首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
N L Kedersha  J S Tkacz  R A Berg 《Biochemistry》1985,24(21):5960-5967
Prolyl hydroxylase is a glycoprotein containing two nonidentical subunits, alpha and beta. The alpha subunit of prolyl hydroxylase isolated from 13-day-old chick embryos contains a single high mannose oligosaccharide having seven mannosyl residues. Two forms of alpha subunit have been shown to exist in enzyme purified from tendon cells of 17-day-old chick embryos, one of which (alpha) appears to be identical in molecular weight and carbohydrate content with the single alpha of enzyme from 13-day-old chick embryos, as well as another form (alpha') that contains two oligosaccharides, each containing eight mannosyl units [see Kedersha, N. L., Tkacz, J. S., & Berg, R. A. (1985) Biochemistry (preceding paper in this issue)]. Biosynthetic labeling studies were performed with chick tendon cells using [2-3H]mannose, [6-3H]glucosamine, [14C(U)]mannose, and [14C(U)]glucose. Analysis of the labeled products using polyacrylamide gel electrophoresis in sodium dodecyl sulfate showed that only the oligosaccharides on alpha' incorporated measurable mannose or glucosamine isotopes; however, both alpha subunits incorporated 14C amino acid mix and [14C(U)]glucose [metabolically converted to [14C(U)]mannose] under similar conditions. Pulse-chase labeling studies using 14C amino acid mix demonstrated that both glycosylated polypeptide chains alpha and alpha' were synthesized simultaneously and that no precursor product relationship between alpha and alpha' was apparent. In the presence of tunicamycin, neither alpha nor alpha' was detected; a single polypeptide of greater mobility appeared instead. Incubation of the cells with inhibitory concentrations of glucosamine partially depressed the glycosylation of alpha' but allowed the glycosylation of alpha.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The gonadotropins luteinizing hormone, follicle-stimulating hormone, and human chorionic gonadotropin are composed of two noncovalently linked subunits, alpha and beta. The alpha subunit, identical in all three hormones, is produced in excess over the unique beta subunits by pituitary and placenta, and is secreted as uncombined, or free subunit. Free alpha subunit from both tissues has a larger molecular weight than the dimer form. In bovine pituitary an extra O-linked oligosaccharide is added to free alpha subunit, and this modification has recently been detected at an analogous position (threonine 39) on human alpha subunit secreted by choriocarcinoma cells. To assess the contribution of N-linked and O-linked oligosaccharides to the heterogeneity of human free alpha subunit, we have compared free alpha with human chorionic gonadotropin alpha secreted by explants and cultured cytotrophoblasts of human first trimester placenta. We have also examined the free and combined forms of human alpha subunit expressed in transfected C-127 mouse mammary tumor cells. Processing of the alpha subunit in placental and C-127 cells was similar. Tryptic mapping of placental-derived and transfected alpha subunits indicated that O-glycosylation at threonine 39 was not a major modification. In the presence of the oligosaccharide processing inhibitor swainsonine the difference in size between the free and combined forms of alpha was eliminated in both placental and C-127 cells, indicating that the two forms of alpha differed in their N-linked oligosaccharides. Furthermore, the oligosaccharides of free alpha subunits from placental and transfected cells were resistant to endoglycosidase H, but the combined forms of alpha were partially sensitive to the enzyme. Thus, in human first trimester placenta and mouse C-127 cells, combination of alpha with human chorionic gonadotropin beta alters the processing of N-linked oligosaccharides on alpha subunit.  相似文献   

3.
B Bossy  L F Reichardt 《Biochemistry》1990,29(44):10191-10198
We have cloned and characterized a chick homologue of the human vitronectin receptor alpha subunit (alpha v) whose primary sequence is 83% identical with its human counterpart but less than 40% identical with any other known integrin alpha subunit. Comparison of the chick and human sequences reveals several highly conserved regions, including the cytoplasmic domain. The putative ligand binding domain contains alpha v-specific residues that may contribute to ligand binding specificity. These are concentrated in three regions that are located before and between the first three Ca2+ binding domains. Polyclonal antibodies raised against two peptides deduced from the putative cytoplasmic and extracellular domains of the chick alpha v sequence recognize specifically integrin heterodimers in chick embryo fibroblasts. At least three putative beta subunits coimmunoprecipitate with the chick alpha v subunit. In addition to a protein with the same molecular weight as beta 3 (94K), protein bands of Mr 84K and 110K are also coprecipitated. By successive immunodepletions, we demonstrate that this latter Mr 110K subunit is beta 1, which appears to be one of the alpha v-associated subunits in chick embryo fibroblasts.  相似文献   

4.
We have previously reported that the binding properties of the hemagglutinin (HA) of the WSN-F strain of influenza A are affected by the cells in which the virus is grown (Crecelius, D. M., Deom, C. M., and Schulze, I.T. (1984) Virology 139, 164-177); at 37 degrees C chick embryo fibroblast-grown F virus has a greater affinity for host cells than does the same virus grown in Madin-Darby bovine kidney (MDBK) cells. In an attempt to explain this host-determined property, we have characterized the carbohydrate put onto the viral HA by these two cells. Experiments using tunicamycin indicate that the HA made by MDBK cells contains about 4000 daltons of carbohydrate in excess of that on the HA from chick embryo fibroblast. Serial lectin affinity chromatography of the asparagine-linked oligosaccharides on the HA subunits, HA1 and HA2, detected a number of host-dependent differences in the complex oligosaccharides. Both HA1 and HA2 from MDBK cells contained more highly branched (i.e. tri- and tetraantennary) complex oligosaccharides than did the subunits from chick embryo fibroblasts. In addition, the HA subunits from the two sources differed in the amount of galactose-containing "bisected" complex oligosaccharides and in the presence of certain fucosylated triantennary oligosaccharides. Profiles of the asparagine-linked oligosaccharides from the host cells did not show these differences, indicating that the HA subunit profiles were not necessarily representative of the structures found on the cellular glycoproteins. The data support the conclusion that bulky oligosaccharides on the MDBK-HA subunits of WSN-F reduce the affinity of the virus for cellular receptors.  相似文献   

5.
Two forms of the gonadotropin alpha subunit are synthesized in placenta and in human chorionic gonadotropin (hCG)-producing tumors: an uncombined (monomer) form and a combined (dimer) form. These forms show differences in their migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The slower migration of the monomeric form on sodium dodecyl sulfate-polyacrylamide gel electrophoresis has been attributed to a different glycosylation pattern. Previous studies demonstrated different roles of each of the two alpha N-linked glycosylation sites (Asn-52 and Asn-78) in secretion of the uncombined subunit and the biologic activity of hCG dimer. To assess the influence of formation of dimer on the processing pattern at the individual sites, we characterized the N-linked oligosaccharides of monomer and dimer forms of recombinant human choriogonadotropin alpha subunit. Two approaches were employed. First, site-directed mutagenesis was used to alter the two N-linked oligosaccharide attachment sites, thus allowing the expression of alpha subunits containing only one glycosylation site. Second, tryptic glycopeptides of the wild-type subunits were examined. Concanavalin A (ConA) binding and sialic acid content indicated that the oligosaccharides at each glycosylation site of the uncombined alpha subunit are processed differently. Oligosaccharides present at Asn-52 are almost exclusively ConA-unbound and contain three sialic acid residues. The majority of Asn-78-linked oligosaccharides are ConA-bound and disialylated. Both sites are processed independently because no significant differences were observed between the oligosaccharides at the same sites in wild-type and mutant monomeric alpha subunits. By contrast, the majority of the oligosaccharides at both glycosylation sites of the dimer alpha are bound to ConA. Thus, combination primarily affects the processing pattern of the Asn-52-linked species. Because glycosylation at this site is essential for hCG assembly and signal transduction, these data imply a critical link between the site-specific processing and hormone function.  相似文献   

6.
The alpha and beta subunits of human chorionic gonadotropin are secreted both as a combined, noncovalently linked dimer form as well as uncombined, free forms by human trophoblastic cells. We have utilized the cultured choriocarcinoma cell line JAR to determine what regulates the combination of the two subunits. The human chorionic gonadotropin subunits produced by JAR cells were biosynthetically labeled with [35S] cysteine or [3H]mannose by a pulse-chase protocol, purified by immunoprecipitation with specific antisera that recognize free or combined subunits, and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing or reducing conditions. Radioactively labeled bands were eluted from the gels and analyzed for total counts/minute incorporated, the ratio of free thiols to intramolecular cystine disulfides, and oligosaccharide composition. In some experiments, labeled gel bands were eluted with trypsin under nonreducing conditions, and the trypsin-released peptides were analyzed by high performance liquid chromatography. Using these procedures, the following results were obtained. The earliest, biosynthetically labeled form of the beta subunit detected in JAR cells contains high mannose N-linked oligosaccharides and has one-half of its incorporated cysteines present as free thiols. This form, termed pre-beta 1, has not yet combined with the alpha subunit even though the biosynthetically labeled alpha subunit is present in the cells at the same time. The pre-beta 1 form has a t1/2 of about 4 min and has a precursor-product relationship with a more completely disulfide-bonded form, termed pre-beta 2, which does combine with the alpha subunit to form a dimer. A subset of beta molecules produced in JAR cells does not attain the same disulfide bonding pattern as the pre-beta 2 form, does not combine with the alpha subunit, and is secreted as a free beta subunit into the culture medium. On the other hand, the earliest detectable form of the alpha subunit in JAR cells has all its thiols present as cystine disulfides, at a time when dimerization with the beta subunit has not yet taken place. These results strongly suggest that intramolecular disulfide bond formation in the beta subunit is the crucial and rate-limiting event in alpha beta dimer formation. The subset of beta molecules that remain free do not appear to form the appropriate intramolecular disulfides and thus do not achieve the correct conformation to combine with the alpha subunit.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The beta subunit of human chorionic gonadotropin contains two asparagine (N)-linked oligosaccharides. To examine the structural and functional roles of these oligosaccharide units in vivo, we constructed mutant genes containing alterations in either the asparagine or threonine codons of the two glycosylation consensus sequences and inserted them into a eukaryotic expression vector. Wild-type and mutant CG beta proteins were expressed in Chinese hamster ovary cells alone or in the presence of native alpha subunit. Pulse-chase analysis of the beta-expressing clones showed that absence of the second N-linked sugar but not the first slows secretion 1.6-1.8-fold; absence of both N-linked units slows secretion 2-2.4-fold. Analysis of dimer clones reveals that greater than 80% of the native and glycosylation mutant CG beta subunits are secreted as dimer. However, pulse-chase analysis of these clones also reveals that the mutants completely devoid of N-linked sugars but not the single site mutants are slow to assemble with the alpha subunit. Thus, in vivo the two N-linked oligosaccharides of CG beta are critical for efficient secretion and assembly with the alpha subunit and are likely important for proper folding of the CG beta subunit.  相似文献   

8.
Analysis of the role of glycosylation of the human fibronectin receptor   总被引:11,自引:0,他引:11  
1-Deoxymannojirimycin (MNJ), an inhibitor of Golgi alpha-mannosidase IA and IB, was used to assess the possible roles of asparagine-linked oligosaccharides in the structure and function of the integrin fibronectin receptor from cultured human fibroblasts. These cells normally attach well to fibronectin substrates and have only mature forms of the fibronectin receptor on their surfaces. MNJ inhibits the intracellular trimming of high mannose oligosaccharides, and cells treated with 0.2 mg/ml MNJ synthesize only immature precursor forms of both the alpha and beta subunits of the fibronectin receptor. The immature receptor polypeptides were found to be nonfunctional by two criteria: 1) cells treated with MNJ attached poorly to fibronectin substrates; and 2) receptor from the treated cells was defective in binding to fibronectin affinity columns. The precursor forms of the fibronectin receptor subunits were found on the surfaces of cells treated with MNJ, demonstrating that processing of receptor carbohydrates to mature forms was not necessary for receptor insertion into the plasma membrane. A monoclonal antibody that specifically bound the alpha subunit of the fibronectin receptor immunoprecipitated both alpha and beta subunit polypeptides from both control cells and cells treated with MNJ. Similarly, a monoclonal antibody that specifically bound only the beta subunit also immunoprecipitated both alpha and beta subunit polypeptides of the receptor from extracts of both control and MNJ-treated cells. These results indicate that receptor assembly can occur in the absence of complete oligosaccharide processing. Thus, oligosaccharide processing to the mature form of the fibronectin receptor is important for its binding function but not for receptor assembly or insertion into the plasma membrane.  相似文献   

9.
Thyrotropin (TSH) and the gonadotropins; follitropin (FSH), lutropin (LH) and human chorionic gonadotropin (hCG) are a family of heterodimeric glycoprotein hormones. These hormones composed of two noncovalently linked subunits; a common alpha and a hormone specific beta subunits. Assembly of the subunits is vital to the function of these hormones. However, genetic fusion of the alpha and beta subunits of hFSH, hCG and hTSH resulted in active polypeptides. The glycoprotein hormone subunits contain one (TSH and LH) or two (alpha, FSHbeta and hCGbeta) asparagine-linked (N-linked) oligosaccharides. CGbeta subunit is distinguished among the beta subunits because of the presence of a carboxyl-terminal peptide (CTP) bearing four O-linked oligosaccharide chains. To examine the role of the oligosaccharide chains on the structure-function of glycoprotein hormones, chemical, enzymatic and site-directed mutagenesis were used. The results indicated that O-linked oligosaccharides play a minor role in receptor binding and signal transduction of the glycoprotein hormones. In contrast, the O-linked oligosaccharides are critical for in vivo half-life and bioactivity. Ligation of the CTP bearing four O-linked oligosaccharide sites to different proteins, resulted in enhancing the in vivo bioactivity and half-life of the proteins. The N-linked oligosaccharide chains have a minor role in receptor binding of glycoprotein hormones, but they are critical for bioactivity. Moreover, glycoprotein hormones lacking N-linked oligosaccharides behave as antagonists. In conclusion, the O-linked oligosaccharides are not important for in vitro bioactivity or receptor binding, but they play an important role in the in vivo bioactivity and half-life of the glycoprotein hormones. Addition of the O-linked oligosaccharide chains to the backbone of glycoprotein hormones could be an interesting strategy for designing long acting agonists of glycoprotein hormones. On the other hand, the N-linked oligosaccharides are not important for receptor binding, but they are critical for bioactivity of glycoprotein hormones. Deletion of the N-linked oligosaccharides resulted in the development of glycoprotein hormone antagonists. In the case of hTSH, development of an antagonist may offer a novel therapeutic strategy in the treatment of thyrotoxicosis caused by Graves' disease and TSH secreting pituitary adenoma.  相似文献   

10.
Clusterin is a ubiquitous, heterodimeric glycoprotein with multiple possible functions that are likely influenced by glycosylation. Identification of oligosaccharide attachment sites and structural characterization of oligosaccharides in human serum clusterin has been performed by mass spectrometry and Edman degradation. Matrix-assisted laser desorption ionization mass spectrometry revealed two molecular weight species of holoclusterin (58,505 +/- 250 and 63,507 +/- 200). Mass spectrometry also revealed molecular heterogeneity associated with both the alpha and beta subunits of clusterin, consistent with the presence of multiple glycoforms. The data indicate that clusterin contains 17-27% carbohydrate by weight, the alpha subunit contains 0-30% carbohydrate and the beta subunit contains 27-30% carbohydrate. Liquid chromatography electrospray mass spectrometry with stepped collision energy scanning was used to selectively identify and preparatively fractionate tryptic glycopeptides. Edman sequence analysis was then used to confirm the identities of the glycopeptides and to define the attachment sites within each peptide. A total of six N-linked glycosylation sites were identified, three in the alpha subunit (alpha 64N, alpha 81N, alpha 123N) and three in the beta subunit (beta 64N, beta 127N, and beta 147N). Seven different possible types of oligosaccharide structures were identified by mass including: a monosialobiantennary structure, bisialobiantennary structures without or with one fucose, trisialotriantennary structures without or with one fucose, and possibly a trisialotriantennary structure with two fucose and/or a tetrasialotriantennary structure. Site beta 64N exhibited the least glycosylation diversity, with two detected types of oligosaccharides, and site beta 147N exhibited the greatest diversity, with five or six detected types of oligosaccharides. Overall, the most abundant glycoforms detected were bisialobiantennary without fucose and the least abundant were monosialobiantennary, trisialotriantennary with two fucose and/or tetrasialotriantennary. Clusterin peptides accounting for 99% of the primary structure were identified from analysis of the isolated alpha and beta subunits, including all Ser- and Thr-containing peptides. No evidence was found for the presence of O-linked or sulfated oligosaccharides. The results provide a molecular basis for developing a better understanding of clusterin structure-function relationships and the role clusterin glycosylation plays in physiological function.  相似文献   

11.
The glycoprotein hormones lutropin (LH) and chorionic gonadotropin (CG) share a common structure consisting of an identical alpha subunit noncovalently linked to a hormone-specific beta subunit. While LH is produced in the anterior pituitary, CG is synthesized in placenta. To compare the assembly, processing, and secretion of human LH and CG in the same cell type, we have expressed their subunits, individually and together, in mouse C-127 mammary tumor cells. Analysis of transfected clones revealed an unexpected difference in the secretion of individually expressed subunits. Whereas alpha and CG beta subunits were rapidly and quantitatively secreted, only 10% of newly synthesized LH beta subunit reached the medium. The remaining subunit was found in an intracellular, endoglycosidase H (endo H)-sensitive pool that had a turnover rate of approximately 8 h. Coexpression with alpha subunit resulted in "rescue" of LH beta subunit by formation of LH dimer, which was efficiently secreted. However, combination of LH beta with alpha was slow, with an overall efficiency of only 50% despite the presence of excess alpha. In contrast, CG beta was rapidly assembled with the alpha subunit after synthesis. The two beta subunits also differed in their influence on the N-linked oligosaccharide processing of combined alpha. The oligosaccharides of LH dimer were endo H resistant, while those of CG dimer remained partially endo H sensitive. Thus, despite a high degree of homology between LH beta and CG beta, the two subunits differ in their secretion as free subunits, their rate of assembly with alpha subunit, and in their effect on the N-linked oligosaccharide processing of combined alpha.  相似文献   

12.
Prolyl 4-hydroxylase, a key enzyme in collagen biosynthesis, catalyzes the conversion of selected prolyl residues to trans-hydroxyproline in nascent or completed pro-alpha chains of procollagen. The enzyme is a tetramer composed of two nonidentical subunits, designated alpha and beta. To compare the enzyme and its subunits from different sources, the chick embryo and human placental prolyl 4-hydroxylases were purified to homogeneity and their physicochemical and immunological properties were determined. Both enzymes were glycoproteins with estimated apparent molecular weights ranging between 400 and 600 kDa. Amino acid and carbohydrate analyses showed slight differences between the two holomeric enzymes, consistent with their deduced amino acid sequences from their respective cDNAs. Human placental prolyl 4-hydroxylase contained more tightly bound iron than the chick embryo enzyme. Immunodiffusion of the human placental enzyme with antibodies raised against the purified chick embryo prolyl 4-hydroxylase demonstrated partial identity, indicating different antigenic determinants in their tertiary structures. The enzymes could be separated by high-resolution capillary electrophoresis, indicating differential charge densities for the native chick embryo and human placental proteins. Electrophoretic studies revealed that the human prolyl 4-hydroxylase is a tetrameric enzyme containing two nonidentical subunits of about 64 and 62 kDa, in a ratio of approximately 1 to 2, designated alpha and beta, respectively. In contrast, the chick embryo alpha and beta subunit ratio was 1 to 1. Notably, the human alpha subunit was partially degraded when subjected to electrophoresis under denaturing conditions. Analogously, when the chick embryo enzyme was subjected to limited proteolysis, selective degradation of the alpha subunit was observed. Finally, only the alpha subunit was bound to Concanavalin A demonstrating that the alpha subunits of prolyl 4-hydroxylase in both species were glycosylated. Using biochemical techniques, these results demonstrated that the 4-trans-hydroxy-L-proline residues in human placental collagens are synthesized by an enzyme whose primary structure and immunological properties differ from those of the previously well-characterized chick embryo enzyme, consistent with their recently deduced primary structures from cDNA sequences.  相似文献   

13.
The nicotinic acetylcholine receptor has a subunit stoichiometry of alpha 2 beta gamma delta; all 5 subunits contain N-linked oligosaccharides. We investigated what role trimming of the oligosaccharides played in the post-translational processing of the subunits and assembly of the receptor by examining the receptor synthesized in the presence of an inhibitor of oligosaccharide trimming, 1-deoxynojirimycin. BC3H-1 cells express one-third fewer receptors when grown in the presence of 1-deoxynojirimycin. The receptor subunits that are expressed have decreased mobility by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating an inhibition of oligosaccharide trimming. In control cells, 40% of the translated alpha subunit acquires the capacity to bind alpha-bungarotoxin with a half-time of 40 min before assembly with the other subunits; the rest is rapidly degraded. In 1-deoxynojirimycin-treated cells approximately the same amount of alpha subunit is translated as in control cells, but that alpha subunit is degraded more rapidly, and only 25% acquires the capacity to bind alpha-bungarotoxin. From these results, we conclude that oligosaccharide processing either may aid in protecting the alpha subunit primary translation product from degradation or may be required for the conformational change or other post-translational modification(s) necessary for formation of the alpha-bungarotoxin binding form of the alpha subunit, which is then protected from proteolytic degradation. The cell surface receptor that is expressed in the presence of 1-deoxynojirimycin, however, is not altered in its affinity for cholinergic ligands. Thus, we conclude that differential N-linked oligosaccharide trimming of the 2 alpha subunits does not appear to play a part in the differences in affinities of the 2 alpha subunits for cholinergic ligands.  相似文献   

14.
Laminin, a glycoprotein component of basal laminae, is synthesized and secreted in culture by a human malignant cell line (JAR) derived from gestational choriocarcinoma. Biosynthetically labeled human laminin subunits A (Mr approximately 400,000) and B (Mr = 200,000 doublet) are glycoslyated with asparagine-linked high mannose oligosaccharides that are processed to complex oligosaccharides before the laminin molecule is externalized by the cell. The rate-limiting step in the processing of the asparagine-linked glycans of laminin is at the point of action of alpha-mannosidase I since the principal laminin forms that accumulate in JAR cells contain Man9GlcNAc2 and Man8GlcNAc2 oligosaccharide units. The combination of subunits to form the disulfide-linked laminin molecule (Mr approximately 950,000) occurs rapidly within the cell at a time when the subunits contain these high mannose oligosaccharides. The production of laminin is limited by the availability of the A subunit such that excess B subunit forms accumulate intracellularly as uncombined B and a disulfide-linked B dimer. Pulse-chase kinetic studies establish these B forms as intermediates in the assembly of the laminin molecule. The fully assembled laminin undergoes further oligosaccharide processing and translocation to the cell surface, but uncombined B and B dimer are neither processed nor secreted to any significant extent. Therefore, laminin subunit combination appears to be a prerequisite for intracellular translocation, processing, and secretion. The mature laminin that contains complex oligosaccharides does not accumulate intracellularly but is rapidly externalized upon completion, either secreted into the culture medium (25%) or associated with the cell surface (75%) as determined by susceptibility to degradation by trypsin. About one-third of the laminin molecules secreted or shed by JAR cells into the chase medium contain a smaller A subunit form that appears to have been modified by limited proteolytic cleavage. The putative proteolytic event is closely timed to the release of the laminin into the culture medium.  相似文献   

15.
A number of N-linked membrane glycoproteins are induced during chick oviduct differentiation. We have purified a major estrogen-inducible glycoprotein (Mr = 91,000) to homogeneity by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Comparison of partial NH2-terminal sequence data with membrane glycoproteins having similar Mr showed a limited homology with human and murine transferrin receptors. We observed that oviduct membranes contain estrogen-inducible transferrin receptor activity (Kd = 2-8 x 10(-8) M). Analytical purification of the putative receptor on an ovotransferrin-Affi-Gel affinity column and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis reveals a protein of Mr, 180,000, which contains two disulfide-linked subunits of Mr 91,000. The receptor reacts very strongly with antibodies prepared against the 91-kDa glycoprotein on Western blots. Western blot analysis confirms that the 91-kDa glycoprotein is induced by estrogen. The protein has 2% total carbohydrate with Man, GlcNAc, Gal, GalNAc, and NeuAc in a molar ratio of 6:4:2:1:1. The protein contains at least one O-linked moiety. Analysis of the O-linked moiety by glycosidase digestions and gel filtration indicates there are sialo tetra- and trisaccharides and a neutral disaccharide(s). Labeled N-linked glycopeptides were prepared by pronase digestion, beta-elimination, and 3H-acetylation. The N-linked oligosaccharides include high mannose and complex neutral nonbisected biantennary types in an approximate ratio of 3:1 as determined by serial lectin affinity chromatography.  相似文献   

16.
Agents that affect intracellular cation and pH gradients and inhibit energy production have been tested for their ability to modulate the processing and secretion of the free alpha subunit and the alpha beta dimer of human chorionic gonadotropin (hCG) by cultured human trophoblastic cells (JAR). Incubation of JAR cells with monensin or nigericin, monovalent cation ionophores that produce equilibration of Na+ and K+ across cellular membranes, dicyclohexylcarbodiimide, an agent that inhibits intracellular membrane ATPases, and methylamine, which neutralizes intracellular pH gradients, produced similar effects on hCG processing and secretion. All these agents inhibited the processing of the asparagine-linked oligosaccharide chains of free alpha subunit and the alpha and beta subunits contained in the hCG dimer. Moreover, after treatment of JAR cells with these agents, there was an intracellular accumulation of precursor forms and an inhibition of secretion of "mature" forms of hCG. Monensin affected the processing and secretion of hCG subunits differently at different concentrations. At 5 X 10(-7) M, monensin inhibited the processing of the asparagine-linked oligosaccharides of hCG without altering the rate-limiting step in the secretory pathway or blocking hCG secretion. The intracellular hCG subunit precursors in both control and monensin-treated cells contained a similar array of high mannose oligosaccharides, predominantly of the Man8GlcNAc2 and Man9GlcNAc2 types. However, monensin-treated cells secreted hCG subunits that contained endo H-sensitive oligosaccharides of the high mannose (mostly Man5GlcNAc2) and hybrid types rather than the endo H-resistant complex chains synthesized by control cells. Nevertheless, a full complement of serine-linked oligosaccharides was added to the hCG-beta subunit in monensin-treated cells. These results indicate that the intracellular movement of hCG from the rough endoplasmic reticulum to the cell surface was not inhibited by monensin at a concentration that impaired Golgi-localized steps in the processing of asparagine-linked oligosaccharides. At 5 X 10(-6) M, monensin significantly inhibited secretion of hCG and created a new rate-limiting step in the processing pathway. hCG subunits bearing Man5GlcNAc2 units accumulated intracellularly, suggesting that the equilibration of intracellular Na+/K+ pools blocked oligosaccharide processing at an intra-Golgi point, perhaps by inhibiting movement of the glycoprotein hormone from the "cis" to the "trans" Golgi compartment. Since the other drugs mentioned above produced similar effects on hCG processing and secretion, it appears that maintenance of intracellular cation and pH gradients is necessary for the intra-Golgi transport of glycoprotein hormones.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The biosynthesis and maturation of the three subunits alpha (Mr = 37,000), beta (Mr = 32,000), and gamma (Mr = 27,000) of the mouse Lyt-2/3 antigenic complex have been studied by using two monoclonal antibodies directed against a monomorphic determinant of the Lyt-2 antigen. Short time-pulse labeling of thymocytes reveals three different high mannose intermediates that give rise upon endo-beta-N-acetyl-glucosaminidase H digestion to three distinct precursor polypeptides of Mr = 22,000 (alpha P), Mr = 18,000 (beta P), and Mr = 19,500 (gamma P). Pulse-chase analysis indicates rapid posttranslational processing, because mature forms already appear after 10 min of chase. The half-life of the endo-H-sensitive early forms are in the range of 20 to 30 min. Both the alpha and beta subunits are suggested to contain three N-asparagine-linked oligosaccharides, one of which is of the high mannose type. In contrast, the gamma-chain contains only one such glycan unit of the complex type. Moreover, the results presented show that all three chains undergo additional posttranslational modifications. Finally, the data suggest that the cytoplasmic domains of these chains are of different size.  相似文献   

18.
The structures of the predominant high mannose oligosaccharides present in a human IgM myeloma protein (Patient Wa) have been determined. The IgM glycopeptides, produced by pronase digestion, were fractionated on DEAE-cellulonalysis shows that glycopeptide I contains Asn, Pro, Ala, Thr, and His and glycopeptide II contains Asn, Val, and Ser, which are the same amino acids found in the sequences around Asn 402 and Asn 563 respectively, to which high mannose oligosaccharides are attached in IgM (Patient Ou) (Putnman, F.W., Florent, G., Paul, C., Shinoda, T., and Shimizu, A. (1973) Science 182, 287-290). The high mannose glycopeptides in IgM (Wa) exhibit heterogeneity in the oligosaccharide portion. Structural analysis of the major oligosaccharides indicates that the simplest structure is: (see article of journal). The larger oligosaccharides present have additional mannose residues linked alpha 1 yields 2 to terminal mannose residues in the above structure. Glycopeptide I contains primarily Man5 and Man6 species, while glycopeptide II contains Man6 and Man8 species. The two Man6 oligosaccharides have different branching patterns.  相似文献   

19.
Glucosidase II is an ER heterodimeric enzyme that cleaves sequentially the two innermost alpha-1,3-linked glucose residues from N-linked oligosaccharides on nascent glycoproteins. This processing allows the binding and release of monoglucosylated (Glc(1)Man(9)GlcNAc(2)) glycoproteins with calnexin and calreticulin, the lectin-like chaperones of the endoplasmic reticulum. We have isolated two cDNA isoforms of the human alpha subunit (alpha1 and alpha2) differing by a 66 bp stretch, and a cDNA for the corresponding beta subunit. The alpha1 and alpha2 forms have distinct mobilities on SDS-PAGE and are expressed in most of the cell lines we have tested, but were absent from the glucosidase II-deficient cell line PHA(R) 2.7. Using COS7 cells, the coexpression of the beta subunit with the catalytic alpha subunit was found to be essential for enzymatic activity, solubilization, and/or stability, and ER retention of the alpha/beta complex. Transfected cell extracts expressing either alpha1 or alpha2 forms with the beta subunit showed similar activities, while mutating( )the nucleophile (D542N) predicted from the glycoside hydrolase Family 31 active site consensus sequence abolished enzymatic activity. In order to compare the kinetic parameters of both alpha1/beta and alpha2/beta forms of human glucosidase II the protein was expressed with the baculovirus expression system. Expression of the human alpha or beta subunit alone led to the formation of active human/insect heteroenzymes, demonstrating functional complementation by the endogenous insect glucosidase II subunits. The activity of both forms of recombinant human glucosidase II was examined with a p-nitrophenyl alpha-D-glucopyranoside substrate, and a two binding site kinetic model for this substrate was shown. The K(M1-2) values and apparent K(i1-2 )for deoxynojirimycin and castanospermine were determined and found to be identical for both isoforms suggesting they have similar catalysis and inhibition characteristics. The substrate specificities of both isoforms using the physiological oligosaccharides were assessed and found to be similar.  相似文献   

20.
We have used subunit-specific antibodies to identify and to characterize partially the alpha, beta, gamma, and delta subunits of rat skeletal muscle acetylcholine receptor (AChR) on immunoblots. The alpha subunit of rat muscle is a single band of 42 kDa, whereas the beta subunit has an apparent molecular mass of 48 kDa. Both alpha and beta subunits are glycosylated and contain one or more N-linked oligosaccharide chains that are sensitive to endoglycosidase H digestion. The gamma and delta subunits, on the other hand, each appear as doublets on immunoblots, with apparent molecular masses of 52 kDa (gamma), 48 kDa (gamma') and 58 kDa (delta), 53 kDa (delta'), respectively. In each case, the two bands are structurally related and the lower band is probably the partial degradation product of the corresponding upper band. Each of the four gamma and delta polypeptides is N-glycosylated and contains both endoglycosidase H-sensitive and endoglycosidase H-resistant oligosaccharides. When the AChRs purified from embryonic, neonatal, adult, and denervated adult rat muscles were compared, no differences in the mobilities of alpha, beta, or delta subunits on sodium dodecyl sulfate gels were detected among them, either with or without endoglycosidase treatment. The gamma subunits, which were present in AChRs purified from neonatal, embryonic, or denervated rat muscles, were also identical; no gamma subunit was detected, however, in AChRs of normal adult rat muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号