首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Life shortening was investigated in both sexes of the B6CF1 (C57BL/6 x BALB/c) mouse exposed to fission neutrons and 60Co gamma rays. Three basic exposure patterns for both neutrons and gamma rays were compared: single exposures, 24 equal once-weekly exposures, and 60 equal once-weekly exposures. Ten different dose-response models were fitted to the data for animals exposed to neutrons. The response variable used for all dose-response modeling was mean after-survival. A simple linear model adequately described the response to neutrons for females and males at doses less than or equal to 80 cGy. At higher neutron dose levels a linear-quadratic equation was required to describe the life-shortening response. An effect of exposure pattern was observed prior to the detection of curvature in the dose response for neutrons and emerged as a potentially significant factor at neutron doses in the range of 40-60 cGy. Augmentation of neutron injury with dose protraction was observed in both sexes and began at doses as low as 60 cGy. The life-shortening response for all animals exposed to gamma rays (22-1918 cGy) was linear and inversely dependent upon the protraction period (1 day, 24 weeks, 60 weeks). Depending on the exposure pattern used for the gamma-ray baseline, relative biological effectiveness (RBE) values ranged from 6 to 43. Augmentation, because it occurred only at higher levels of neutron exposure, had no influence on the estimation of RBEm.  相似文献   

2.
Data from Argonne National Laboratory on lung cancer in 15,975 mice with acute and fractionated exposures to gamma rays and neutrons are analyzed with a biologically motivated model with two rate-limiting steps and clonal expansion. Fractionation effects and effects of radiation quality can be explained well by the estimated kinetic parameters. Both an initiating and a promoting action of neutrons and gamma rays are suggested. While for gamma rays the initiating event is described well with a linear dose-rate dependence, for neutrons a nonlinear term is needed, with less effectiveness at higher dose rates. For the initiating event, the neutron RBE compared to gamma rays is about 10 when the dose rate during each fraction is low. For higher dose rates this RBE decreases strongly. The estimated lifetime relative risk for radiation-induced lung cancers from 1 Gy of acute gamma-ray exposure at an age of 110 days is 1.27 for male mice and 1.53 for female mice. For doses less than 1 Gy, the effectiveness of fractionated exposure to gamma rays compared to acute exposure is between 0.4 and 0.7 in both sexes. For lifetime relative risk, the RBE from acute neutrons at low doses is estimated at about 10 relative to acute gamma-ray exposure. It decreases strongly with dose. For fractionated neutrons, it is lower, down to about 4 for male mice.  相似文献   

3.
The non-targeted effects of human exposure to ionising radiation, including transgenerational instability manifesting in the children of irradiated parents, remains poorly understood. Employing a mouse model, we have analysed whether low-dose acute or low-dose-rate chronic paternal γ-irradiation can destabilise the genomes of their first-generation offspring. Using single-molecule PCR, the frequency of mutation at the mouse expanded simple tandem repeat (ESTR) locus Ms6-hm was established in DNA samples extracted from sperm of directly exposed BALB/c male mice, as well as from sperm and the brain of their first-generation offspring. For acute γ-irradiation from 10-100 cGy a linear dose-response for ESTR mutation induction was found in the germ line of directly exposed mice, with a doubling dose of 57 cGy. The mutagenicity of acute exposure to 100 cGy was more pronounced than that for chronic low-dose-rate irradiation. The analysis of transgenerational effects of paternal irradiation revealed that ESTR mutation frequencies were equally elevated in the germ line (sperm) and brain of the offspring of fathers exposed to 50 and 100 cGy of acute γ-rays. In contrast, neither paternal acute irradiation at lower doses (10-25 cGy), nor low-dose-rate exposure to 100 cGy affected stability of their offspring. Our data imply that the manifestation of transgenerational instability is triggered by a threshold dose of acute paternal irradiation. The results of our study also suggest that most doses of human exposure to ionising radiation, including radiotherapy regimens, may be unlikely to result in transgenerational instability in the offspring children of irradiated fathers.  相似文献   

4.
At present, direct data on risk from protracted or fractionated radiation exposure at low dose rates have been limited largely to studies of populations exposed to low cumulative doses with resulting low statistical power. We evaluated the cancer risks associated with protracted exposure to external whole-body gamma radiation at high cumulative doses (the average dose is 0.8 Gy and the highest doses exceed 10 Gy) in Russian nuclear workers. Cancer deaths in a cohort of about 21,500 nuclear workers who began working at the Mayak complex between 1948 and 1972 were ascertained from death certificates and autopsy reports with follow-up through December 1997. Excess relative risk models were used to estimate solid cancer and leukemia risks associated with external gamma-radiation dose with adjustment for effects of plutonium exposures. Both solid cancer and leukemia death rates increased significantly with increasing gamma-ray dose (P < 0.001). Under a linear dose-response model, the excess relative risk for lung, liver and skeletal cancers as a group (668 deaths) adjusted for plutonium exposure is 0.30 per gray (P < 0.001) and 0.08 per gray (P < 0.001) for all other solid cancers (1062 deaths). The solid cancer dose-response functions appear to be nonlinear, with the excess risk estimates at doses of less than 3 Gy being about twice those predicted by the linear model. Plutonium exposure was associated with increased risks both for lung, liver and skeletal cancers (the sites of primary plutonium deposition) and for other solid cancers as a group. A significant dose response, with no indication of plutonium exposure effects, was found for leukemia. Excess risks for leukemia exhibited a significant dependence on the time since the dose was received. For doses received within 3 to 5 years of death the excess relative risk per gray was estimated to be about 7 (P < 0.001), but this risk was only 0.45 (P = 0.02) for doses received 5 to 45 years prior to death. External gamma-ray exposures significantly increased risks of both solid cancers and leukemia in this large cohort of men and women with occupational radiation exposures. Risks at doses of less than 1 Gy may be slightly lower than those seen for doses arising from acute exposures in the atomic bomb survivors. As dose estimates for the Mayak workers are improved, it should be possible to obtain more precise estimates of solid cancer and leukemia risks from protracted external radiation exposure in this cohort.  相似文献   

5.
Breast cancer incidence rates after radiation exposure in eight large cohorts are described and compared. The nature of the exposures varies appreciably, ranging from a single or a small number of high-dose-rate exposures (Japanese atomic bomb survivors, U.S. acute post-partum mastitis patients, Swedish benign breast disease patients, and U.S. infants with thymic enlargement) to highly fractionated high-dose-rate exposures (two U.S. tuberculosis cohorts) and protracted low-dose-rate exposure (two Swedish skin hemangioma cohorts). There were 1,502 breast cancers among 77,527 women (about 35,000 of whom were exposed) with 1.8 million woman-years of follow-up. The excess risk depends linearly on dose with a downturn at high doses. No simple unified summary model adequately describes the excess risks in all groups. Excess risks for the thymus, tuberculosis, and atomic bomb survivor cohorts have similar temporal patterns, depending on attained age for relative risk models and on both attained age and age at exposure for excess rate models. Excess rates were similar in these cohorts, whereas, related in part to the low breast cancer background rates for Japanese women, the excess relative risk per unit dose in the bomb survivors was four times that in the tuberculosis or thymus cohorts. Excess rates were higher for the mastitis and benign breast disease cohorts. The hemangioma cohorts showed lower excess risks suggesting ameliorating dose-rate effects for protracted low-dose-rate exposures. For comparable ages at exposure (approximately 0.5 years), the excess risk in the hemangioma cohorts was about one-seventh that in the thymus cohort, whose members received acute high-dose-rate exposures. The results support the linearity of the radiation dose response for breast cancer, highlight the importance of age and age at exposure on the risks, and suggest a similarity in risks for acute and fractionated high-dose-rate exposures with much smaller effects from low-dose-rate protracted exposures. There is also a suggestion that women with some benign breast conditions may be at elevated risk of radiation-associated breast cancer.  相似文献   

6.
Mammary tumour development was followed in two experiments involving a total of 2229 female Sprague-Dawley rats exposed to various doses of X or gamma rays at different dose rates. The data for another 462 rats exposed to tritiated water in one of these experiments were also analyzed. The incidence of adenocarcinomas and fibroadenomas at a given time after exposure increased linearly in proportion to total radiation dose for most groups. However, no significant increase in adenocarcinomas was observed with chronic gamma exposures up to 1.1 Gy, and the increase in fibroadenomas observed with chronic gamma exposures at a dose rate of 0.0076 Gy h-1 up to an accumulated dose of 3.3 Gy was small compared to that observed after acute exposures. The incidence of all mammary tumors increased almost linearly with the log of dose rate in the range 0.0076 to 26.3 Gy h-1 for 3 Gy total dose of gamma rays. The effects of X rays appeared to be less influenced by dose rate than were the effects of gamma rays.  相似文献   

7.
The neoplastic transformation of C3H mouse 10T1/2 cells was measured induced by fission-spectrum neutrons delivered at a high dose rate in five fractions over 4 days. The transformation frequency was significantly enhanced over that due to single equivalent total doses. These new data, in the low dose region, demonstrate an increased transformation frequency by fractionated versus single exposures of high-dose-rate fission-spectrum neutrons; an increase equal to that observed with low-dose-rate fission-spectrum neutrons (i.e., 0.086 rad/min). Estimates of the dose modifying factor (DMF), based upon the ratio of the initial linear portions of the induction curves for high and for low dose rates, suggest the same DMF (approximately 7.8) for both five daily fractions of high-dose-rate neutrons and for low-dose-rate neutrons. However, when these results are compared to those following high-dose-rate 60Co gamma rays (100 rad/min), the relative biological effectiveness (RBE) for low-dose-rate fission-spectrum neutrons based upon slope ratios is 19.6; similarly, the RBE relative to five daily fractions of 60Co gamma rays is 78.8.  相似文献   

8.
The effects of acute, protracted, or fractionated exposures to fission neutrons on survival times of female BALB/c mice were examined and compared. Mice were given single, brief exposures or exposures given in equal fractions at either 1- or 30-day intervals to doses of 0, 2.5, 5, 10, 20, 50, and 200 rad at the Health Physics Research Reactor (HPRR) or protracted exposures at rates ranging from 0.1 to 10 rad/day using a moderated 252Cf source to doses of 0, 2.5, 5, 10, 20, and 40 rad. The 252Cf source was moderated to have a similar spectron to that of the HPRR facility. After single or fractionated exposures the extent of life shortening increased rapidly over the 0-50 rad range and then began the plateau. No simple model adequately described the dose response over this entire dose range. Over the 0-50 rad dose range for exposures at the HPRR and over the 0-40 rad dose range for protracted exposures the dose response could be adequately described by either a linear model or a square root of the dose regression model except when the dose was fractionated using a 30-day interval. In this instance a linear model provided an adequate fit while a square root of the dose model could be rejected. No increase in effectiveness after fractionation or protraction was observed for neutron-induced life shortening at doses below 50 rad, while at 50 and 200 rad an increase in effectiveness was observed in this and in previous studies. These data were interpreted to suggest that in the dose range below 20-40 rad the dose-effect curve for life shortening may be linear and begins to flatten at higher doses rather than continuously bending at low doses.  相似文献   

9.
The influence of low-dose-rate chronic radiation exposure and adaptive responses on non-cancer diseases is largely unknown. We examined the effect of low-dose/low-dose-rate fractionated or single exposures on spontaneous chronic ulcerative dermatitis in Trp53 normal or heterozygous female C57BL/6 mice. From 6 weeks of age, mice were exposed 5 days/week to single daily doses (0.33 mGy, 0.7 mGy/h) totaling 48, 97 or 146 mGy over 30, 60 or 90 weeks, and other Trp53+/- mice were exposed to a single dose of 10 mGy (0.5 mGy/min) at 20 weeks of age. The 90-week exposure produced an adaptive response, decreasing both disease frequency and severity in Trp53+/+ mice and extending the life span of older animals euthanized due to severe disease. The 30- or 60-week exposures had no significant protective or detrimental effect. In contrast, the chronic, fractionated exposure for 30 or 60 weeks significantly increased the frequency and severity of the disease in older Trp53+/- mice, significantly decreasing the life span of the animals required to be euthanized for disease. Similarly, the single 10-mGy exposure also increased disease frequency in older animals. However, the chronic, fractionated exposure for 90 weeks prevented these detrimental effects, with disease frequency and severity not different from unexposed controls. We conclude that very low-dose fractionated exposures can induce a protective adaptive response in both Trp53 normal and heterozygous mice, but that a lower threshold level of exposure, similar in both cases, must first be passed. In mice with reduced Trp53 functionality, doses below the threshold can produce detrimental effects.  相似文献   

10.
This study was designed to examine the dose-response relationships for tumor induction after neutron irradiation in female BALB/c mice, with emphasis on the response in the dose range 0 to 50 rad. Tumors induced after radiation exposure included ovarian tumors, lung adenocarcinomas, and mammary adenocarcinomas. For comparison the dose responses for induction of these tumors after 137Cs gamma irradiation were also examined. As previously described for the female RFM mouse, the data for ovarian tumor induction after neutron and gamma irradiation were consistent with a threshold model. For lung and mammary tumors the dose-response curve after neutron irradiation appeared to "bend over" in the dose range 10 to 20 rad. The factors responsible for this bend-over and their relative contributions to the overall form of the dose-response relationship are not presently known. However, these data strongly indicate that extrapolation from data above 50 rad could result in a significant underestimate of risks. Further, it is clear that current models of neutron carcinogenesis are inadequate, since such a bend-over is not predicted at these low dose levels.  相似文献   

11.
Data are presented on the mean aftersurvival of male B6CF1 mice exposed for 22 h per day, 5 days per week, to 60Co gamma radiation at dose rates of 1.36 to 12.64 x 10(-3) cGy/min for 23 weeks or 1.36 to 6.32 x 10(-3) cGy/min for 59 weeks. For deaths from all causes, linear dose-response curves were obtained with slopes (days of life lost/cGy) of 0.158 +/- 0.016 and 0.077 +/- 0.002 for 23- and 59-week exposures, respectively. These values were not significantly altered when the analysis was restricted to those mice dying with tumors (92% of the total) or to those presumably dying from tumors (82% of the total). Analysis of mortality rates showed that about 90% of the radiation-specific excess mortality was tumor related. The 59-week exposure series induced only a small increase in the number of days of life lost/cGy/weekly fraction over that induced by 23 weeks of irradiation, 4.53 +/- 0.15 compared to 3.64 +/- 0.36 days lost/cGy/weekly fraction. This lower than expected value for 59 weeks of exposure may signal the approach to the final linear, additive, injury term postulated from earlier studies at this laboratory with low-dose-rate, daily, duration-of-life 60Co gamma irradiation.  相似文献   

12.
A total of 6316 B6CF1 mice were exposed to 60 equal once-weekly doses of 0.85-MeV fission neutrons (0.033 to 0.67 cGy per weekly fraction) or 60Co gamma rays (1.67 to 10 cGy per weekly fraction) and were observed until they died. The mean aftersurvival times showed that the dose-response curves for both neutron and gamma-ray exposures were indistinguishable from linear over all doses except the highest neutron dose. The relative biological effectiveness (RBE) for neutrons, calculated as the ratio of the initial slopes of the dose-response curves, was about 20 for both males and females. Essentially the same value was obtained by a number of other analyses of the data. Virtually all of the radiation-specific excess mortality could be attributed to tumors; after decrementation of the population for nontumor deaths, the value of the RBE was not significantly changed.  相似文献   

13.
BALB/c male mice (12 weeks old) were exposed to a single or fractionated exposure of 137Cs gamma rays. The fractionated dose was split into 10 equal doses delivered at an interval of 1 day. The causes and possible causes of spontaneous death were ascertained by autopsy and histological examination, and the data were treated by competing risk analysis. Life shortening followed a linear dose dependency and was about the same for fractionated (38.1 +/- 3.1 days/Gy) as for single (46.2 +/- 4.3 days/Gy) exposure. Death from tumor disease was enhanced and that from nonstochastic lung and kidney diseases was reduced after fractionated compared to single exposure.  相似文献   

14.
Dose-response curves were determined for pulmonary adenomas and adenocarcinomas in mice after single acute doses of 200 kVp X-rays and cyclotron neutrons (E = 7.5 MeV). A serial-killing experiment established that the radiation induces the tumours and does not merely accelerate the appearance of spontanoeus cancers [corrected]. The dose versus incidence (I) of tumours in male and female mice for X-ray doses between 0.25 and 7.5 Gy is 'bell-shaped' and best fitted with a purely quadratic induction and exponential inactivation terms, i.e. I = A + BD2e-alpha D. In contrast, the tumour dose-response after 0.1-4.0 Gy of neutrons is best fitted by I = A + BDe-alpha D and is steeply linear less than or equal to 1 Gy, peaks between 1 and 3 Gy and sharply declines at 4.0 Gy. The data for the female mice less than or equal to 1 Gy neutrons are best fitted to the square root of the dose. A major objective of the experiments was to derive neutron RBE values. Because of the differences between the X-ray (quadratic) and neutron (linear) curves, the RBEn will vary inversely with decreasing X-ray dose. The RBE values at 1 Gy of X-rays derived from the B coefficients in the above equations are 7.4 +/- 3.2 (male and female); 8.6 +/- 3.6 (female) and 4.7 +/- 1.8 (male). These are high values and imply even higher values at the doses of interest to radiation protection. If, however, one restricts the analysis to the initial, induction side of the response (less than or equal to 1 Gy neutrons, less than or equal to 3 Gy X-rays) then good linear fits are obtainable for both radiations and indicate neutron RBE values of 7.4 +/- 2.3 for female mice and 4.5 +/- 1.8 for males, and these are independent of dose level.  相似文献   

15.
Male and female hybrid BCF1 (C57BL/6 BdxBALB/c Bd) were exposed to total neutron doses of 0.06, 0.12, 0.24, and 0.48 Gy in fractions over a period of 24 weeks. The fractionation regimens were: 24 weekly fractions of 0.0025 Gy, 12 fractions of 0.01 Gy every 2 weeks, 6 fractions of 0.04 Gy every 4 weeks, and 3 fractions of 0.16 Gy every 8 weeks. In order to detect any change in susceptibility with age over the period of exposures from 16 weeks to 40 weeks of age, mice were exposed to single doses of 0.025, 0.05, 0.10, and 0.2 Gy at 16 and 40 weeks of age. These experiments were designed to test whether the initial parts of the dose-response relationships for life shortening and cancer induction could be determined economically by using fractionated exposures and whether or not the initial slopes were linear. The conclusions were that for life shortening and most radiogenic cancers, the dose-effect curves are linear and that fractionation of the neutron dose has no effect on the magnitude of the response of equal total doses over the range of doses studied. The ratio of such initial slopes and comparable linear initial slopes for a reference radiation should provide maximum and constant relative biological effectiveness values.  相似文献   

16.
The effect of fractionated doses of Co(60) gamma-irradiation (2 Gy per fraction over 5 days), as is delivered in cancer radiotherapy, was compared with acute doses of 10 and 2 Gy, in a serially transplanted mouse fibrosarcoma grown in Swiss mice. The aspects that were studied included the three major mitogen-activated protein (MAP) kinases, namely p44 MAP kinase, p38 MAP kinase, and stress-activated protein (SAP) kinase, which are known to be involved in determining the cell fate following exposure to ionizing radiation. The response of dual specificity phosphatase PAC1 which is involved in the dephosphorylation of MAP kinases was also looked at. There were significant differences in the response to different dose regimens for all the factors studied. Fractionated irradiation elicited an adaptive response with a sustained activation over 7 days of prosurvival p44 MAP kinase which was balanced by the increased activation of proapoptotic p54 SAP kinase up to 1 day post-irradiation, whereas, phosphorylated p38 MAP kinase showed a decrease at most time points. PAC1 was induced following fractionated irradiation and may be acting as a feed back regulator of p44 MAP kinase. The activation of SAP kinase after fractionated irradiation may be a stress response, whereas, constitutively activated p44 MAP kinase may play an important role in the induction of radioresistance during fractionated radiotherapy of cancer and may serve as a promising target for specific inhibitors to enhance the efficacy of radiotherapy.  相似文献   

17.
The induction of reciprocal translocation in rhesus monkey spermatogonial stem cells was studied following exposure to low doses of acute X rays (0.25 Gy, 300 mGy/min) or to low-dose-rate X rays (1 Gy, 2 mGy/min) and gamma rays (1 Gy, 0.2 mGy/min). The results obtained at 0.25 Gy of X rays fitted exactly the linear extrapolation down from the 0.5 and 1.0 Gy points obtained earlier. Extension of X-ray exposure reduced the yield of translocations similar to that in the mouse by about 50%. The reduction to 40% of translocation rate after chronic gamma exposure was clearly less than the value of about 80% reported for the mouse over the same range of dose rates. Differential cell killing with ensuing differential elimination of aberration-carrying cells is the most likely explanation for the differences between mouse and monkey.  相似文献   

18.
Increased fractionation spares late reacting normal tissues more than acute reacting normal tissues. A linear quadratic model is valid from large dose per fraction down to dose per fraction of 2 Gy. Experimental studies on animals and clinical studies on the spinal cord tolerance have shown incidences of myelopathy at doses lower than 50 Gy. The α/β value of the linear quadratic model have been lower for low doses per fraction, indicating a sparing effect of altered fractionation for spinal cord myelitis. Animal data, clinical and radiobiological explanations suggest limitation of the radiobiological models. Further data suggest that one must not assume the spinal cord to have a greater tolerance at doses per fraction below the conventional dose per fraction of 2 Gy.  相似文献   

19.
The frequency of micronucleated cells was determined in the bone marrow of female BALB/c mice exposed to different doses of gamma-radiation at 1, 3, 10 and 14 days post irradiation. The frequency of micronucleated cells increased with the increase in exposure dose at all time period studied. However, the frequency of micronucleated cells declined with time irrespective of exposure dose. The dose-response curve thus obtained was linear.  相似文献   

20.
The in vivo effects of chronic, ultra low dose rates of gamma radiation in mice were evaluated using fluorescence in situ hybridization and the in vivo micronucleus test. SWR×C57BL/6 mice were divided into nine exposure groups and continuously exposed to 0.5, 2.0 or 4.0 cGy 137Cs per day for 30, 60 or 90 days; unexposed control mice were also included. Following exposure, blood samples were taken from each animal and the frequencies of micronucleated polychromatic erythrocytes (MPCE) and micronucleated normochromatic erythrocytes (MNCE) were determined using flow cytometry. Peripheral blood lymphocytes were cultured and analyzed by chromosome painting to determine translocation frequencies. A significant dose rate response was seen in translocations and both MPCE and MNCE. Comparisons were made between the three chronic dose rates and it was determined that there was no significant difference among translocation frequencies for each rate. However, a significant difference was found between the chronic exposures reported here and the fractionated daily exposures reported previously. Dose rate reduction effects, ranging from 3 at low doses to 14 at high doses, were found for chronic versus acute exposures. The possibility of gender effects was investigated in both micronucleus and translocation data. No gender effect was found in translocation induction, but a slight effect was suggested in micronucleus induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号