首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conformational stability and mechanism of folding of ribonuclease T1   总被引:5,自引:0,他引:5  
Urea and thermal unfolding curves for ribonuclease T1 (RNase T1) were determined by measuring several different physical properties. In all cases, steep, single-step unfolding curves were observed. When these results were analyzed by assuming a two-state folding mechanism, the plots of fraction unfolded protein versus denaturant were coincident. The dependence of the free energy of unfolding, delta G (in kcal/mol), on urea concentration is given by delta G = 5.6 - 1.21 (urea). The parameters characterizing the thermodynamics of unfolding are: midpoint of the thermal unfolding curve, Tm = 48.1 degrees C, enthalpy change at Tm, delta Hm = 97 kcal/mol, and heat capacity change, delta Cp = 1650 cal/mol deg. A single kinetic phase was observed for both the folding and unfolding of RNase T1 in the transition and post-transition regions. However, two slow kinetic phases were observed during folding in the pre-transition region. These two slow phases account for about 90% of the observed amplitude, indicating that a faster kinetic phase is also present. The slow phases probably result from cis-trans isomerization at the 2 proline residues that have a cis configuration in folded RNase T1. These results suggest that RNase T1 folds by a highly cooperative mechanism with no structural intermediates once the proline residues have assumed their correct isomeric configuration. At 25 degrees C, the folded conformation is more stable than the unfolded conformations by 5.6 kcal/mol at pH 7 and by 8.9 kcal/mol at pH 5, which is the pH of maximum stability. At pH 7, the thermodynamic data indicate that the maximum conformational stability of 8.3 kcal/mol will occur at -6 degrees C.  相似文献   

2.
Differential scanning calorimetry has been used to investigate the thermodynamics of denaturation of ribonuclease T1 as a function of pH over the pH range 2-10, and as a function of NaCl and MgCl2 concentration. At pH 7 in 30 mM PIPES buffer, the thermodynamic parameters are as follows: melting temperature, T1/2 = 48.9 +/- 0.1 degrees C; enthalpy change, delta H = 95.5 +/- 0.9 kcal mol-1; heat capacity change, delta Cp = 1.59 kcal mol-1 K-1; free energy change at 25 degrees C, delta G degrees (25 degrees C) = 5.6 kcal mol-1. Both T1/2 = 56.5 degrees C and delta H = 106.1 kcal mol-1 are maximal near pH 5. The conformational stability of ribonuclease T1 is increased by 3.0 kcal/mol in the presence of 0.6 M NaCl or 0.3 M MgCl2. This stabilization results mainly from the preferential binding of cations to the folded conformation of the protein. The estimates of the conformational stability of ribonuclease T1 from differential scanning calorimetry are shown to be in remarkably good agreement with estimates derived from an analysis of urea denaturation curves.  相似文献   

3.
Folding of dihydrofolate reductase from Escherichia coli   总被引:13,自引:0,他引:13  
The urea-induced equilibrium unfolding transition of dihydrofolate reductase from Escherichia coli was monitored by UV difference, circular dichroism (CD), and fluorescence spectroscopy. Each of these data sets were well described by a two-state unfolding model involving only native and unfolded forms. The free energy of folding in the absence of urea at pH 7.8, 15 degrees C is 6.13 +/- 0.36 kcal mol-1 by difference UV, 5.32 +/- 0.67 kcal mol-1 by CD, and 5.42 +/- 1.04 kcal mol-1 by fluorescence spectroscopy. The midpoints for the difference UV, CD, and fluorescence transitions are 3.12, 3.08, and 3.18 M urea, respectively. The near-coincidence of the unfolding transitions monitored by these three techniques also supports the assignment of a two-state model for the equilibrium results. Kinetic studies of the unfolding and refolding reactions show that the process is complex and therefore that additional species must be present. Unfolding jumps in the absence of potassium chloride revealed two slow phases which account for all of the amplitude predicted by equilibrium experiments. Unfolding in the presence of 400 mM KCl results in the selective loss of the slower phase, implying that there are two native forms present in equilibrium prior to unfolding. Five reactions were observed in refolding: two slow phases designated tau 1 and tau 2 that correspond to the slow phases in unfolding and three faster reactions designated tau 3, tau 4, and tau 5 that were followed by stopped-flow techniques. The kinetics of the recovery of the native form was monitored by following the binding of methotrexate, a tight-binding inhibitor of dihydrofolate reductase, at 380 nm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The equilibrium behaviour of the bovine phosphatidylethanolamine-binding protein (PEBP) has been studied under various conditions of pH, temperature and urea concentration. Far-UV and near-UV CD, fluorescence and Fourier transform infrared spectroscopies indicate that, in its native state, PEBP is mainly composed of beta-sheets, with Trp residues mostly localized in a hydrophobic environment; these results suggest that the conformation of PEBP in solution is similar to the three-dimensional structure determined by X-ray crystallography. The pH-induced conformational changes show a transition midpoint at pH 3.0, implying nine protons in the transition. At neutral pH, the thermal denaturation is irreversible due to protein precipitation, whereas at acidic pH values the protein exhibits a reversible denaturation. The thermal denaturation curves, as monitored by CD, fluorescence and differential scanning calorimetry, support a two-state model for the equilibrium and display coincident values with a melting temperature Tm = 54 degrees C, an enthalpy change DeltaH = 119 kcal.mol-1 and a free energy change DeltaG(H2O, 25 degrees C) = 5 kcal.mol-1. The urea-induced unfolding profiles of PEBP show a midpoint of the two-state unfolding transition at 4.8 M denaturant, and the stability of PEBP is 4.5 kcal.mol-1 at 25 degrees C. Moreover, the surface active properties indicate that PEBP is essentially a hydrophilic protein which progressively unfolds at the air/water interface over the course of time. Together, these results suggest that PEBP is well-structured in solution but that its conformation is weakly stable and sensitive to hydrophobic conditions: the PEBP structure seems to be flexible and adaptable to its environment.  相似文献   

5.
Heat-denaturation of tryptophan synthase alpha-subunit from E. coli and two mutant proteins (Glu 49 leads to Gln or Ser; called Gln 49 or Ser 49, respectively) has been studied by the scanning microcalorimetric method at various pH, in an attempt to elucidate the role of individual amino acid residues in the conformational stability of a protein. The partial specific heat capacity in the native state at 20 degrees, Cp20, has been found to be (0.43 +/- 0.02) cal . k-1 . g-1, the unfolding heat capacity change, delta dCp, (0.10 +/- 0.01) cal . K-1 . g-1, and the unfolding enthalpy value extrapolated to 110 degrees, delta dh110, (9.3 +/- 0.5) cal . g-1 for the three proteins. The value of Cp20 was larger than those found for "fully compact protein" and that of delta dh110 was smaller. Unfolding Gibbs energy, delta dG at 25 degrees for Wild-type, Gln 49, and Ser 49 were 5.8, 8.4, and 7.1 kcal . mol-1 at pH 9.3, respectively. Unfolding enthalpy, delta dH, of the three proteins seemed to be the same and equal to (23.2 +/- 1.2) kcal . mol-1 at 25 degrees. As a consequence of the same value of delta dH and the different value in delta dG, substantial differences in unfolding entropy, delta dS, were found for the three proteins. The values of delta dG for the three proteins at 25 degrees coincided with those from equilibrium methods of denaturation by guanidine hydrochloride.  相似文献   

6.
Standard functions of enthalpy, entropy and the Gibbs energy of native and denatured lysozyme in the range of 0-100 degrees C and pH 1.5-7.0 are represented in three-dimensional projections. The denaturational Gibbs energy change reaches 16 kcal mol-1 at conditions of maximal protein stability (0 degrees C, pH 4.5-7.0) and equals 14.5 kcal mol-1 at 25 degrees C and neutral pH. This result was found to be in agreement with the data reported from guanidine hydrochloride denaturation studies. Partial thermodynamic functions of the conformational and ionizational changes of the protein are obtained from entropy and Gibbs-energy changes in denaturation. The conformational partial entropy and Gibbs-energy change are found to be independent of pH. The pH-dependent partial ionizational entropy and Gibbs-energy changes are induced by normalization of the ionization behaviour of buried groups and cause a decrease of protein stability.  相似文献   

7.
Mukaiyama A  Takano K  Haruki M  Morikawa M  Kanaya S 《Biochemistry》2004,43(43):13859-13866
Equilibrium and kinetic studies were carried out under denaturation conditions to clarify the energetic features of the high stability of a monomeric protein, ribonuclease HII, from a hyperthermophile, Thermococcus kodakaraensis (Tk-RNase HII). Guanidine hydrochloride (GdnHCl)-induced unfolding and refolding were measured with circular dichroism at 220 nm, and heat-induced denaturation was studied with differential scanning calorimetry. Both GdnHCl- and heat-induced denaturation are very reversible. It was difficult to obtain the equilibrated unfolding curve of Tk-RNase HII below 40 degrees C, because of the remarkably slow unfolding. The two-state unfolding and refolding reactions attained equilibrium at 50 degrees C after 2 weeks. The Gibbs energy change of GdnHCl-induced unfolding (DeltaG(H(2)O)) at 50 degrees C was 43.6 kJ mol(-1). The denaturation temperature in the DSC measurement shifted as a function of the scan rate; the denaturation temperature at a scan rate of 90 degrees C h(-1) was higher than at a scan rate of 5 degrees C h(-1). The unfolding and refolding kinetics of Tk-RNase HII were approximated as a first-order reaction. The ln k(u) and ln k(r) values depended linearly on the denaturant concentration between 10 and 50 degrees C. The DeltaG(H(2)O) value obtained from the rate constant in water using the two-state model at 50 degrees C, 44.5 kJ mol(-1), was coincident with that from the equilibrium study, 43.6 kJ mol(-1), suggesting the two-state folding of Tk-RNase HII. The values for the rate constant in water of the unfolding for Tk-RNase HII were much smaller than those of E. coli RNase HI and Thermus thermophilus RNase HI, which has a denaturation temperature similar to that of Tk-RNase HII. In contrast, little difference was observed in the refolding rates among these proteins. These results indicate that the stabilization mechanism of monomeric protein from a hyperthermophile, Tk-RNase HII, with reversible two-state folding is characterized by remarkably slow unfolding.  相似文献   

8.
9.
F Ahmad  P McPhie 《Biochemistry》1978,17(2):241-246
The denaturation of swine pepsinogen has been studied as a function of urea concentration, pH, and temperature. The unfolding of the protein by urea has been found to be fully reversible under different conditions of pH, temperature, and denaturant concentration. Kinetic experiments have shown that the transition shows two-state behavior at 25 degrees C in the pH range 6-8 covered in this study. Analysis of the equilibrium data obtained at 25 degrees C according to Tanford (Tanford, C. (1970), Adv. Protein Chem. 24, 1) and Pace (Pace, N.C. (1975), Crit. Rev. Biochem. 3, 1) leads to the conclusion that the free energy of stabilization of native pepsinogen, relative to the denatured state, under physiological conditions, is only 6-12 kcal mol-1. The temperature dependence of the equilibrium constant for the unfolding of pepsinogen by urea in the range 20-50 degrees C at pH 8.0 can be described by assigning the following values of thermodynamic parameters for the denaturation at 25 degrees C: deltaH=31.5 kcal mol-1; deltaS=105 cal deg-1 mol-1; and deltaCp=5215 cal deg-1 mol-1.  相似文献   

10.
Gursky O  Ranjana  Gantz DL 《Biochemistry》2002,41(23):7373-7384
Thermal unfolding of discoidal complexes of apolipoprotein (apo) C-1 with dimyristoyl phosphatidylcholine (DMPC) reveals a novel mechanism of lipoprotein stabilization that is based on kinetics rather than thermodynamics. Far-UV CD melting curves recorded at several heating/cooling rates from 0.047 to 1.34 K/min show hysteresis and scan rate dependence characteristic of slow nonequilibrium transitions. At slow heating rates, the apoC-1 unfolding in the complexes starts just above 25 degrees C and has an apparent melting temperature T(m) approximately 48 +/- 1.5 degrees C, close to T(m) = 51 +/- 1.5 degrees C of free protein. Thus, DMPC binding may not substantially increase the low apparent thermodynamic stability of apoC-1, DeltaG(25 degrees C) < 2 kcal/mol. The scan rate dependence of T(m) and Arrhenius analysis of the kinetic data suggest an activation enthalpy E(a) = 25 +/- 5 kcal/mol that provides the major contribution to the free energy barrier for the protein unfolding on the disk, DeltaG > or = 17 kcal/mol. Consequently, apoC-1/DMPC disks are kinetically but not thermodynamically stable. To explore the origins of this kinetic stability, we utilized dynode voltage measured in CD experiments that shows temperature-dependent contribution from UV light scattering of apoC-1/DMPC complexes (d approximately 20 nm). Correlation of CD and dynode voltage melting curves recorded at 222 nm indicates close coupling between protein unfolding and an increase in the complex size and/or lamellar structure, suggesting that the enthalpic barrier arises from transient disruption of lipid packing interactions upon disk-to-vesicle fusion. We hypothesize that a kinetic mechanism may provide a general strategy for lipoprotein stabilization that facilitates complex stability and compositional variability in the absence of high packing specificity.  相似文献   

11.
The hydrogen-deuterium exchange kinetics of 37 backbone amide residues in RNase T1 have been monitored at 25, 40, 45, and 50 degrees C at pD 5.6 and at 40 and 45 degrees C at pD 6.6. The hydrogen exchange rate constants of the hydrogen-bonded residues varied over eight orders of magnitude at 25 degrees C with 13 residues showing exchange rates consistent with exchange occurring as a result of global unfolding. These residues are located in strands 2-4 of the central beta-pleated sheet. The residues located in the alpha-helix and the remaining strands of the beta-sheet exhibited exchange behaviors consistent with exchange occurring due to local structural fluctuations. For several residues at 25 degrees C, the global free energy change calculated from the hydrogen exchange data was over 2 kcal/mol greater than the free energy of unfolding determined from urea denaturation experiments. The number of residues showing this unexpected behavior was found to increase with temperature. This apparent inconsistency can be explained quantitatively if the cis-trans isomerization of the two cis prolines, Pro-39 and Pro-55, is taken into account. The cis-trans isomerization equilibrium calculated from kinetic data indicates the free energy of the unfolded state will be 2.6 kcal/mol higher at 25 degrees C when the two prolines are cis rather than trans (Mayr LM, Odefey CO, Schutkowski M, Schmid FX. 1996. Kinetic analysis of the unfolding and refolding of ribonuclease T1 by a stopped-flow double-mixing technique. Biochemistry 35: 5550-5561). The hydrogen exchange results are consistent with the most slowly exchanging hydrogens exchanging from a globally higher free energy unfolded state in which Pro-55 and Pro-39 are still predominantly in the cis conformation. When the conformational stabilities determined by hydrogen exchange are corrected for the proline isomerization equilibrium, the results are in excellent agreement with those from an analysis of urea denaturation curves.  相似文献   

12.
Thermus thermophilus ribonuclease H was overexpressed and purified from Escherichia coli. The determination of the complete amino acid sequence allowed modification of that predicted from the DNA sequence, and the enzyme was shown to be composed of 166 amino acid residues with a molecular weight of 18,279. The isoelectric point of the enzyme was 10.5, and the specific absorption coefficient A0.1%(280) was 1.69. The enzymatic and physicochemical properties as well as the thermal and conformational stabilities of the enzyme were compared with those of E. coli RNase HI, which shows 52% amino acid sequence identity. Comparison of the far and near UV circular dichroism spectra suggests that the two enzymes are similar in the main chain folding but different in the spatial environments of tyrosine and tryptophan residues. The enzymatic activities of T. thermophilus RNase H at 37 and 70 degrees C for the hydrolysis of either an M13 DNA/RNA hybrid or a nonanucleotide duplex were approximately 5-fold lower and 3-fold higher, respectively, as compared with E. coli RNase HI at 37 degrees C. The melting temperature, Tm, of T. thermophilus RNase H was 82.1 degrees C in the presence of 1.2 M guanidine hydrochloride, which was 33.9 degrees C higher than that observed for E. coli RNase HI. The free energy changes of unfolding in the absence of denaturant, delta G[H2O], of T. thermophilus RNase H increased by 11.79 kcal/mol at 25 degrees C and 14.07 kcal/mol at 50 degrees C, as compared with E. coli RNase HI.  相似文献   

13.
Thermal inactivation of glucose oxidase (GOD; beta-d-glucose: oxygen oxidoreductase), from Aspergillus niger, followed first order kinetics both in the absence and presence of additives. Additives such as lysozyme, NaCl, and K2SO4 increased the half-life of the enzyme by 3.5-, 33.4-, and 23.7-fold respectively, from its initial value at 60 degrees C. The activation energy increased from 60.3 kcal mol-1 to 72.9, 76.1, and 88.3 kcal mol-1, whereas the entropy of activation increased from 104 to 141, 147, and 184 cal x mol-1 x deg-1 in the presence of 7.1 x 10-5 m lysozyme, 1 m NaCl, and 0.2 m K2SO4, respectively. The thermal unfolding of GOD in the temperature range of 25-90 degrees C was studied using circular dichroism measurements at 222, 274, and 375 nm. Size exclusion chromatography was employed to follow the state of association of enzyme and dissociation of FAD from GOD. The midpoint for thermal inactivation of residual activity and the dissociation of FAD was 59 degrees C, whereas the corresponding midpoint for loss of secondary and tertiary structure was 62 degrees C. Dissociation of FAD from the holoenzyme was responsible for the thermal inactivation of GOD. The irreversible nature of inactivation was caused by a change in the state of association of apoenzyme. The dissociation of FAD resulted in the loss of secondary and tertiary structure, leading to the unfolding and nonspecific aggregation of the enzyme molecule because of hydrophobic interactions of side chains. This confirmed the critical role of FAD in structure and activity. Cysteine oxidation did not contribute to the nonspecific aggregation. The stabilization of enzyme by NaCl and lysozyme was primarily the result of charge neutralization. K2SO4 enhanced the thermal stability by primarily strengthening the hydrophobic interactions and made the holoenzyme a more compact dimeric structure.  相似文献   

14.
The binding of glucono-1,5-lactone (gluconolactone) with almond beta-glucosidase was studied at pH 5.0 and 25 degrees C, in the absence and presence of glucose, by monitoring the enzyme fluorescence as a probe. From the results of fluorometric titration, the dissociation constant Kd and the maximum fluorescence intensity increase (percent) of the enzyme-gluconolactone complex relative to the enzyme alone, delta Fmax, were determined to be 12.7 microM and 14.7%, respectively. From the study of the temperature dependence of Kd, delta G degrees, delta H degrees and delta S degrees for the binding were evaluated to be -6.7 kcal mol-1, -3.5 kcal mol-1, and 10.8 e.u. (cal mol-1 deg-1), respectively, at 25 degrees C. The analysis of the fluorometric titration data in the presence of glucose revealed that these ligands bind competitively to the enzyme, probably at the same site. The results of a stopped-flow kinetic study are consistent with the following two-step mechanism: (formula; see text) which indicates that gluconolactone (L) and the enzyme (E) transiently form a loosely bound complex, ELtr (k-1/k+1 = 4.5 mM), in the first rapid bimolecular association step, and ELtr is converted into a more tightly bound complex EL (k+2 = 94 s-1, k-2 = 0.36 s-1) in the subsequent slow unimolecular process. The fluorescence intensity increase occurs solely in the latter step.  相似文献   

15.
A combination of calorimetric and spectroscopic techniques was used to evaluate the thermodynamic behavior of a set of DNA hairpins with the sequence d(GCGCTnGCGC), where n = 3, 5 and 7, and the interaction of each hairpin with ethidium. All three hairpins melt in two-state monomolecular transitions, with tm's ranging from 79.1 degrees C (T3) to 57.5 degrees C (T7), and transition enthalpies of approximately 38.5 kcal mol-1. Standard thermodynamic profiles at 20 degrees C reveal that the lower stability of the T5 and T7 hairpins corresponds to a delta G degree term of +0.5 kcal mol-1 per thymine residue, due to the entropic ordering of the thymine loops and uptake of counterions. Deconvolution of the ethidium-hairpin calorimetric titration curves indicate two sets of binding sites that correspond to one ligand in the stem with binding affinity, Kb, of approximately 1.8 x 10(6) M-1, and two ligands in the loops with Kb of approximately 4.3 x 10(4) M-1. However, the binding enthalpy, delta Hb, ranges from -8.6 (T3) to -11.6 kcal mol-1 (T7) for the stem site, and -6.6 (T3) to -12.7 kcal mol-1 (T7) for the loop site. Relative to the T3 hairpin, we obtained an overall thermodynamic contribution (per dT residue) of delta delta Hb = delta(T delta Sb) = -0.7(5) kcal mol-1 for the stem sites and delta delta Hb = delta(T delta Sb) = -1.5 kcal mol-1 for the loop sites. Therefore, the induced structural perturbations of ethidium binding results in a differential compensation of favorable stacking interactions with the unfavorable ordering of the ligands.  相似文献   

16.
The unfolding of the blue-copper protein azurin from Pseudomonas aeruginosa by guanidine hydrochloride, under nonreducing conditions, has been studied by fluorescence techniques and circular dichroism. The denaturation transition may be fitted by a simple two-state model. The total free energy change from the native to the unfolded state was 9.4 +/- 0.4 kcal.mol-1, while a lower value (6.4 +/- 0.4 kcal.mol-1) was obtained for the metal depleted enzyme (apo-azurin) suggesting that the copper atom plays an important stabilization role. Azurin and apo-azurin were practically unaffected by hydrostatic pressure up to 3000 bar. Site-directed mutagenesis has been used to destabilize the hydrophobic core of azurin. In particular either hydrophobic residue Ile7 or Phe110 has been substituted with a serine. The free energy change of unfolding by guanidinium hydrochloride, resulted to be 5.8 +/- 0.3 kcal.mol-1 and 4.8 +/- 0.3 kcal.mol-1 for Ile7Ser and Phe110Ser, respectively, showing that both mutants are much less stable than the wild-type protein. The mutated apoproteins could be reversible denatured even by high pressure, as demonstrated by steady-state fluorescence measurements. The change in volume associated to the pressure-induced unfolding was estimated to be -24 mL.mol-1 for Ile7Ser and -55 mL.mol-1 for Phe110Ser. These results show that the tight packing of the hydrophobic residues that characterize the inner structure of azurin is fundamental for the protein stability. This suggests that the proper assembly of the hydrophobic core is one of the earliest and most crucial event in the folding process, bearing important implication for de novo design of proteins.  相似文献   

17.
H C Cheung  C K Wang  N A Malik 《Biochemistry》1987,26(18):5904-5907
We have determined the free energy of formation of the binary complexes formed between skeletal troponin C and troponin T (TnC.TnT) and between troponin T and troponin I (TnT.TnI). This was accomplished by using TnC fluorescently modified at Cys-98 with N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine for the first complex and TnI labeled at Cys-133 with the same probe for the other complex. The free energy of the ternary complex formed between troponin C and the binary complex TnT.TnI [TnC.(TnT.TnI)] was also measured by monitoring the emission of 5-(iodoacetamido)eosin attached to Cys-133 of the troponin I in TnT.TnI. The free energies were -9.0 kcal.mol-1 for TnC.TnT, -9.2 kcal.mol-1 for TnT.TnI, and -8.7 kcal.mol-1 for TnC.(TnT.TnI). In the presence of Mg2+ the free energies of TnC.TnT and TnC.(TnT.TnI) were -10.3 and -10.9 kcal.mol-1, respectively; in the presence of Ca2+ the corresponding free energies were -10.6 and -13.5 kcal.mol-1. Mg2+ and Ca2+ had negligible effect on the free energy of TnT.TnI. From these results the free energies of the formation of troponin from the three subunits were found to be -16.8 kcal.mol-1, -18.9 kcal.mol-1, and -21.6 kcal.mol-1 in the presence of EGTA, Mg2+, and Ca2+, respectively. Most of the free energy decrease caused by Ca2+ binding to the Ca2+-specific sites is derived from stabilization of the TnI-TnC linkage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Eosinophil cationic protein (ECP)/ribonuclease 3 is a member of the RNase A superfamily involved in inflammatory processes mediated by eosinophils. ECP is bactericidal, helminthotoxic, and cytotoxic to tracheal epithelium cells and to several mammalian cell lines although its RNase activity is low. We studied the thermal stability of ECP by fourth-derivative UV absorbance spectra, circular dichroism, differential scanning calorimetry, and Fourier transform infrared spectroscopy. The T (1/2) values obtained with the different techniques were in very good agreement (T (1/2) approximately 72 degrees C), and the stability was maintained in the pH range between 5 and 7. The ECP calorimetric melting curve showed, in addition to the main transition, a pretransitional conformational change with a T (1/2) of 44 degrees C. Both calorimetric transitions disappeared after successive re-heatings, and the ratio DeltaH versus DeltaH (vH) of 2.2 indicated a significant deviation from the two-state model. It was observed that the thermal unfolding was irreversible. The unfolding process gives rise to changes in the environment of aromatic amino acids that are partially maintained in the refolded protein with the loss of secondary structure and the formation of oligomers. From the thermodynamic analysis of ECP variants, the contribution of specific amino acids, such as Trp10 and the region 115-122, to thermal stability was also determined. The high thermal stability of ECP may contribute to its resistance to degradation when the protein is secreted to the extracellular medium during the immune response.  相似文献   

19.
The binding of Streptomyces subtilisin inhibitor (SSI) to alpha-chymotrypsin (CT) (EC 3.4.21.1) was studied by isothermal and differential scanning calorimetry at pH 7.0. Thermodynamic quantities for the binding of SSI to the enzyme were derived as functions of temperature from binding constants (S. Matsumori, B. Tonomura, and K. Hiromi, private communication) and isothermal calorimetric experiments at 5-30 degrees C. At 25 degrees C, the values are delta G degrees b = -29.9 kJ mol-1, delta Hb = +18.7 (+/- 1.3) kJ mol-1, delta S degrees b = +0.16 kJ K-1 mol-1, and delta C p,b = -1.08 (+/- 0.11) kJ mol-1. The binding of SSI to CT is weak compared with its binding to subtilisin [Uehara, Y., Tonomura, B., & Hiromi, K. (1978) J. Biochem. (Tokyo) 84, 1195-1202; Takahashi, K., & Fukada, H. (1985) Biochemistry 24, 297-300]. This difference is due primarily to a less favorable enthalpy change in the formation of the complex with CT. The hydrophobic effect is presumably the major source of the entropy and heat capacity changes which accompany the binding process. The unfolding temperature of the complex is about 7 degrees C higher than that of the free enzyme. The enthalpy and the heat capacity changes for the unfolding of CT were found to be 814 kJ mol-1 and 17.3 kJ K-1 mol-1 at 49 degrees C. The same quantities for the unfolding of the SSI-CT complex are 1183 kJ mol-1 and 39.2 kJ K-1 mol-1 at 57 degrees C.  相似文献   

20.
The unfolding of recombinant human beta-NGF (NGF) in guanidine hydrochloride (GdnHCl) was found to be time dependent with the denaturation midpoint moving to lower GdnHCl concentration over time. Dissociation and extensive unfolding of the NGF dimer occurred rapidly in 5 M GdnHCl, but further unfolding of the molecule occurred over many days at 25 degrees C. Fluorescence spectroscopy, size-exclusion and reversed-phase HPLC, ultra-centrifugation, and proton NMR spectroscopy were used to ascertain that the slow unfolding step was between two denatured monomeric states of NGF (M1 and M2). Proton NMR showed the monomer formed at early times in GdnHCl (M1) had little beta-sheet structure, but retained residual structure in the tryptophan indole and high-field methyl regions of the spectrum. This residual structure was lost after prolonged incubation in GdnHCl giving a more fully unfolded monomer, M2. From kinetic unfolding experiments in 5 M GdnHCl it was determined that the conversion of M1 to M2 had an activation energy of 26.5 kcal/mol, a half-life of 23 h at 25 degrees C, and the rate of formation of M2 was dependent on the GdnHCl concentration between 5 and 7.1 M GdnHCl. These properties of the slow unfolding step are inconsistent with a proline isomerization mechanism. The rate of formation of the slow folding monomer M2 increases with truncation of five and nine amino acids from the NGF N-terminus. A model for the slow unfolding reaction is proposed where the N-terminus threads through the cystine knot to form M2, a loop-threading reaction, increasing the conformational freedom of the denatured state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号