首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyglutamine (polyQ, a peptide) with an abnormal repeat length is the causative agent of polyQ diseases, such as Huntington’s disease. Although glutamine is a polar residue, polyQ peptides form insoluble aggregates in water, and the mechanism for this aggregation is still unclear. To elucidate the detailed mechanism for the nucleation and aggregation of polyQ peptides, replica exchange molecular dynamics simulations were performed for monomers and dimers of polyQ peptides with several chain lengths. Furthermore, to determine how the aggregation mechanism of polyQ differs from those of other peptides, we compared the results for polyQ with those of polyasparagine and polyleucine. The energy barrier between the monomeric and dimeric states of polyQ was found to be relatively low, and it was observed that polyQ dimers strongly favor the formation of antiparallel β-sheet structures. We also found a characteristic behavior of the monomeric polyQ peptide: a turn at the eighth residue is always present, even when the chain length is varied. We previously showed that a structure including more than two sets of β-turns is stable, so a long monomeric polyQ chain can act as an aggregation nucleus by forming several pairs of antiparallel β-sheet structures within a single chain. Since the aggregation of polyQ peptides has some features in common with an amyloid fibril, our results shed light on the mechanism for the aggregation of polyQ peptides as well as the mechanism for the formation of general amyloid fibrils, which cause the onset of amyloid diseases.  相似文献   

2.
BackgroundPolybasic helical peptides, such as peptide p5, bind human amyloid extracts and synthetic amyloid fibrils. When radiolabeled, peptide p5 has been shown to specifically bind amyloid in vivo thereby allowing imaging of the disease. Structural requirements for heparin and amyloid binding have been studied using analogues of p5 that modify helicity and chirality.MethodsPeptide-ligand interactions were studied using CD spectroscopy and solution-phase binding assays with radiolabeled p5 analogues. The interaction of a subset of peptides was further studied by using molecular dynamics simulations.ResultsDisruption of the peptide helical structure reduced peptide binding to heparin and human amyloid extracts. The all-D enantiomer and the β-sheet-structured peptide bound all substrates as well as, or better than, p5. The interaction of helical and β-sheet structured peptides with Aβ fibrils was modeled and shown to involve both ionic and non-ionic interactions.ConclusionsThe α-helical secondary structure of peptide p5 is important for heparin and amyloid binding; however, helicity is not an absolute requirement as evidenced by the superior reactivity of a β-sheet peptide. The differential binding of the peptides with heparin and amyloid fibrils suggests that these molecular interactions are different. The all-D enantiomer of p5 and the β-sheet peptide are candidates for amyloid targeting reagents in vivo.General SignificanceEfficient binding of polybasic peptides with amyloid is dependent on the linearity of charge spacing in the context of an α-helical secondary structure. Peptides with an α-helix or β-sheet propensity and with similar alignment of basic residues is optimal.  相似文献   

3.
The storage of protein/peptide hormones within subcellular compartments and subsequent release are crucial for their native function, and hence these processes are intricately regulated in mammalian systems. Several peptide hormones were recently suggested to be stored as amyloids within endocrine secretory granules. This leads to an apparent paradox where storage requires formation of aggregates, and their function requires a supply of non-aggregated peptides on demand. The precise mechanism behind amyloid formation by these hormones and their subsequent release remain an open question. To address this, we examined aggregation and fibril reversibility of a cyclic peptide hormone somatostatin (SST)-14 using various techniques. After proving that SST gets stored as amyloid in vivo, we investigated the role of native structure in modulating its conformational dynamics and self-association by disrupting the disulfide bridge (Cys3–Cys14) in SST. Using two-dimensional NMR, we resolved the initial structure of somatostatin-14 leading to aggregation and further probed its conformational dynamics in silico. The perturbation in native structure (S-S cleavage) led to a significant increase in conformational flexibility and resulted in rapid amyloid formation. The fibrils formed by disulfide-reduced noncyclic SST possess greater resistance to denaturing conditions with decreased monomer releasing potency. MD simulations reveal marked differences in the intermolecular interactions in SST and noncyclic SST providing plausible explanation for differential aggregation and fibril reversibility observed experimentally in these structural variants. Our findings thus emphasize that subtle changes in the native structure of peptide hormone(s) could alter its conformational dynamics and amyloid formation, which might have significant implications on their reversible storage and secretion.  相似文献   

4.
5.
The stability and dynamics of the human calcitonin-derived peptide DFNKF (hCT(15-19)) are studied using molecular dynamics (MD) simulations. Experimentally, this peptide is highly amyloidogenic and forms fibrils similar to the full length calcitonin. Previous comparative MD studies have found that the parallel beta-stranded sheet is a stable organization of the DFNKF protofibril. Here, we probe the stability and dynamics of the small parallel DFNKF oligomers. The results show that even small DFNKF oligomers, such as trimers and tetramers, are stable for a sufficient time in the MD simulations, indicating that the crucial nucleus seed size for amyloid formation can be quite small. The simulations also show that the stability of DFNKF oligomers increases with their sizes. The small but stable seed may reflect the experimental rapid formation of the DFNKF fibrils. Further, a noncooperative process of parallel beta-sheet formation from the out-of-register trimer is observed in the simulations. In general, the residues of DFNKF peptides near the N-/C-termini are more flexible, whereas the interior residues are more stable. Simulations of mutants and capped peptides show that both interstrand hydrophobic and electrostatic interactions play important roles in stabilizing the DFNKF parallel oligomers. This study provides insights into amyloid formation.  相似文献   

6.
To date, over 20 peptides or proteins have been identified that can form amyloid fibrils in the body and are thought to cause disease. The mechanism by which amyloid peptides cause the cytotoxicity observed and disease is not understood. However, one of the major hypotheses is that amyloid peptides cause membrane perturbation. Hence, we have studied the interaction between lipid bilayers and the 37 amino acid residue polypeptide amylin, which is the primary constituent of the pancreatic amyloid associated with type 2 diabetes. Using a dye release assay we confirmed that the amyloidogenic human amylin peptide causes membrane disruption; however, time-lapse atomic force microscopy revealed that this did not occur by the formation of defined pores. On the contrary, the peptide induced the formation of small defects spreading over the lipid surface. We also found that rat amylin, which has 84% identity with human amylin but cannot form amyloid fibrils, could also induce similar lesions to supported lipid bilayers. The effect, however, for rat amylin but not human amylin, was inhibited under high ionic conditions. These data provide an alternative theory to pore formation, and how amyloid peptides may cause membrane disruption and possibly cytotoxicity.  相似文献   

7.
Electron paramagnetic resonance spectroscopy analysis of 19 spin-labeled derivatives of the Alzheimer's amyloid beta (Abeta) peptide was used to reveal structural features of amyloid fibril formation. In the fibril, extensive regions of the peptide show an in-register, parallel arrangement. Based on the parallel arrangement and side chain mobility analysis we find the amyloid structure to be mostly ordered and specific, but we also identify more dynamic regions (N and C termini) and likely turn or bend regions (around residues 23-26). Despite their different aggregation properties and roles in disease, the two peptides, Abeta40 and Abeta42, homogeneously co-mix in amyloid fibrils suggesting that they possess the same structural architecture.  相似文献   

8.
Corneal dystrophies are genetic disorders resulting in progressive corneal clouding due to the deposition of amyloid fibrils derived from keratoepithelin, also called transforming growth factor β-induced protein (TGFBI). The formation of amyloid fibrils is often accelerated by surfactants such as sodium dodecyl sulfate (SDS). Most eye drops contain benzalkonium chloride (BAC), a cationic surfactant, as a preservative substance. In the present study, we aimed to reveal the role of BAC in the amyloid fibrillation of keratoepithelin-derived peptides in vitro. We used three types of 22-residue synthetic peptides covering Leu110-Glu131 of the keratoepithelin sequence: an R-type peptide with wild-type R124, a C-type peptide with C124 associated with lattice corneal dystrophy type I, and a H-type peptide with H124 associated with granular corneal dystrophy type II. The time courses of spontaneous amyloid fibrillation and seed-dependent fibril elongation were monitored in the presence of various concentrations of BAC or SDS using thioflavin T fluorescence. BAC and SDS accelerated the fibrillation of all synthetic peptides in the absence and presence of seeds. Optimal acceleration occurred near the CMC, which suggests that the unstable and dynamic interactions of keratoepithelin peptides with amphipathic surfactants led to the formation of fibrils. These results suggest that eye drops containing BAC may deteriorate corneal dystrophies and that those without BAC are preferred especially for patients with corneal dystrophies.  相似文献   

9.
《朊病毒》2013,7(4):339-345
Fibrillar aggregates of misfolded amyloid proteins are involved in a variety of diseases such as Alzheimer disease (AD), type 2 diabetes, Parkinson, Huntington and prion-related diseases. In the case of AD amyloid β (Aβ) peptides, the toxicity of amyloid oligomers and larger fibrillar aggregates is related to perturbing the biological function of the adjacent cellular membrane. We used atomistic molecular dynamics (MD) simulations of Aβ9–40 fibrillar oligomers modeled as protofilament segments, including lipid bilayers and explicit water molecules, to probe the first steps in the mechanism of Aβ-membrane interactions. Our study identified the electrostatic interaction between charged peptide residues and the lipid headgroups as the principal driving force that can modulate the further penetration of the C-termini of amyloid fibrils or fibrillar oligomers into the hydrophobic region of lipid membranes. These findings advance our understanding of the detailed molecular mechanisms and the effects related to Aβ-membrane interactions, and suggest a polymorphic structural character of amyloid ion channels embedded in lipid bilayers. While inter-peptide hydrogen bonds leading to the formation of β-strands may still play a stabilizing role in amyloid channel structures, these may also present a significant helical content in peptide regions (e.g., termini) that are subject to direct interactions with lipids rather than with neighboring Aβ peptides.  相似文献   

10.
Calcitonin, a peptide hormone associated with medullary carcinoma of the thyroid, has the potential to form amyloid fibrils and may be a valuable model for investigating the role of peptide-membrane interactions in beta-sheet and amyloid formation. Via a new model peptide system, bovine calcitonin, we found that the exposure of peptide to phospholipid membranes altered its structure relative to the structures formed in aqueous solutions. Of particular relevance to the amyloidoses, incubation of calcitonin with cholesterol-rich and ganglioside-containing membranes resulted in significant enrichment in the beta-sheet and amyloid content of the peptide. The formation of amyloid was also accelerated in these systems. A correlation between the phospholipid-induced structural alterations and calcitonin binding affinities to phospholipid membranes was evident. Bovine calcitonin has considerably higher binding affinity for the phospholipid systems that enhanced its beta-sheet and amyloid structure. Electrostatic forces were not the governing forces behind the observed behavior, as supported by the fact that the ionic strength did not affect the peptide structures or binding affinities. A Van't Hoff analysis of the temperature-dependent peptide binding affinities indicated that binding led to an increase in enthalpy and possibly an increase in entropy of the peptide-membrane systems. Experiments with other amyloid-forming peptides such as beta-amyloid of Alzheimer's disease have also shown similar results and may indicate the need to manipulate peptide-membrane interactions in order to control amyloid formation and its associated disease.  相似文献   

11.
We have studied the model peptides that undergo self-initiated structural transition from alpha-helix to beta-sheet and self-assembling into amyloid fibrils. We here constructed an inhibition system of amyloid formation utilizing homologous recognition and assembly of peptides with increased solubility. Among 20 peptides with homologous sequences examined here, cationic peptides showed the stronger inhibition ability against the amyloid formation of a model peptide.  相似文献   

12.
Fibrillar aggregates of misfolded amyloid proteins are involved in a variety of diseases such as Alzheimer disease (AD), type 2 diabetes, Parkinson, Huntington and prion-related diseases. In the case of AD amyloid β (Aβ) peptides, the toxicity of amyloid oligomers and larger fibrillar aggregates is related to perturbing the biological function of the adjacent cellular membrane. We used atomistic molecular dynamics (MD) simulations of Aβ9–40 fibrillar oligomers modeled as protofilament segments, including lipid bilayers and explicit water molecules, to probe the first steps in the mechanism of Aβ-membrane interactions. Our study identified the electrostatic interaction between charged peptide residues and the lipid headgroups as the principal driving force that can modulate the further penetration of the C-termini of amyloid fibrils or fibrillar oligomers into the hydrophobic region of lipid membranes. These findings advance our understanding of the detailed molecular mechanisms and the effects related to Aβ-membrane interactions, and suggest a polymorphic structural character of amyloid ion channels embedded in lipid bilayers. While inter-peptide hydrogen bonds leading to the formation of β-strands may still play a stabilizing role in amyloid channel structures, these may also present a significant helical content in peptide regions (e.g., termini) that are subject to direct interactions with lipids rather than with neighboring Aβ peptides.  相似文献   

13.
Beta(2)-Microglobulin (beta(2)m) is one of over 20 proteins known to be involved in human amyloid disease. Peptides equivalent to each of the seven beta-strands of the native protein, together with an eighth peptide (corresponding to the most stable region in the amyloid precursor conformation formed at pH 3.6, that includes residues in the native strand E plus the eight succeeding residues (named peptide E')), were synthesised and their ability to form fibrils investigated. Surprisingly, only two sequences, both of which encompass the region that forms strand E in native beta(2)m, are capable of forming amyloid-like fibrils in vitro. These peptides correspond to residues 59-71 (peptide E) and 59-79 (peptide E') of intact beta(2)m. The peptides form fibrils under the acidic conditions shown previously to promote amyloid formation from the intact protein (pH <5 at low and high ionic strength), and also associate to form fibrils at neutral pH. Fibrils formed from these two peptides enhance fibrillogenesis of the intact protein. No correlation was found between secondary structure propensity, peptide length, pI or hydrophobicity and the ability of the peptides to associate into amyloid-like fibrils. However, the presence of a relatively high content of aromatic side-chains correlates with the ability of the peptides to form amyloid fibrils. On the basis of these results we propose that residues 59-71 may be important in the self-association of partially folded beta(2)m into amyloid fibrils and discuss the relevance of these results for the assembly mechanism of the intact protein in vitro.  相似文献   

14.
Several de novo designed ionic peptides that are able to undergo conformational change under the influence of temperature and pH were studied. These peptides have two distinct surfaces with regular repeats of alternating hydrophilic and hydrophobic side chains. This permits extensive ionic and hydrophobic interactions resulting in the formation of stable beta-sheet assemblies. The other defining characteristic of this type of peptide is a cluster of negatively charged aspartic or glutamic acid residues located toward the N-terminus and positively charged arginine or lysine residues located toward the C-terminus. This arrangement of charge balances the alpha-helical dipole moment (C --> N), resulting in a strong tendency to form stable alpha-helices as well. Therefore, these peptides can form both stable alpha-helices and beta-sheets. They are also able to undergo abrupt structural transformations between these structures induced by temperature and pH changes. The amino acid sequence of these peptides permits both stable beta-sheet and alpha-helix formation, resulting in a balance between these two forms as governed by the environment. Some segments in proteins may also undergo conformational changes in response to environmental changes. Analyzing the plasticity and dynamics of this type of peptide may provide insight into amyloid formation. Since these peptides have dynamic secondary structure, they will serve to refine our general understanding of protein structure.  相似文献   

15.
The peptide hormone, calcitonin, which is associated with medullary carcinoma of the thyroid, has a marked tendency to form amyloid fibrils and may be a useful model in probing the role of peptide-membrane interactions in beta-sheet and amyloid formation and amyloid neurotoxicity. Using bovine calcitonin, we found that, like other amyloids, the peptide was toxic only when in a beta-sheet-rich, amyloid form, but was non-toxic, when it lacked an amyloid structure. We found that the peptide bound with significant affinity to membranes that contained either cholesterol and gangliosides. In addition, incubation of calcitonin with cholesterol-rich and ganglioside-containing membranes resulted in significant changes in peptide structure yielding a peptide enriched in beta-sheet and amyloid content. Because the cholesterol- and ganglioside-rich phospholipid systems enhanced the calcitonin beta-sheet and amyloid contents, and peptide amyloid content was associated with neurotoxicity, we then investigated whether depleting cellular cholesterol and gangliosides affected calcitonin neurotoxicity. We found that cholesterol and ganglioside removal significantly reduced the calcitonin-induced PC12 cell neurotoxicity. Similar results have been observed with other amyloid-forming peptides such as beta-amyloid (A beta) of Alzheimer's disease and suggest that modulation of membrane composition and peptide-membrane interactions may prove useful in the control of amyloid formation and amyloid neurotoxicity.  相似文献   

16.
Amyloidosis is a class of diseases caused by protein aggregation and deposition in various tissues and organs. In this paper, a yeast amyloid-forming protein Sup35 was used as a model for understanding amyloid fiber formation. The dynamics of amyloid formation by Sup35 were studied with scanning force microscopy. We found that: 1) the assembly of Sup35 fibers begins with individual NM peptides that aggregate to form large beads or nucleation units which, in turn, form dimers, trimers, tetramers and longer linear assemblies appearing as a string of beads; 2) the morphology of the linear assemblies differ; and 3) fiber assembly suggests an analogy to the aggregation of colloidal particles. A dipole assembly model is proposed based on this analogy that will allow further experimental testing.  相似文献   

17.
The misfolding and aggregation of proteins to form amyloid fibrils is a characteristic feature of several common age-related diseases. Agents that directly inhibit formation of amyloid fibrils represent one approach to combating these diseases. We have investigated the potential of a cyclic peptide to inhibit fibril formation by fibrillogenic peptides from human apolipoprotein C-II (apoC-II). Cyc[60-70] was formed by disulfide cross-linking of cysteine residues added to the termini of the fibrillogenic peptide comprising apoC-II residues 60-70. This cyclic peptide did not self-associate into fibrils. However, substoichiometric concentrations of cyc[60-70] significantly delayed fibril formation by the fibrillogenic, linear peptides apoC-II[60-70] and apoC-II[56-76]. Reduction of the disulfide bond or scrambling the amino acid sequence within cyc[60-70] significantly impaired its inhibitory activity. The solution structure of cyc[60-70] was solved using NMR spectroscopy, revealing a well-defined structure comprising a hydrophilic face and a more hydrophobic face containing the Met60, Tyr63, Ile66 and Phe67 side chains. Molecular dynamics (MD) studies identified a flexible central region within cyc[60-70], while MD simulations of "scrambled" cyc[60-70] indicated an increased formation of intramolecular hydrogen bonds and a reduction in the overall flexibility of the peptide. Our structural studies suggest that the inhibitory activity of cyc[60-70] is mediated by an elongated structure with inherent flexibility and distinct hydrophobic and hydrophilic faces, enabling cyc[60-70] to interact transiently with fibrillogenic peptides and inhibit fibril assembly. These results suggest that cyclic peptides based on amyloidogenic core peptides could be useful as specific inhibitors of amyloid fibril formation.  相似文献   

18.
Amyloid fibril formation is associated with several pathologies, including Alzheimer's disease, Parkinson's disease, type II diabetes, and prion diseases. Recently, a relationship between basement membrane components and amyloid deposits has been reported. The basement membrane protein, laminin, may be involved in amyloid-related diseases, since laminin is present in amyloid plaques in Alzheimer's disease and binds to amyloid precursor protein. Recently, we showed that peptide A208 (AASIKVAVSADR), the IKVAV-containing peptide, formed amyloid-like fibrils. We previously identified 60 cell adhesive sequences in laminin-1 using a total of 673 12-mer synthetic peptides. Here, we screened for additional amyloidogenic sequences among 60 cell adhesive peptides derived from laminin-1. We first examined amyloid-like fibril formation by the 60 active peptides with Congo red, a histological dye binding to many amyloid-like proteins. Thirteen peptides were stained with Congo red. Four of the 13 peptides promoted cell attachment and neurite outgrowth like the IKVAV-containing peptide. The four peptides also showed amyloid-like fibril formation in both X-ray diffraction and electron microscopic analyses. The amyloidogenic peptides contain consensus amino acid components, including both basic and acidic amino acids and Ser and Ile residues. These results indicate that at least five laminin-derived peptides can form amyloid-like fibrils. We conclude that the laminin-derived amyloidogenic peptides have the potential to form amyloid-like fibrils in vivo, possibly when laminin-1 is degraded.  相似文献   

19.
Review: modulating factors in amyloid-beta fibril formation   总被引:3,自引:0,他引:3  
Amyloid formation is a key pathological feature of Alzheimer's disease and is considered to be a major contributing factor to neurodegeneration and clinical dementia. Amyloid is found as both diffuse and senile plaques in the parenchyma of the brain and is composed primarily of the 40- to 42-residue amyloid-beta (Abeta) peptides. The characteristic amyloid fiber exhibits a high beta-sheet content and may be generated in vitro by the nucleation-dependent self-association of the Abeta peptide and an associated conformational transition from random to beta-conformation. Growth of the fibrils occurs by assembly of the Abeta seeds into intermediate protofibrils, which in turn self-associate to form mature fibers. This multistep process may be influenced at various stages by factors that either promote or inhibit Abeta fiber formation and aggregation. Identification of these factors and understanding the driving forces behind these interactions as well as the structural motifs necessary for these interactions will help to elucidate potential sites that may be targeted to prevent amyloid formation and its associated toxicity. This review will discuss some of the modulating factors that have been identified to date and their role in fibrillogenesis.  相似文献   

20.
AlphaA-crystallin (alphaAC), a major component of eye lens, exhibits chaperone-like activity and is responsible for maintaining eye lens transparency. Synthetic peptides which corresponded to the putative substrate-binding site of alphaAC have been reported to prevent aggregation of proteins [Sharma, K. K., et al. (2000) J. Biol. Chem. 275, 3767-3771]. In this study, we found that these peptides, alphaAC(70-88), the peptide corresponding to amino acids 70-88 of alphaAC (KFVIFLDVKHFSPEDLTVK), and alphaAC(71-88), suppressed the amyloid fibril formation of amyloid beta protein (Abeta). On the other hand, while alphaAC(71-88) exhibited chaperone-like activity toward insulin, alphaAC(70-88) and alphaAC(70-88)K70D promoted rapid growth of aggregates consisting of insulin and these peptides in their solution mixtures. Interestingly, we found that alphaAC(71-88) itself can also form amyloid fibrils. It is possible that the chaperone-like activity of the alphaAC peptides is potentially related to their propensity for amyloid fibril formation. Analysis of variants of the alphaAC peptides suggested that F71 is important for amyloid formation, and interestingly, this same residue has previously been found to be essential for chaperone-like activity. Amyloid fibril formation was also observed with the shorter peptide, alphaAC(70-76)K70D, showing that the ability to form amyloid fibrils is maintained even with significant deletion of the C-terminal sequence. The formation of amyloid fibril was suppressed in alphaAC(70-88), suggesting that the K70 in the substrate binding site may play a role in suppressing the amyloid fibril formation of alphaAC, which agreed with recent proposals about the presence of an aggregation suppressor in the region flanking aggregation-prone hydrophobic sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号