首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CRF receptors were characterized using radioligand binding and chemical affinity cross-linking techniques and localized using autoradiographic techniques in porcine, bovine and rat pituitaries. The binding of 125I-[Tyr0]-ovine CRF (125I-oCRF) to porcine anterior and neurointermediate lobe membranes was saturable and of high affinity with comparable KD values (200-600 pM) and receptor densities (100-200 fmoles/mg protein). The pharmacological rank order of potencies for various analogs and fragments of CRF in inhibiting 125I-oCRF binding in neurointermediate lobe was characteristic of the well-established CRF receptor in anterior pituitary. Furthermore, the binding of 125I-oCRF to both anterior and neurointermediate lobes of the pituitary was guanine nucleotide-sensitive. Affinity cross-linking studies revealed that the molecular weight of the CRF binding protein in rat intermediate lobe was identical to that in rat anterior lobe (Mr = 75,000). While the CRF binding protein in the anterior lobes of porcine and bovine pituitaries had identical molecular weights to CRF receptors in rat pituitary (Mr = 75,000), the molecular weight of the CRF binding protein in porcine and bovine intermediate lobe was slightly higher (Mr = 78,000). Pituitary autoradiograms from the three species showed specific binding sites for 125I-oCRF in anterior and intermediate lobes, with none being apparent in the posterior pituitary. The identification of CRF receptors in the intermediate lobe with comparable characteristics to those previously identified in the anterior pituitary substantiate further the physiological role of CRF in regulating intermediate lobe hormone secretion.  相似文献   

2.
[3H]Nitrendipine was used to label sites in homogenates of bovine anterior and neurointermediate lobes of the pituitary gland. The amount of specific binding in the anterior lobe was 1.82 +/- 0.30 pmol/g wet weight of tissue and the KD was 1.44 +/- 0.02 X 10(-10) M. Preliminary experiments indicated a similar amount of binding in bovine neurointermediate lobe. In competition studies nimodipine and nisoldipine (two potent voltage-sensitive calcium channel blockers) displayed IC50 values of 1.6 and 6.8 X 10(-10) M, respectively. Verapamil and the verapamil-like calcium channel blockers D-600 and tiapamil competed in a complex manner for the [3H]nitrendipine specific binding to bovine anterior pituitary homogenates. Autoradiographical studies demonstrated specific [3H]nitrendipine binding sites distributed approximately equally in the anterior and posterior lobes, but not in the intermediate lobe of the rat pituitary. In general the properties of [3H]nitrendipine binding in the pituitary tissue resemble strongly the properties of [3H]nitrendipine binding in the brain which is believed to be to voltage-sensitive calcium channels. These results provide support for the hypothesis that calcium channels are involved in pituitary hormone secretion and that drugs that interact with calcium channels may modulate the secretory process directly at the level of the pituitary.  相似文献   

3.
The peptides that represent the major components with alpha-endorphin- and gamma-endorphin-like immunoreactivity in the rat neurointermediate lobe were purified to homogeneity and chemically characterized. Rat neurointermediate lobes were extracted by boiling and homogenization in acetic acid. Peptide purification was based on gel filtration, followed by two high-pressure liquid chromatography steps. Pools containing peptides with the size and immunochemical properties of alpha- and gamma-endorphins were resolved by reverse-phase high-pressure liquid chromatography into multiple immunoreactive components. The major forms were finally purified by paired-ion high-pressure liquid chromatography. The amino acid compositions of these peptides fitted the beta-endorphin sequences 1-16 and 1-17. Tryptic mapping, aminopeptidase M digestion, chromatographic characterization, and immunoreactivity to an antiserum recognizing the N alpha-acetylated terminus of endorphins showed that these peptides were indistinguishable from N alpha-acetyl-alpha-endorphin (N alpha-acetyl-beta-endorphin 1-16), and N alpha-acetyl-gamma-endorphin (N alpha-acetyl-beta-endorphin 1-17). The NH2-terminal residue of the peptides was identified by mass spectrometry as N alpha-acetyltyrosine, substantiating the identity of the peptides. The results demonstrate the existence of N alpha-acetylated alpha- and gamma-endorphin as endogenous peptides in the neurointermediate lobe of the rat pituitary gland. In view of their occurrence and biological properties they should be considered significant members of the pro-opiomelanocortin family.  相似文献   

4.
Abstract: Levels of mRNA for the major subunits of the GABAA receptor were assayed in the rat pituitary anterior and neurointermediate lobes by ribonuclease protection assay. α1, β1, β2, β3, and γ2s were found to be the predominant subunits in the anterior lobe, whereas α2, α3, β1, β3, γ2s, and γ1 were the predominant subunits expressed in the neurointermediate lobe. α5, α6, and δ subunits were not detectable. Hill and Scatchard analysis of [3H]muscimol binding to anterior and neurointermediate lobe membranes showed high-affinity binding sites with dissociation constants of 5.6 and 4.5 n M , respectively, and Hill coefficients near 1. Muscimol sites were present at a maximum of 126 fmol/mg in the anterior lobe and 138 fmol/mg in the neurointermediate lobe. The central-type benzodiazepine antagonist [3H]Ro 15-1788 bound to a high-affinity site with a dissociation constant of 1.5 n M in both tissues, at a maximum of 60 fmol/mg in anterior pituitary and 72 fmol/mg in neurointermediate lobe. A Hill coefficient of 1 was measured for this site in both tissues. Assays of CL 218 872 displacement of Ro 15-1788 were consistent with a pure type I benzodiazepine site in the anterior lobe and a pure type II site in the intermediate lobe. These results are consistent with both tissue-specific expression of particular GABAA receptor subunits and receptor heterogeneity within individual cells in the pituitary.  相似文献   

5.
We have verified the possibility that the POMC gene of the rat hypothalamus might be subject to regulation by glucocorticoids. Adrenalectomy increased the concentration of POMC mRNA in anterior pituitary and in hypothalamus, but not in the neurointermediate lobe of the pituitary gland. Dexamethasone and, to a slightly lesser extent, corticosterone treatments reversed the adrenalectomy-induced increase in POMC mRNA concentrations in both anterior pituitary and hypothalamus. Dexamethasone caused a slight decrease of POMC mRNA levels in the neurointermediate lobe of the pituitary gland, while corticosterone had no effect. These results indicate that the POMC gene of the rat brain hypothalamus is also under negative control by glucocorticoids.  相似文献   

6.
Ovariectomy caused a significant increase of immunoreactive dynorphin-like material (IR-DYAN) in the anterior pituitary lobe of intact as well as of medial basal hypothalamus-lesioned rats. No change of IR-DYAN was observed in the neurointermediate lobe of the gland or in the hypothalamus. Estradiol benzoate reversed the increase of anterior pituitary IR-DYAN induced by ovariectomy and caused a reduction in sham-ovariectomized rats.  相似文献   

7.
D2 dopamine receptors have been extracted from bovine brain using the detergent cholate and purified approximately 20,000-fold by affinity chromatography on haloperidol-sepharose and wheat germ agglutinin-agarose columns. The purified preparation contains D2 dopamine receptors as judged by the pharmacological specificity of [3H]spiperone binding to the purified material. The sp. act. of [3H]spiperone binding in the purified preparation is 2.5 nmol/mg protein. The purified preparation shows a major diffuse band at Mr 95,000 upon SDS-polyacrylamide gel electrophoresis and there is evidence for microheterogeneity either at the protein or glycosylation level. Photoaffinity labelling of D2 dopamine receptors also shows a species of Mr 95,000. The D2 dopamine receptor therefore is a glycoprotein of Mr 95,000.  相似文献   

8.
YM-09151-2(cis-N-(1-benzyl-2-methylpyrrolidin-3-yl) -5-chloro-2-methoxy-4-methylaminobenzamide) is a new benzamide which has been reported to be an antagonist of dopamine (DA) at D1-type DA receptors. In the present study, we have examined the extent of the interaction of YM-09151-2 with D2-type DA receptors in the anterior pituitary gland of the rat. YM-09151-2 was found to be a potent antagonist of these receptors as extremely low doses of this compound produced a marked, dose-dependent elevation of serum prolactin concentrations. This benzamide was also a potent blocker of DA-induced inhibition of prolactin release in vitro and was very effective in displacing 3H-spiperone from bovine pituitary membranes: IC50, 1.04nM. These results are consistent with recent evidence that YM-09151-2 is also a potent antagonist of the D2-type receptors in the intermediate lobe of the rat pituitary gland.  相似文献   

9.
Secretin-like immunoreactivity (SLI) has been identified and characterized in the pituitary of the rat. The concentration in the neurointermediate lobe is about 45 fold higher than the concentration of SLI observed in the anterior lobe. Transections of the pituitary stalk of the rat caused a significant depletion of SLI in the neurointermediate lobe without affecting the content in the anterior lobe. In view of the relatively high concentration of SLI reported to occur in the hypothalamus, it appears that there may be a secretinergic pathway between the brain and the neurointermediate lobe of the pituitary.  相似文献   

10.
A sensitive and specific radioimmunoassay for gamma 2-melanotropin (gamma 2-MSH) has been developed that does not recognize alpha-, beta-, gamma 1- or gamma 3-MSH. gamma 2-MSH-like immunoreactivity could be demonstrated in the porcine pituitary and adrenal gland. The highest concentrations were detected in the neurointermediate lobe regardless of extraction procedure. The anterior lobe harboured lower concentrations and in adrenal gland extracts only small amounts were measured. Gel chromatography and high performance liquid chromatography of extracts of both pituitary and adrenal gland revealed several peaks of immunoreactive material, one of which eluted close to the position of synthetic gamma 2-MSH. By immunocytochemistry gamma 2-MSH immunoreactivity was localized to the adrenocorticotropin/alpha-MSH cells in the pituitary and to a subpopulation of the noradrenaline-storing cells in the adrenal medulla. Together, the immunocytochemical and immunochemical findings indicate the existence of gamma 2-MSH-like material in the porcine pituitary and adrenal medulla.  相似文献   

11.
L C Saland  J A Carr  A Samora  D Tejeda 《Peptides》1992,13(5):913-917
Dopamine and gamma-aminobutyric acid (GABA) inhibit POMC peptide release from the pituitary intermediate lobe, via interaction with D2 or GABA-A/benzodiazepine receptors. Here, we examined the effects of an antianxiety triazolobenzodiazepine, adinazolam, on corticotropin-releasing factor (CRF)-stimulated POMC peptide secretion from the rat neurointermediate pituitary. Neurointermediate lobes (NILS) were incubated with CRF (10(-7) M), then adinazolam (10(-8) or (10(-9) M) was added, with CRF remaining in the medium. Aliquots were removed at 15-min intervals and frozen for radioimmunoassay of beta-endorphin. Adinazolam alone did not significantly affect secretion as compared to controls or CRF alone. Adinazolam incubated with CRF led to significant inhibition of beta-endorphin secretion, as compared to CRF alone. In addition, adinazolam was as effective as dopamine or the CRF antagonist, alpha-helical CRF, in preventing CRF-induced beta-endorphin release. Adinazolam appears to act directly on the pituitary to suppress hormone release induced by a stress-related hypothalamic peptide.  相似文献   

12.
Membrane-associated peptidylglycine alpha-amidating monooxygenase (PAM) activity was investigated in rat anterior and neurointermediate pituitary tissues and in pituitary AtT-20/D-16v and GH3 cell lines. A substantial fraction of total pituitary PAM activity was found to be membrane-associated. Triton X-100, N-octyl-beta-D-glucopyranoside, and Zwittergent were effective in solubilizing PAM activity from crude pituitary membranes. The distribution of enzyme activity between soluble and membrane-associated forms was tissue-specific. In the anterior pituitary lobe and pituitary cell lines, 40-60% of total PAM activity was membrane-associated while only 10% of the alpha-amidating activity in the neurointermediate lobe was membrane-associated. Soluble and membrane-associated forms of PAM shared nearly identical characteristics with respect to copper and ascorbate requirements, pH optima, and Km values. Upon subcellular fractionation of anterior and neurointermediate pituitary lobe homogenates on Percoll gradients, 12-18% of total PAM activity was found in the rough endoplasmic reticulum/Golgi fractions and 42-60% was localized to secretory granule fractions. For both tissues, membrane-associated PAM activity was enriched in the rough endoplasmic reticulum/Golgi pool, whereas most of the secretory granule-associated enzyme activity was soluble.  相似文献   

13.
The effects of HgCl2 and ouabain on vasopressin release and Ca2+ uptake and distribution was examined in the neurointermediate lobe of the rat pituitary. HgCl2 (0.5 mM) inhibited vasopressin release by approx. 90% in both basal and potassium depolarized states. With 0.1 mM HgCl2 vasopressin release was inhibited by 50% in the depolarized state, but release was not effected in basal state. On the other hand, ouabain (0.5 mM) caused a 3-fold stimulation of vasopressin release in the depolarized state. Both HgCl2 (0.5 mM) and ouabain (0.5 mM) increased net 45Ca+2 uptake by about 80% in groups of neurointermediate lobes. Following 45Ca+2 uptake, HgCl2 (0.5 mM), which is absorbed by the neurointermediate lobe, produced an increase in cytosolic 45Ca+2 content and a decrease in mitochondrial 45Ca+2 content compared to control. In comparison, ouabain (0.5 mM), which does not penetrate the neurointermediate lobe, gave no change in cytosolic 45Ca+2, but an increase in mitochondrial 45Ca+2. These results suggest that HgCl2 inhibits vasopressin release from the neurointermediate lobe of the rat pituitary at a point distal to Ca+2 uptake by the gland.  相似文献   

14.
15.
The isolation and purification of a 21,000-Da (pI 4.9) novel protein from porcine anterior pituitary and whole human pituitary is described. Comparison of the NH2-terminal sequence of the first 77 and 81 residues of the human and porcine homologs shows only one conservative substitution at residue 12, namely an Ala for a Thr between these two species. Such high sequence homology is also reflected in their amino acid composition. A computer data-bank search using a mutation data matrix and comparison with 338,327 segments of proteins revealed that this substance should be classified as belonging to a new protein superfamily. Immunocytochemical staining, using an antibody produced against a synthetic fragment, revealed the presence of immunostainable material in the anterior and posterior lobe of the pituitary and in the supraoptic nucleus of the hypothalamus. No staining was observed in the intermediate lobe of the pituitary. Furthermore, purified neurointermediate lobe secretory granule preparations were also shown to contain this novel polypeptide.  相似文献   

16.
Pro-opiomelanocortin (POMC)-related peptides in extracts of anterior and neurointermediate pituitary lobes from pigs were characterized by gel chromatography, reversed-phase chromatography and radioimmunoassays. The peptide content was ca. 3-fold greater in the anterior lobe compared to the neurointermediate lobe (19.8 nmol POMC/anterior lobe vs 7.0 nmol/neurointermediate lobe). In the neurointermediate lobe 93% of POMC was processed to alpha-melanocyte-stimulating hormone (alpha-MSH) and analogs exclusively of low molecular weight. Most of the remaining adrenocorticotropic hormone (ACTH)-related material consisted of the glycine-extended intermediate ACTH-(1-14) and analogs. In contrast only one fourth to one third of the N-terminal part of POMC (N-POMC) was processed to amidated gamma-MSH and its C-terminal glycine-extended precursor. The relative amount of amidated gamma-MSH was the same as alpha-MSH and analogs (94%). However, more than 95% of these peptides were of high molecular weight. In the anterior lobe 2.3% of N-POMC was processed and 94% was amidated gamma-MSH of only high molecular weight. These results show that gamma-MSH and alpha-MSH are amidated to the same extent and that gamma 1-MSH and gamma 2-MSH immunoreactivity are present in both the anterior lobe and the neurointermediate lobe. The results suggest that the production of amidated peptides is not regulated by the amidation process itself but at an earlier step (e.g. at the proteolytic cleavage).  相似文献   

17.
The negative feedback control of hypothalamic cortocotrophin releasing factor (CRF) and anterior pituitary proopiomelanocortin (POMC) by corticosteroids is well understood. However, less is known about the mechanisms that regulate POMC gene expression in the arcuate nuclei in the medial basal hypothalamus (MBH). Using a sensitive and specific S1 endonuclease protection assay, we have examined the effect of adrenalectomy on POMC mRNA in the rat MBH and pituitary. Our results show that adrenalectomy does not change POMC mRNA levels in the MBH at 7 or 14 days post surgery. The neurointermediate lobe of the pituitary was similarly unaffected by adrenalectomy, while in the anterior lobe, POMC mRNA increased 7-10 fold at both time points, effects that were prevented by dexamethasone treatment. We conclude that while POMC mRNA in the anterior lobe of the pituitary is regulated by plasma glucocorticoids, in the MBH and neurointermediate lobe, it is not.  相似文献   

18.
《Steroids》1998,63(11):579-586
The melanotrophs of the neurointermediate lobe and peptidergic terminals of the neural lobe are regulated by gamma-aminobutyric acid (GABA) via GABA-A receptors and therefore, may be important sites for the modulatory actions of neurally active steroids. These steroid compounds might be produced peripherally, synthesized de novo in the pituitary, or derivatized from circulating steroids, each pathway having different physiological implications. In the present study, we show that neurointermediate lobe tissue can derivatize progesterone to the neurally active steroid 3α-hydroxy-5α-pregnan-20-one. The neurointermediate lobe was found to be four times as active as anterior pituitary and mediobasal hypothalamus in conversion of progesterone to 3α-hydroxy-5α-pregnan-20-one; mediobasal hypothalamus was relatively more active in the production of the intermediate 5α-pregnan-3,20-dione. The identity of the compounds was confirmed by the method of serial isotopic dilution. We observed rates of synthesis in the neurointermediate lobe consistent with the production of physiologically relevant quantities of 3α-hydroxy-5α-pregnan-20-one from concentrations of progesterone which can occur naturally. In support of these findings, we demonstrate the presence of 3α-hydroxysteroid oxidoreductase in neurointermediate lobe by immunocytochemistry.  相似文献   

19.
Glandular kallikrein is a major estrogen-induced and dopamine-repressed protein of the rat anterior pituitary that appears to originate from lactotrophs. This study examined the development of glandular kallikrein levels in the anterior pituitary in both female and male rats and compared it to anterior pituitary prolactin. In addition, the development of glandular kallikrein levels in the neurointermediate lobe of the pituitary and the kidney were also examined. During puberty, a dramatic surge in glandular kallikrein occurred in female anterior pituitaries (16- to 20-fold increase) and levels remained elevated thereafter. The dynamics of the increase were biphasic--glandular kallikrein increased between Day 30 and 45, plateaued between Days 45 and 55, and then increased again between Days 55 and 65. Female anterior pituitary prolactin increased 7- to 8-fold during puberty. The rise during puberty was biphasic and was generally synchronized with increases in glandular kallikrein. However, the initial rise was proportionately less than that of glandular kallikrein, and the secondary surge was more dramatic. In contrast to females, anterior pituitary glandular kallikrein remained at low levels in male rats; prolactin levels also remained unchanged through puberty and increased moderately thereafter. Glandular kallikrein in the female neurointermediate lobe remained unchanged through Day 55, almost doubled on Day 60, and returned to prepubertal levels by Day 65; males did not exhibit the transient surge in neurointermediate lobe levels. Starting at age 60 days, renal glandular kallikrein was found to be slightly higher (15-20%) in females than in males.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The striatum receives massive dopaminergic projections from neurons in the ventral tegmental area, the substantia nigra and the retro-rubral cell group. Dopaminergic neurons in the arcuate nucleus and periventricular hypothalamic nuclei project to the median eminence and the neuro-intermediate lobe of the pituitary gland. The anterior lobe of the pituitary gland is not innervated by dopaminergic neurons, but receives dopamine via a vascular route from the median eminence. Two categories of dopamine receptors (D-1 and D-2) can be identified on the basis of the ability of various drugs to discriminate between these two entities. Dopamine stimulates both D-1 and D-2 receptors. The affinity of dopamine for the D-2 receptor is approximately 1000 times higher than for the D-1 receptor. Dopamine is involved in synaptic as well as non-synaptic communication. Examples of non-synaptic communication via D-2 receptors are the dopamine induced inhibition of prolactin release from the anterior pituitary gland and most likely the D-2 receptor mediated inhibition of the release of acetylcholine in the striatum. Examples of synaptic communication have been found in the striatum where (with ultrastructural techniques) synaptic contacts between dopaminergic nerve terminals and elements from cells containing GABA, substance P or enkephalin have been demonstrated. It is tempting to speculate that synaptic and non-synaptic communication occurs via D-1 and D-2 receptors respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号