首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A 6.7 kb HindIII fragment from the Sym-plasmid of strain NGR234 was found to code a nodD-like gene flanked by two loci which were required for siratro host range. Transfer of the 6.7 kb fragment from NGR234 to R. trifolii strain ANU843 conferred extended host range ability to this strain on siratro plants but not to other plants normally nodulated by strain NGR234. Tn5 mutagenesis of the 6.7 kb fragment showed that insertions located into loci flanking the nodD-like gene abolished the extended host range phenotype. A hybridization probe spanning one of the host specificity loci was shown to hybridize to three specific bands in the NGR234 genome. Complementation and DNA hybridization data showed that the nodD-like gene of strain NGR234 was functionally similar to that in R. trifolii. The introduction to R. trifolii of the 6.7 kb HindIII fragment containing Tn5 insertions located in the nodD-like gene did not abolish the ability to extend the host range of R. trifolii to siratro plants. However, transfer of the 6.7 kb HindIII to R. trifolii derivatives containing Tn5 insertions into either nodA, B or C or other R. trifolii nod genes failed to confer siratro nodulation to these recipients. Reconstruction experiments showed that the 6.7 kb fragment from strain NGR234 and the 14 kb nodulation region of R. trifolii could induce the nodulation of siratro plants when introduced together into Sym-plasmid-cured Rhizobium strains.  相似文献   

2.
Summary R-prime plasmids carrying regions of the symbiotic (Sym) plasmid of the broad host range Rhizobium strain NGR234 were isolated in intergeneric matings with Escherichia coli K12. Three R-primes carrying approximately 180 kb (pMN23), 220 kb (pMN31) and 330 kb (pMN49) of Sym DNA were characterized in more detail. Restriction enzyme analysis and hybridization studies showed that these R-primes carried large overlapping regions of the Sym plasmid, and had the symbiotic genes (two copies of nifH, D and K; nodA, B, C and D; region II; host specific nodulation (hsn) genes) located over half of the 470 kb Sym plasmid. Only the largest of these R-primes (pMN49) contained the complete nodulation host range of the original parent strain NGR234. This broad host range was shown to be present on plasmid pMN49 by being expressed in Agrobacterium tumefaciens strain A136. Furthermore the R-prime plasmids were shown to contain different regions of distinctive host specific nodulation (hsn) for tropical legume infection and for the nodulation of the non-legume Parasponia. Nodulation of soybeans, however, required an additional region that was not essential for the nodulation of other tropical legumes. Strain NGR234 was also found to nodulate the stem and roots of the tropical legume Sesbania rostrata at a very low efficiency. However, the R-prime mini Sym plasmid constructions enabled a greater efficiency of nodulation of Sesbania rostrata to occur.  相似文献   

3.
Nod factors of Rhizobium are a key to the legume door   总被引:7,自引:3,他引:4  
Symbiotic interactions between rhizobia and legumes are largely controlled by reciprocal signal exchange. Legume roots excrete flavonoids which induce rhizobial nodulation genes to synthesize and excrete lopo-oligosaccharide Nod factors. In turn, Nod factors provoke deformation of the root hairs and nodule primordium formation. Normally, rhizobia enter roots through infection threads in markedly curled root hairs. If Nod factors are responsible for symbiosis-specific root hair deformation, they could also be the signal for entry of rhizobia into legume roots. We tested this hypothesis by adding, at inoculation, NodNGR-factors to signal-production-deficient mutants of the broad-host-range Rhizobium sp. NGR234 and Bradyrhizobium japorticum strain USDA110. Between 10 −7 M and 10−6 M NodNGR factors permitted these NodABC mutants to penetrate, nodulate and fix nitrogen on Vigna unguiculata and Glycine max, respectively. NodNGR factors also allowed Rhizobium fredii strain USDA257 to enter and fix nitrogen on Calopogonium caeruleum, a non-host. Detailed cytological investigations of V. unguiculata showed that the NodABC mutant UGR AnodABC, in the presence of NodNGR factors, entered roots in the same way as the wild-type bacterium. Since infection threads were also present in the resulting nodules, we conclude that Nod factors are the signals that permit rhizobia to penetrate legume roots via infection threads.  相似文献   

4.
Rhizobium fredii is a nitrogen-fixing symbiont from China that combines broad host range for nodulation of legume species with cultivar specificity for nodulation of soybean. We have compared 10R. fredii strains withRhizobium sp. NGR234, a well known broad host range strain from Papua New Guinea. NGR234 nodulated 16 of 18 tested lugume species, and nodules on 14 of the 16 fixed nitrogen. TheR. fredii strains were not distinguishable from one another. They nodulated 13 of the legumes, and in only nine cases were nodules effective. All legumes nodulated byR. fredii were included within the host range of NGR234. Restriction fragment length polymorphisms (RFLPs) were detected with four DNA hybridization probes: the regulatory and commonnod genes,nodDABC; the soybean cultivar specificity gene,nolC; the nitrogenase structural genes, nifKDH; and RFRS1, a repetitive sequence fromR. fredii USDA257. A fifth locus, corresponding to a second set of soybean cultivar specificity genes,nolBTUVWX, was monomorphic. Using antisera against whole cells of threeR. fredii strains and NGR234, we separated the 11 strains into four serogroups. The anti-NGR234 sera reacted with a singleR. fredii strain, USDA191. Only one serogroup, which included USDA192, USDA201, USDA217, and USDA257, lacked cross reactivity with any of the others. Although genetic and phenotypic differences amongR. fredii strains were as great as those between NGR234 andR. fredii, our results confirm that NGR234 has a distinctly wider host range thanR. fredii.  相似文献   

5.
Summary Five specific transposon-induced nodulation defective (Nod) mutants from different fast-growing species ofRhizobium were used as the recipients for the transfer of each of several endogenous Sym(biosis) plasmids or for recombinant plasmids that encode early nodulation and host-specificity functions. The Nod mutants were derived fromR. trifolii, R. meliloti and from a broad-host-rangeRhizobium strain which is able to nodulate both cowpea (tropical) legumes and the non-legumeParasponia. These mutants had several common features (a), they were Nod on all their known plant hosts, (b), they could not induce root hair curling (Hac) and (c), the mutations were all located on the endogenous Sym-plasmid of the respective strain. Transfer to these mutants of Sym plasmids (or recombinant plasmids) encoding heterologous information for clover nodulation (pBR1AN, pRt032, pRt038), for pea nodulation (pJB5JI, pRL1JI::Tn1831), for lucerne nodulation (pRmSL26), or for the nodulation of both tropical legumes and non-legumes (pNM4AN), was able to restore root hair curling capacity and in most cases, nodulation capacity of the original plant host(s). This demonstrated a functional conservation of at least some genes involved in root hair curling. Positive hybridization between Nod DNA sequences fromR. trifolii and from a broad-host-rangeRhizobium strain (ANU240) was obtained to other fast-growingRhizobium strains. These results indicate that at least some of the early nodulation functions are common in a broad spectrum ofRhizobium strains.  相似文献   

6.
Main nodulation signal molecules in the peanut–bradyrhizobia interaction were examined. Flavonoids exuded by Arachis hypogaea L. cultivar Tegua were genistein, daidzein and chrysin, the latest being released in lower quantities. Thin layer chromatography analysis from genistein-induced bacterial cultures of three peanut bradyrhizobia resulted in an identical Nod factor pattern, suggesting low variability in genes involved in the synthesis of these molecules. Structural study of Nod factor by mass spectrometry and NMR analysis revealed that it shares a variety of substituents with the broad-host-range Rhizobium sp. NGR234 and Bradyrhizobium spp. Nodulation assays in legumes nodulated by these rhizobia demonstrated differences between them and the three peanut bradyrhizobia. The three isolates were classified as Bradyrhizobium sp. Their fixation gene nifD and the common nodulation genes nodD and nodA were also analyzed. Accession numbers: AY427207, EF202193, EF158295 (16S rRNA gene of strains NLH25, NOD31 and NDEHE, respectively); DQ295199, DQ295200, DQ295201 (Partial nifD gene sequences of strains NLH25, NOD31 and NDEHE, respectively).  相似文献   

7.
A simple clonal micro-propagation system for Parasponia andersoniiwas employed to study the nodulation response of this non-legumeto inoculation by the broad host range Rhizobium sp. NGR234,isolated from Lablab purpureus, and also to tropical legumerhizobia isolated from Aeschynomene species. Partially effectivenodules, assayed by acetylene reduction and 15N dilution procedures,were induced with strain NGR234 and its spontaneous streptomycinresistantmutant ANU240. Effective nodules were produced by one of theAeschynomene strains (ORS302) tested, with rates of acetylenereduction comparable to those of root nodules produced by Bradyrhizobiumstrain CP279, originally isolated from P. andersonii. Lightand transmission electron microscopy showed that there was acorrelation between the nitrogen fixing capability of the symbiosisbetween NGR234 and Parasponia and the number of persistent infection(fixation) threads within the nodule cells. Key words: Parasponia, Bradyrhizobium, Rhizobium, Aeschynomene, micro-propagation, root nodules, nitrogen fixation  相似文献   

8.
Apart from the ability to nodulate legumes, fast-and slow-growing rhizobia have few bacteriological traits in common. Given that there is only one pathway to nodulation, DNA sequences conserved in fast- and slow-growing organisms that nodulate the same host should be strongly enriched in infectivity genes. We tested this hypothesis with seven fast-growing and five slow-growing strains that produced responses varying from fully effective nodulation through various ineffective associations to non-nodulation on four different hosts (Lotus pedunculatus, Lupinus nanus, Macroptilium atropurpureum, and Vigna unguiculata). When restriction enzyme digested total DNA from 10 of the strains was separately hybridized with nick-translated plasmid DNA isolated from 4 fast-growing strains, variable but significant homologies were found with all 10 strains. Part of this homology was shown to be associated with the nifKDH genes for nitrogenase and part with putative nodulation genes carried on pC2, a cosmid clone containing a 37 kbp region of the large sym plasmid present in the fast-growing broad-host range Rhizobium sp. strain NGR234. Analysis of the extent of homology between the plasmids of 3 fastgrowing strains (NGR234, TAL 996 and UMKL 19) able to effectively nodulate Vigna unguiculata showed them to have homologous DNA fragments totalling 47 kbp. This core homology represents less than 12% of the total coding capacity of the sym plasmid present in each of these strains.Abbreviations Sym symbiotic sequences/plasmids - nod genes required for nodulation - nod putative nod genes - nif genes required for the synthesis of the enzyme nitrogenase  相似文献   

9.
Staining of infected legume roots with 0.01% methylene blue facilitated the observation of the initial steps of the Rhizobium—legume symbiosis. It allowed particularly the visualization by bright-field microscopy of infection threads in the root hairs and the root cortex of the host plant.  相似文献   

10.
Summary The first of two major steps in the infection process in roots ofParasponia rigida (Ulmaceae) following inoculation byRhizobium strain RP501 involves the invasion ofRhizobium into the intercellular space system of the root cortex. The earliest sign of root nodule initiation is the presence of clumps of multicellular root hairs (MCRH), a response apparently unique amongRhizobium-root associations. At the same time or shortly after MCRH are first visible, cell divisions are initiated in the outer root cortex of the host plant, always subjacent to the MCRH. No infection threads were observed in root hairs or cortical cells in early stages. Rhizobial entry through the epidermis and into the root cortex was shown to occur via intercellular invasion at the bases of MCRH. The second major step in the infection process is the actual infectionper se of host cells by the rhizobia and formation of typical intracellular infection threads with host cell accommodation. This infection step is probably the beginning of the truly symbiotic relationship in these nodules. Rhizobial invasion and infection are accompanied by host cortical cell divisions which result in a callus-like mass of cortical cells. In addition to infection thread formation in some of these host cortical cells, another type of rhizobial proliferation was observed in which large accumulations of rhizobia in intercellular spaces are associated with host cell wall distortion, deposition of electron-dense material in the walls, and occasional deleterious effects on host cell cytoplasm.  相似文献   

11.
We examined the development of the aquatic N2-fixing symbiosis between Rhizobium sp. (itNeptunia) and roots of Neptunia natans L. f. (Druce) (previously N. oleracea Lour.) under natural and laboratory conditions. When grown in its native marsh habitat, this unusual aquatic legume does not develop root hairs, the primary sites of rhizobial infection for most temperate legumes. Under natural conditions, the aquatic plant floats and develops nitrogen-fixing nodules at emergence of lateral roots on the primary root and on adventitious roots at stem nodes, but not from the stem itself. Cytological studies using various microscopies revealed that the mode of root infection involved an intercellular route of entry followed by an intracellular route of dissemination within nodule cells. After colonizing the root surface, the bacteria entered the primary root cortex through natural wounds caused by splitting of the epidermis and emergence of young lateral roots, and then stimulated early development of nodules at the base of such roots. The bacteria entered the nodule through pockets between separated host cells, then spread deeper in the nodule through a narrower intercellular route, and eventually evoked the formation of infection threads that penetrated host cells and spread throughout the nodule tissue. Bacteria were released from infection droplets at unwalled ends of infection threads, became enveloped by peribacteroid membranes, and transformed into enlarged bacteroids within symbiosomes. In older nodules, the bacteria within symbiosomes were embedded in an unusual, extensive fibrillar matrix. Cross-inoculation tests of 18 isolates of rhizobia from nodules of N. natans revealed a host specificity enabling effective nodulation of this aquatic legume, with lesser affinity for Medicago sativa and Ornithopus sp., and an inability to nodulate several other crop legume species. Acetylene reduction (N2 fixation) activity was detected in nodules of N. natans growing in aquatic habitats under natural conditions in Southern India. These studies indicate that a specific group of Rhizobium sp. (Neptunia) occupies a unique ecological niche in aquatic environments by entering into a N2-fixing root-nodule symbiosis with Neptunia natans.We thank J. Whallon for technical assistance, G. Truchet, J. Vasse, S. Wagener, J. Beaman, F. DeBruijn, F. Ewers, and A. Squartini for helpful comments, and N.N. Prasad and G. Birla for assistance in conducting field observations. This work was supported by the Michigan Agricultural Experiment Station and National Science Foundation grants DIR-8809640 and BIR-9120006 awarded to the MSU Center for Microbial Ecology. This study is dedicated to the memory of Dr. Joseph C. Burton, a friend and colleague who made many contributions to the study of the Rhizobiumlegume symbiosis.  相似文献   

12.
Summary Rhizobium sp. NGR234 in a fast-growing Rhizobium strain with a broad host range. The location and role of chromosomal genes involved in cellular metabolism or in the legume symbioses is unknown. We isolated a series of auxotrophic and antibiotic resistant mutants of NGR234 and utilized a chromosome mobilization system based on Tn5-Mob and pJB3JI; Tn5-Mob donor strains behaved like Hfr strains, transferring the chromosome polarly at high frequency from a fixed point of insertion. The use of four different strains with Tn5-Mob located at different nutritional loci in crosses with double auxotrophic recipients, allowed us to build up a circular linkage map of NGR234 based on relative recombination frequencies. Also, symbiotically important genes identified by site-directed mutagenesis, such as hemA and ntrA, could be located and mapped on the chromosome.Abbreviations Tc tetracycline - Sp spectinomycin - Rif rifampicin - Km kanamycin  相似文献   

13.
Summary The clonedntrA (rpoN) gene andntrA mutants ofRhizobium meliloti were used to isolate the homologous gene from the broad-host rangeRhizobium sp. NGR234 by hybridization and interspecies complementation. The NGR234 locus was analyzed by deletion and insertional mutagenesis. A site-directedntrA mutant, NGR234rn1, was made with an interposon, GmI, and its phenotype was examined ex planta and in symbiosis. NGR234rn1 formed Fix nodules on six genera tested from among its legume hosts, including both indeterminate and determinate nodule-type plants. Formation of nodules onMacroptilium was delayed, and expression of anR. meliloti nodABC-lacZ fusion was reduced by the mutant allele.  相似文献   

14.
Summary The hemA gene which encodes -aminolaevulinic acid synthase (ALAS), was cloned and characterized from the broad host-range Rhizobium strain NGR234. A cosmid, identified by hybridization with the cloned gene of R. meliloti and complementation of an R. meliloti hemA mutant, was subcloned to yield a 5.5 kb fragment containing the entire NGR234 gene. A physical-genetic map was made and the interposon was introduced into a single EcoRI site which bisects the gene. The mutated gene was homogenotized into NGR234 to generate a hemA mutant, with a view to evaluating the role of rhizobial bacteroid ALAS activity for a wide variety of legume symbioses. The mutant strain formed an ineffective (Fix) symbiosis with all tested host plants. These included tropical legumes that produce either indeterminate (Leucaena) or determinate (Desmodium, Macroptilium, Lablab, Vigna) root nodules.Abbreviations ALA -aminolaevulinic acid - ALAS aminolaevulinic acid synthase - Lb leghaemoglobin - Lb-haem haem moiety of leghaemoglobin  相似文献   

15.
Summary Spontaneous nodules developed on the roots of white clover (Trifolium repens cv. Ladino) in the absence ofRhizobium. A small subpopulation of uninoculated clover plants (0.2%) exhibited white, single-to-multilobed elongated structures on their root systems when grown without fixed nitrogen. Clonal propagation using aseptic stolons confirmed the genetic stability of the observation. Few if any viable bacteria of unknown origin were recovered from surfacesterilized structures. Nodule contents were incapable of eliciting nodulation. Histological observations showed that these structures possessed all the characteristic features of indeterminate nodules, such as active meristem, cortex, endodermal layer, vascular strands, and a central zone with parenchyma cells. Infection threads, intercellular or intracellular bacteria were absent. Instead, numerous starch grains were observed in the central zone, a feature absent in normal nitrogen-fixing nodules. Our observation broadens the concept of spontaneous nodulation, believed to be restricted to alfalfa (Medicago sativa), to other legumes, and suggests a degree of generality among indeterminately nodulated legumes displaying natural heterozygosity.  相似文献   

16.
Two sequenced nodulation regions of lupin Bradyrhizobium sp. WM9 carried the majority of genes involved in the Nod factor production. The nod region I harbored: nolA, nodD, nodA, nodB, nodC, nodS, nodI, nodJ, nolO, nodZ, fixR, nifA, fixA, nodM, nolK and noeL. This gene arrangement resembled that found in the nodulation region of Bradyrhizobium japonicum USDA110, however strain WM9 harbored only one nodD gene copy, while the nodM, nolK and noeL genes had no counterparts in the 410 kb symbiotic region of strain USDA110. Region II harbored nolL and nodW, but lacked an nodV gene. Both regions carried ORFs that lacked similarity to the published USDA110 sequences, though they had homologues in symbiotic regions of Rhizobium etli, Sinorhizobium sp. NGR234 and Mesorhizobium loti. These differences in gene content, as well as a low average sequence identity (70%) of symbiotic genes with respect to B. japonicum USDA110 were in contrast with the phylogenetic relationship of USDA110 and WM9 revealed by the analysis of 16S rDNA and dnaK sequences. This most likely reflected an early divergence of symbiotic loci, and possible co-speciation with distinct legumes. During this process the loss of a noeI gene and the acquisition of a nolL gene could be regarded as an adaptation towards these legumes that responded to Nod factors carrying 4-O-acetylfucose rather than 2-O-methylfucose. This explained various responses of lupins and serradella plants to infection by mutants in nodZ and nolL genes, knowing that serradella is a stringent legume while lupins are more promiscuous legumes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
18.
利用光学和电子显微镜对紫云英根瘤菌菌株109和广宿主的快生型根瘤菌菌株NGR234感染温带型豆科植物紫云英进行了研究,结果表明根瘤菌感染紫云英是通过在根毛中形成侵染线的途径。电子显微镜研究揭示了固氮根瘤中细胞内侵染线的存在。接种二天后,首先可观察到根毛的卷曲或分枝。接种四至五天后,在每株植物卷曲的根毛中可看到侵染线。接种八至十天后的植株出现肉眼可见的根瘤。菌株NGR234能够在紫云英上诱导根毛的卷曲,侵染线和根瘤的形成,但所形成的根瘤却未能固氮,根瘤中无明显的类菌体区,但有少数包有细菌的侵染线。NGR234抗抗菌素的衍生菌均未能使紫云英结瘤。将NGR234的共生质粒转移至三叶草、苜蓿、豌豆、快生型大豆根瘤菌和农杆菌,亦未能使这些细菌获得紫云英上结瘤的能力。  相似文献   

19.
Infection and nodule development were studied by light and electronmicroscopy in Aotus ericoides, a woody native Australian legume,inoculated with a slow-growing field isolate of Rhizobium. Rhizobiabound to straight, but not deformed, root hairs, as detectedby immunofluorescence. Neither markedly curled root hairs norroot hairs with infection threads were seen. Nodules were indeterminate(astragaloid), with a peripheral meristematic layer, few vasculartraces and both infected and uninfected cells in the centralinfected zone. Infection threads containing contorted bacteriawere present throughout the nodule. Swollen, rod-shaped bacteriain infected cells were in groups in vesicles bounded by plasmalemma-derivedperibacteroid membranes. Senescence in infected cells was associatedwith accumulation of a fibrillar matrix inside peribacteroidmembranes, distortion of bacteria and destruction of most cytoplasmiccontents of the bacteria and host cells; however, most bacterialand plant membranes and plant cell walls remained intact. Ineffectivenesswas associated with relatively little, short-lived infectedtissue. Events in infection and nodule development were similarto those in most herbaceous legumes but showed characters ofboth determinate and indeterminate nodules. Key words: Bacteroids, Legume, Nitrogen-fixing, Nodule, Rhizobium  相似文献   

20.
The effects of application of combined nitrogen fertilizer (ammonium nitrate or urea) on root-hair infection and nodulation of four grain legumes were studied. Young roots of each legume were inoculated with their compatible rhizobia. The application of the two forms of combined N either at the early stages of plant growth and/or at the time of nodule formation depressed root-hair curling, infection and nodulation. Infection of hairs on the primary roots was more sensitive to the N fertilizer than hair infection of secondary roots in bothVicia faba andPisum sativum. The nodule number and total fresh mass of the four legumes were drastically affected by fertilizer application. The combined N added both at early and at later stages significantly reduced the nodulation ofV. faba, Phaseolus vulgaris andVigna sinensis. The inhibitory effect of urea on nodulation ofP. sativum was only observed when the fertilizer was applied at the late stages of plant growth. It is concluded that, although the nodulation of the four legumes was suppressed by combined N, the initial events ofRhizobium-legume symbiosis (infection of roots and nodule initiation) are more sensitive to combined N than the stages after nodule formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号