首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of mitochondrial permeability transition pores in mitochondrial autophagy   总被引:12,自引:0,他引:12  
During autophagy, cells rid themselves of damaged and superfluous mitochondria, as well as other organelles. This activation of mitochondrial turnover could be the result of changes in the physiological state of mitochondria. Confocal microscopy and fluorescence techniques indicate that onset of mitochondrial permeability transition is one such change. The mitochondrial permeability transition is a reversible phenomenon whereby the mitochondrial inner membrane becomes freely permeable to solutes of less than 1500 Da. At onset of the mitochondrial permeability transition, mitochondria depolarize, uncouple, and undergo large amplitude swelling due to opening of permeability transition pores, which may form by aggregation of damaged, misfolded membrane proteins. When injurious cellular stresses occur, cells may protect themselves using autophagy to remove damaged mitochondria and mutated mitochondrial DNA. Ca2+ overloading, reactive oxygen and nitrogen species, decreased mitochondrial membrane potential, and oxidation of pyridine nucleotides and glutathione all promote mitochondrial damage and onset of the mitochondrial permeability transition. The mitochondrial permeability transition is also associated with necrosis and apoptosis after a variety of stimuli. This review emphasizes the role of the mitochondrial permeability transition as a key event in mitochondrial autophagy.  相似文献   

2.
Nicotinamide (NAM) treatment causes a decrease in mitochondrial respiration and reactive oxygen species production in primary human fibroblasts and extends their replicative lifespan. In the current study, it is reported that NAM treatment induces a decrease in mitochondrial mass and an increase in membrane potential (ΔΨ m ) by accelerating autophagic degradation of mitochondria. In the NAM-treated cells, the level of LC3-II as well as the number of LC3 puncta and lysosomes co-localizing with mitochondria substantially increased. Furthermore, in the NAM-treated cells, the levels of Fis1, Drp1, and Mfn1, proteins that regulate mitochondrial fission and fusion, increased and mitochondria experienced dramatic changes in structure from filaments to dots or rings. This structural change is required for the decrease of mitochondrial mass indicating that NAM accelerates mitochondrial autophagy, at least in part, by inducing mitochondrial fragmentation. The decrease in mitochondria mass was attenuated by treatment with cyclosporine A, which prevents the loss of mitochondrial membrane potential by blocking the mitochondrial permeability transition, suggesting autophagic degradation selective for mitochondria with low ΔΨ m . All these changes were accompanied by and dependent on an increase in the levels of GAPDH, and are blocked by inhibition of the cellular conversion of NAM to NAD+. Taken together with our previous findings, these results suggest that up-regulation of GAPDH activity may prolong healthy lifespan of human cells through autophagy-mediated mitochondria quality maintenance.  相似文献   

3.
4.
Mitochondria are dynamic organelles that undergo frequent fission and fusion or branching. To analyze the mitochondrial fusion reaction, mitochondria were separately labeled with green or red fluorescent protein (GFP and RFP, respectively) in HeLa cells, and the cells were fused using hemagglutinating virus of Japan (HVJ). The resulting mixing of the fluorescent reporters was then followed using fluorescence microscopy. This system revealed that mitochondria fuse frequently in mammalian cells, and the fusion depends on the membrane potential across the inner membrane. The protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP), led to fragmentation of the mitochondria and inhibited the fusion reaction. Removal of CCCP recovered the fusion activity to reform filamentous mitochondrial networks. Analysis of the effects of GTP-binding proteins, DRP1 and two FZO1 isoforms, and the GTPase-domain mutants on the CCCP-induced mitochondrial morphologic changes revealed that DRP1 and FZO1 are involved in membrane budding and fusion, respectively. Furthermore, a HVJ-dependent cell fusion assay combined with RNA interference (RNAi) demonstrated that both FZO1 isoforms are essential and must be acting in cis for the mitochondrial fusion reaction to occur.  相似文献   

5.
Damage to mitochondria can lead to the depolarization of the inner mitochondrial membrane, thereby sensitizing impaired mitochondria for selective elimination by autophagy. However, fusion of uncoupled mitochondria with polarized mitochondria can compensate for damage, reverse membrane depolarization, and obviate mitophagy. Parkin, an E3 ubiquitin ligase that is mutated in monogenic forms of Parkinson's disease, was recently found to induce selective autophagy of damaged mitochondria. Here we show that ubiquitination of mitofusins Mfn1 and Mfn2, large GTPases that mediate mitochondrial fusion, is induced by Parkin upon membrane depolarization and leads to their degradation in a proteasome- and p97-dependent manner. p97, a AAA+ ATPase, accumulates on mitochondria upon uncoupling of Parkin-expressing cells, and both p97 and proteasome activity are required for Parkin-mediated mitophagy. After mitochondrial fission upon depolarization, Parkin prevents or delays refusion of mitochondria, likely by the elimination of mitofusins. Inhibition of Drp1-mediated mitochondrial fission, the proteasome, or p97 prevents Parkin-induced mitophagy.  相似文献   

6.
Recent advances in mitochondrial imaging have revealed that in many cells mitochondria can be highly dynamic. They can undergo fission/fusion processes modulated by various mitochondria-associated proteins and also by conformational transitions in the inner mitochondrial membrane. Moreover, precise mitochondrial distribution can be achieved by their movement along the cytoskeleton, recruiting various connector and motor proteins. Such movement is evident in various cell types ranging from yeast to mammalian cells and serves to direct mitochondria to cellular regions of high ATP demand or to transport mitochondria destined for elimination. Existing data also demonstrate that many aspects of mitochondrial dynamics, morphology, regulation and intracellular organization can be cell type-/tissue-specific. In many cells like neurons, pancreatic cells, HL-1 cells, etc., complex dynamics of mitochondria include fission, fusion, small oscillatory movements of mitochondria, larger movements like filament extension, retraction, fast branching in the mitochondrial network and rapid long-distance intracellular translocation of single mitochondria. Alternatively, mitochondria can be rather fixed in other cells and tissues like adult cardiomyocytes or skeletal muscles with a very regular organelle organization between myofibrils, providing the bioenergetic basis for contraction. Adult cardiac cells show no displacement of mitochondria with only very small-amplitude rapid vibrations, demonstrating remarkable, cell type-dependent differences in the dynamics and spatial arrangement of mitochondria. These variations and the cell-type specificity of mitochondrial dynamics could be related to specific cellular functions and demands, also indicating a significant role of integrations of mitochondria with other intracellular systems like the cytoskeleton, nucleus and endoplasmic reticulum (ER).  相似文献   

7.
Trehalose has extensively been used to improve the desiccation tolerance of mammalian cells. To test whether trehalose improves desiccation tolerance of mammalian mitochondria, we introduced trehalose into the matrix of isolated rat liver mitochondria by reversibly permeabilizing the inner membrane using the mitochondrial permeability transition pore (MPTP). Measurement of the trehalose concentration inside mitochondria using high performance liquid chromatography showed that the sugar permeated rapidly into the matrix upon opening the MPTP. The concentration of intra-matrix trehalose reached 0.29 mmol/mg protein (∼190 mM) in 5 min. Mitochondria, with and without trehalose loaded into the matrix, were desiccated in a buffer containing 0.25 M trehalose by diffusive drying. After re-hydration, the inner membrane integrity was assessed by measurement of mitochondrial membrane potential with the fluorescent probe JC-1. The results showed that following drying to similar water contents, the mitochondria loaded with trehalose had significantly higher inner membrane integrity than those without trehalose loading. These findings suggest the presence of trehalose in the mitochondrial matrix affords improved desiccation tolerance to the isolated mitochondria.  相似文献   

8.
Accumulation of depolarized mitochondria within beta-cells has been associated with oxidative damage and development of diabetes. To determine the source and fate of depolarized mitochondria, individual mitochondria were photolabeled and tracked through fusion and fission. Mitochondria were found to go through frequent cycles of fusion and fission in a 'kiss and run' pattern. Fission events often generated uneven daughter units: one daughter exhibited increased membrane potential (delta psi(m)) and a high probability of subsequent fusion, while the other had decreased membrane potential and a reduced probability for a fusion event. Together, this pattern generated a subpopulation of non-fusing mitochondria that were found to have reduced delta psi(m) and decreased levels of the fusion protein OPA1. Inhibition of the fission machinery through DRP1(K38A) or FIS1 RNAi decreased mitochondrial autophagy and resulted in the accumulation of oxidized mitochondrial proteins, reduced respiration and impaired insulin secretion. Pulse chase and arrest of autophagy at the pre-proteolysis stage reveal that before autophagy mitochondria lose delta psi(m) and OPA1, and that overexpression of OPA1 decreases mitochondrial autophagy. Together, these findings suggest that fission followed by selective fusion segregates dysfunctional mitochondria and permits their removal by autophagy.  相似文献   

9.
Bcl-2 family proteins regulate apoptosis at the level of mitochondria. To examine the mechanism of Bcl-2 function, we investigated the effects of the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) on two hematopoietic cell lines and Bcl-2 overexpressing transfectants. CCCP directly interferes with mitochondrial function and induces apoptosis. We show that Bcl-2 inhibits apoptosis and that the antiapoptotic effect of Bcl-2 takes place upstream of caspase activation and nuclear changes associated with apoptosis, since these were markedly inhibited in cells overexpressing Bcl-2. Bcl-2 does not prevent the decrease in mitochondrial membrane potential nor the alterations in cellular ATP content induced by CCCP in FL5.12 and Jurkat cells. A higher number of mitochondria was observed in untreated Bcl-2 transfected cells compared to parental cells, as shown by electron microscopy. Exposure to CCCP induced a dramatic decrease in the number of mitochondria and severely disrupted mitochondrial ultrastructure, with apparent swelling and loss of cristae in parental cells. Bcl-2 clearly diminished the disruption of mitochondrial structure and preserved a higher number of mitochondria. These data suggest that CCCP induces apoptosis by structural disruption of mitochondria and that Bcl-2 prevents apoptosis and mitochondrial degeneration by preserving mitochondrial integrity.  相似文献   

10.
《Autophagy》2013,9(2):376-378
Mitophagy, or the selective clearance of mitochondria by autophagy, plays a key role in mitochondrial quality control. Due to their postmitotic nature and metabolic dependence on mitochondria, either insufficient or unchecked mitophagy is detrimental to neurons. To better understand signals that regulate this process, we treated primary rat cortical neurons with the electron transport chain complex I inhibitor rotenone to elicit mitophagy. The lipidomic profiles of mitochondria from control or injured neurons were analyzed by mass spectrometry, revealing a significant redistribution of cardiolipin (CL) from the inner mitochondrial membrane to the outer mitochondrial surface. Direct liposome-binding studies, computational modeling, and site-directed mutagenesis indicate that microtubule-associated protein 1 light chain 3 (MAP1LC3/LC3), a defining protein of autophagic membranes, binds to CL. Preventing this interaction inhibits rotenone-induced mitochondrial delivery to autophagosomes and lysosomes and attenuates mitochondrial loss as assessed by western blot. The CL-LC3 interaction is also important for mitophagy induced by other stimuli including 6-hydroxydopamine, another chemical model of Parkinson disease. Given that a conserved LC3 phosphorylation site is adjacent to key residues involved in CL binding, signaling pathways could potentially modulate this interaction to fine-tune the mitochondrial recycling response.  相似文献   

11.
Mitochondrial morphology is determined by a dynamic equilibrium between organelle fusion and fission, but the significance of these processes in vertebrates is unknown. The mitofusins, Mfn1 and Mfn2, have been shown to affect mitochondrial morphology when overexpressed. We find that mice deficient in either Mfn1 or Mfn2 die in midgestation. However, whereas Mfn2 mutant embryos have a specific and severe disruption of the placental trophoblast giant cell layer, Mfn1-deficient giant cells are normal. Embryonic fibroblasts lacking Mfn1 or Mfn2 display distinct types of fragmented mitochondria, a phenotype we determine to be due to a severe reduction in mitochondrial fusion. Moreover, we find that Mfn1 and Mfn2 form homotypic and heterotypic complexes and show, by rescue of mutant cells, that the homotypic complexes are functional for fusion. We conclude that Mfn1 and Mfn2 have both redundant and distinct functions and act in three separate molecular complexes to promote mitochondrial fusion. Strikingly, a subset of mitochondria in mutant cells lose membrane potential. Therefore, mitochondrial fusion is essential for embryonic development, and by enabling cooperation between mitochondria, has protective effects on the mitochondrial population.  相似文献   

12.
Mitophagy, or the selective clearance of mitochondria by autophagy, plays a key role in mitochondrial quality control. Due to their postmitotic nature and metabolic dependence on mitochondria, either insufficient or unchecked mitophagy is detrimental to neurons. To better understand signals that regulate this process, we treated primary rat cortical neurons with the electron transport chain complex I inhibitor rotenone to elicit mitophagy. The lipidomic profiles of mitochondria from control or injured neurons were analyzed by mass spectrometry, revealing a significant redistribution of cardiolipin (CL) from the inner mitochondrial membrane to the outer mitochondrial surface. Direct liposome-binding studies, computational modeling, and site-directed mutagenesis indicate that microtubule-associated protein 1 light chain 3 (MAP1LC3/LC3), a defining protein of autophagic membranes, binds to CL. Preventing this interaction inhibits rotenone-induced mitochondrial delivery to autophagosomes and lysosomes and attenuates mitochondrial loss as assessed by western blot. The CL-LC3 interaction is also important for mitophagy induced by other stimuli including 6-hydroxydopamine, another chemical model of Parkinson disease. Given that a conserved LC3 phosphorylation site is adjacent to key residues involved in CL binding, signaling pathways could potentially modulate this interaction to fine-tune the mitochondrial recycling response.  相似文献   

13.
Mitochondrial dysfunction plays a crucial role in the macroautophagy/autophagy cascade. In a recently published study Sun et al. described the induction of autophagy by the membranophilic triphenylphosphonium (TPP)-based cation 10-(6′-ubiquinonyl) decyltriphenylphosphonium (MitoQ) in HepG2 cells (Sun C, et al. “MitoQ regulates autophagy by inducing a pseudo-mitochondrial membrane potential [PMMP]”, Autophagy 2017, 13:730-738.). Sun et al. suggested that MitoQ adsorbed to the inner mitochondrial membrane with its cationic moiety remaining in the intermembrane space, adding a large number of positive charges and establishing a “pseudo-mitochondrial membrane potential,” which blocked the ATP synthase. Here we argue that the suggested mechanism for generation of the “pseudo-mitochondrial membrane potential” is physically implausible and contradicts earlier findings on the electrophoretic displacements of membranophilic cations within and through phospholipid membranes. We provide evidence that TPP-cations dissipated the mitochondrial membrane potential in HepG2 cells and that the induction of autophagy in carcinoma cells by TPP-cations correlated with the uncoupling of oxidative phosphorylation. The mild uncoupling of oxidative phosphorylation by various mitochondria-targeted penetrating cations may contribute to their reported therapeutic effects via inducing both autophagy and mitochondria-selective mitophagy.  相似文献   

14.
Mitochondria are highly dynamic organelles that continuously move, fuse and divide. Mitochondrial dynamics modulate overall mitochondrial morphology and are essential for the proper function, maintenance and transmission of mitochondria and mitochondrial DNA (mtDNA). We have investigated mitochondrial fusion in yeast cells with severe defects in oxidative phosphorylation (OXPHOS) due to removal or various specific mutations of mtDNA. We find that, under fermentative conditions, OXPHOS deficient cells maintain normal levels of cellular ATP and ADP but display a reduced mitochondrial inner membrane potential. We demonstrate that, despite metabolic compensation by glycolysis, OXPHOS defects are associated to a selective inhibition of inner but not outer membrane fusion. Fusion inhibition was dominant and hampered the fusion of mutant mitochondria with wild-type mitochondria. Inhibition of inner membrane fusion was not systematically associated to changes of mitochondrial distribution and morphology, nor to changes in the isoform pattern of Mgm1, the major fusion factor of the inner membrane. However, inhibition of inner membrane fusion correlated with specific alterations of mitochondrial ultrastructure, notably with the presence of aligned and unfused inner membranes that are connected to two mitochondrial boundaries. The fusion inhibition observed upon deletion of OXPHOS related genes or upon removal of the entire mtDNA was similar to that observed upon introduction of point mutations in the mitochondrial ATP6 gene that are associated to neurogenic ataxia and retinitis pigmentosa (NARP) or to maternally inherited Leigh Syndrome (MILS) in humans. Our findings indicate that the consequences of mtDNA mutations may not be limited to OXPHOS defects but may also include alterations in mitochondrial fusion. Our results further imply that, in healthy cells, the dominant inhibition of fusion could mediate the exclusion of OXPHOS-deficient mitochondria from the network of functional, fusogenic mitochondria.  相似文献   

15.
Mitochondrial cholesterol is maintained within a narrow range to regulate steroid and oxysterol synthesis and to ensure mitochondrial function. Mitochondria acquire cholesterol through several pathways from different cellular pools. Here we have characterized mitochondrial import of endosomal cholesterol using Chinese hamster ovary cells expressing a CYP11A1 fusion protein that converts cholesterol to pregnenolone at the mitochondrial inner membrane. RNA interference-mediated depletion of the voltage-dependent anion channel 1 in the mitochondrial outer membrane or of Niemann-Pick Type C2 (NPC2) in the endosome lumen decreased arrival of cholesterol at the mitochondrial inner membrane. Expression of NPC2 mutants unable to transfer cholesterol to NPC1 still restored mitochondrial cholesterol import in NPC2-depleted cells. Transport assays in semi-permeabilized cells showed nonvesicular cholesterol trafficking directly from endosomes to mitochondria that did not require cytosolic transport proteins but that was reduced in the absence of NPC2. Our findings indicate that NPC2 delivers cholesterol to the perimeter membrane of late endosomes, where it becomes available for transport to mitochondria without requiring NPC1.  相似文献   

16.
Mitochondria change their shapes dynamically mainly through fission and fusion. Dynamin-related GTPases have been shown to mediate remodeling of mitochondrial membranes during these processes. One of these GTPases, mitofusin, is anchored at the outer mitochondrial membrane and mediates fusion of the outer membrane. We found that overexpression of a mitofusin isoform, Mfn2, drastically changes mitochondrial morphology, forming mitochondrial clusters. High-resolution microscopic examination indicated that the mitochondrial clusters consisted of small fragmented mitochondria. Inhibiting mitochondrial fission prevented the cluster formation, supporting the notion that mitochondrial clusters are formed by fission-mediated mitochondrial fragmentation and aggregation. Mitochondrial clusters displayed a decreased inner membrane potential and mitochondrial function, suggesting a functional compromise of small fragmented mitochondria produced by Mfn2 overexpression; however, mitochondrial clusters still retained mitochondrial DNA. We found that cells containing clustered mitochondria lost cytochrome c from mitochondria and underwent caspase-mediated apoptosis. These results demonstrate that mitochondrial deformation impairs mitochondrial function, leading to apoptotic cell death and suggest the presence of an intricate form-function relationship in mitochondria.  相似文献   

17.
18.
Mitochondria are the principal producers of energy in higher cells. Mitochondrial dysfunction is implicated in a variety of human diseases, including cancer and neurodegenerative disorders. Effective medical therapies for such diseases will ultimately require targeted delivery of therapeutic proteins or nucleic acids to the mitochondria, which will be achieved through innovations in the nanotechnology of intracellular trafficking. Here we describe a liposome-based carrier that delivers its macromolecular cargo to the mitochondrial interior via membrane fusion. These liposome particles, which we call MITO-Porters, carry octaarginine surface modifications to stimulate their entry into cells as intact vesicles (via macropinocytosis). We identified lipid compositions for the MITO-Porter which promote both its fusion with the mitochondrial membrane and the release of its cargo to the intra-mitochondrial compartment in living cells. Thus, the MITO-Porter holds promise as an efficacious system for the delivery of both large and small therapeutic molecules into mitochondria.  相似文献   

19.
Recent imaging studies of mitochondrial dynamics have implicated a cycle of fusion, fission, and autophagy in the quality control of mitochondrial function by selectively increasing the membrane potential of some mitochondria at the expense of the turnover of others. This complex, dynamical system creates spatially distributed networks that are dependent on active transport along cytoskeletal networks and on protein import leading to biogenesis. To study the relative impacts of local interactions between neighboring mitochondria and their reorganization via transport, we have developed a spatiotemporal mathematical model encompassing all of these processes in which we focus on the dynamics of a health parameter meant to mimic the functional state of mitochondria. In agreement with previous models, we show that both autophagy and the generation of membrane potential asymmetry following a fusion/fission cycle are required for maintaining a healthy mitochondrial population. This health maintenance is affected by mitochondrial density and motility primarily through changes in the frequency of fusion events. Health is optimized when the selectivity thresholds for fusion and fission are matched, providing a mechanistic basis for the observed coupling of the two processes through the protein OPA1. We also demonstrate that the discreteness of the components exchanged during fusion is critical for quality control, and that the effects of limiting total amounts of autophagy and biogenesis have distinct consequences on health and population size, respectively. Taken together, our results show that several general principles emerge from the complexity of the quality control cycle that can be used to focus and interpret future experimental studies, and our modeling framework provides a road-map for deconstructing the functional importance of local interactions in communities of cells as well as organelles.  相似文献   

20.
From morphological and biochemical studies it has been recognized that the regions where the outer and inner membranes of mitochondria come in close contact (contact sites) can be the route mechanism through which mitochondria interact directly with the cytoplasm. We have studied these regions electrophysiologically with the patch clamp technique, with the aim of understanding if this direct interaction is mediated by high conductance ion channels similar to the channel already detected in the inner membrane of mitochondria (Sorgato M. C., Keller, B. U., and Stühmer, W. (1987) Nature 330, 498-500). Contact sites isolated from rat brain mitochondria were thus incorporated into liposomes subsequently enlarged sufficiently to be patch clamped. This study shows that these particular fractions contain ion channels with conductances ranging from approximately 5 picosiemens to 1 nanosiemens (in symmetrical 150 mM KCl). Most of these channels are not voltage-dependent and can be open at physiological potentials sustained by respiring mitochondria. The lack of voltage sensitivity seems not to be the outcome of methodological artifacts, as voltage-gated channels are detected in giant liposomes containing either the outer mitochondrial membrane or a partially purified fraction of the inner mitochondrial membrane. These data therefore indicate that channels present in mitochondrial contact sites have properties which render them amenable to perform several of the functions hypothesized for these regions, particularly that of translocating macromolecules from the cytoplasm to the matrix of mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号