize here that prostaglandin E2 (PGE2) could be involved in hyperthermia induced by sleep deprivation.Main methodsTo address this issue we examined the effects of a selective cyclo-oxygenase-2 inhibitor (COX-2) agent on hyperthermia induced by SD in rats. We also investigated binding to PGE2 receptors in hypothalamic brain areas of sleep-deprived rats using in vitro autoradiography. Male Wistar rats were deprived of sleep for 96 h using the platform technique. Sleep deprived and control groups received saline or Celecoxib (20, 30 and 40 mg/kg; p.o.) daily during the SD period. Colonic temperature was measured daily.Key findingsResults indicated that core temperature of sleep-deprived rats that receiving saline increased from the first to the fourth day of SD compared to baseline and to the respective control group. However, the hyperthermia induced by SD was not blocked by COX-2 inhibitor at any dose. [3H]PGE2 binding did not differ significantly among the groups in any of a number of hypothalamic areas examined.SignificanceAlthough SD rats showed no response to the COX-2 inhibitor and no alterations in [3H]PGE2 binding, the possibility remains that other prostaglandin system and/or receptor subtypes may be altered by SD.  相似文献   

19.
Cyclooxygenases (COX) are prostanoid synthesizing enzymes constitutively expressed in the brain that contribute to excitotoxic neuronal cell death. While the neurotoxic role of COX-2 is well established and has been linked to prostaglandin E(2) synthesis, the role of COX-1 is not clearly understood. In a model of N-Methyl-D-aspartic acid (NMDA) induced excitotoxicity in the mouse cerebral cortex we found a distinctive temporal profile of COX-1 and COX-2 activation where COX-1, located in microglia, is responsible for the early phase of prostaglandin E(2) synthesis (10 minutes after NMDA), while both COX-1 and COX-2 contribute to the second phase (3-24 hours after NMDA). Microglial COX-1 is strongly activated by ATP but not excitatory neurotransmitters or the Toll-like receptor 4 ligand bacterial lipopolysaccharide. ATP induced microglial COX-1 dependent prostaglandin E(2) synthesis is dependent on P2X7 receptors, extracellular Ca(2+) and cytoplasmic phospholipase A2. NMDA receptor activation induces ATP release from cultured neurons leading to microglial P2X7 receptor activation and COX-1 dependent prostaglandin E(2) synthesis in mixed microglial-neuronal cultures. Pharmacological inhibition of COX-1 has no effect on the cortical lesion produced by NMDA, but counteracts the neuroprotection exerted by inhibition of COX-2 or observed in mice lacking the prostaglandin E(2) receptor type 1. Similarly, the neuroprotection exerted by the prostaglandin E(2) receptor type 2 agonist butaprost is not observed after COX-1 inhibition. P2X7 receptors contribute to NMDA induced prostaglandin E(2) production in vivo and blockage of P2X7 receptors reverses the neuroprotection offered by COX-2 inhibition. These findings suggest that purinergic signaling in microglia triggered by neuronal ATP modulates excitotoxic cortical lesion by regulating COX-1 dependent prostanoid production and unveil a previously unrecognized protective role of microglial COX-1 in excitotoxic brain injury.  相似文献   

20.
Cyclooxygenase (COX-2) inhibitors were developed with the hope that they will cause fewer gastrointestinal adverse effects. Ability of selective as well as nonselective COX inhibitors to alter ischemia-reperfusion induced damage of gastric mucosa and hapten-induced colitis in rats has been compared. Celecoxib (10, 20 and 40 mg/kg(-l)) was significantly more potent at aggravating ischemia-reperfusion injury as compared to nimesulide. Similarly, celecoxib was found to maximally potentiate TNBS-induced colitis, followed by nimesulide and indomethacin. Celecoxib at its highest dose produced maximum deep histological injury. This paradoxic ulcer and colitis aggravating effect of selective COX-2 inhibitors may be explained by suppression of protective prostaglandins generated as a consequence of COX-2 induction in inflammatory states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号