首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscle A-kinase anchoring protein (mAKAP) is a scaffold protein found principally at the nuclear envelope of striated myocytes. mAKAP maintains a complex consisting of multiple signal transduction molecules including the cAMP-dependent protein kinase A, the ryanodine receptor calcium release channel, phosphodiesterase type 4D3, and protein phosphatase 2A. By an unknown mechanism, a domain containing spectrin repeats is responsible for targeting mAKAP to the nuclear envelope. We now demonstrate that the integral membrane protein nesprin-1alpha serves as a receptor for mAKAP on the nuclear envelope in cardiac myocytes. Nesprin-1alpha is inserted into the nuclear envelope by a conserved, C-terminal, klarsicht-related transmembrane domain and forms homodimers by the binding of an amino-terminal spectrin repeat domain. Through the direct binding of the nesprin-1alpha amino-terminal dimerization domain to the third mAKAP spectrin repeat, nesprin-1alpha targets mAKAP to the nuclear envelope. In turn, overexpression of these spectrin repeat domains in myocytes can displace mAKAP from nesprin-1alpha.  相似文献   

2.
A novel serine/threonine-specific protein kinase was isolated from the microvessels of porcine brains. The molecular mass of the protein is 80,000 daltons, as judged by gel electrophoresis under denaturing conditions, or 122,000 daltons, on high-resolution gel permeation chromatography in the native state. The activity of this enzyme is stimulated by various histones or polyamines, like spermine or spermidine, but not by any of the common second messengers. The amino-terminal sequence data show no homologies to any of the published kinases, but rather to a heat-shock protein of unknown function.  相似文献   

3.
Sertoli cells prepared from rats ages 15 and 25 days were shown to contain a spectrin-like protein. Indirect immunofluorescence with monospecific antimouse erythrocyte immunoglobulin G (IgG) and with monospecific antimouse brain spectrin IgG revealed specific staining in Sertoli cells. Both antibodies precipitated two spectrin-like peptides of 240,000 and 235,000 daltons from cells solubilized with octyl glucoside. Proteins from Sertoli cell membranes were separated by electrophoresis on polyacrylamide gels containing sodium dodecyl sulfate and electrophoretically transferred to nitrocellulose membrane. Incubation of nitrocellulose membrane with either of the two antibodies, followed by horseradish peroxidase conjugated to second antibody, revealed only the larger, or alpha, spectrin subunit (Western blots). Both antibodies were used to provide immunoautoradiographic identification of the spectrin-like protein. In this procedure, spectrin and Sertoli cell membranes were shown to compete with [125I]-labeled spectrin from mouse erythrocytes for binding to antimouse erythrocyte spectrin IgG. Finally, two-dimensional proteolytic mapping of the 240,000- and 235,000-dalton peptides demonstrated limited spot homology with rat erythrocyte spectrin. However, subcellular fractions from Sertoli cells all contained a spectrin-like protein showing high homology from fraction to fraction. It is concluded that Sertoli cells contain a spectrin-like protein that is seen in cell fractions prepared by centrifugation, i.e., mitochondria, microsomes, nuclei, cytoplasm, and plasma membranes. Although homology with spectrin from erythrocytes or brain is not seen in peptide maps, the alpha subunit shares antigenic determinants with spectrin from erythrocytes. The beta subunit is believed to be precipitated by antispectrin as the result of binding to the alpha subunit, since the beta subunit shows no detectable antigenic homology with that of spectrin.  相似文献   

4.
Highly purified preparations of the heme-controlled eIF-2 alpha (eukaryotic peptide initiation factor 2 alpha subunit) kinase of rabbit reticulocytes contain an abundant 90-kilodalton (kDa) peptide that is immunologically cross-reactive with spectrin and that modulates the activity of the enzyme [Kudlicki, W., Fullilove, S., Read, R., Kramer, G., & Hardesty, B. (1987) J. Biol. Chem. 262, 9695-9701]. The amino-terminal sequence of the 90-kDa protein has a high degree of similarity with the known amino-terminal sequences of the Drosophila 83-kDa heat shock protein (20 out of 22 residues) and with other related heat shock proteins. The amino acid sequence of a tryptic phosphopeptide isolated by high-performance liquid chromatography from the eIF-2 alpha kinase associated 90-kDa protein after phosphorylation by casein kinase II is shown to be identical with a 14 amino acid segment of the known sequence of the Drosophila 83-kDa heat shock protein. Results of hydrodynamic studies indicate a highly elongated structure for the reticulocyte protein, characteristic of a structural protein. Additional structural similarities between the eukaryotic heat shock proteins, the reticulocyte eIF-2 alpha kinase associated 90-kDa peptide, and spectrin are discussed.  相似文献   

5.
J Palek  T Coetzer 《Blood cells》1987,13(1-2):237-250
The group of disorders manifesting as hereditary elliptocytosis/pyropoikilocytosis (HE/HPP) represent a unique group of experiments of nature that result from molecular defects of alpha spectrin. At the level of protein structure, these alpha spectrins can be identified by analysis of peptides generated by limited tryptic digestion. Such an approach reveals that the peptide containing alpha spectrin self-association site (the alpha I domain, molecular mass of 80 daltons) is cleaved to peptides of smaller size, presumably due to changes in the primary structure that lead to increased susceptibility of existing cleavage sites or the opening of new sites. Based on the mass of these peptides, we designate these alpha spectrin (Sp) mutants, Sp alpha 1/74, Sp alpha 1/65, and Sp alpha 1/46. At the level of protein function, these mutant alpha spectrins are characterized by a defective self-association of spectrin heterodimers to tetramers, the major structural subunits of the skeleton. One of the most interesting features of this group of disorders is a variable severity of their clinical expression. Molecular determinants of disease severity include the percentage of unassembled, that is, dimeric spectrin in the membrane and the total spectrin content in the cells. Consequently, the most severely affected patients, manifesting as HPP, contain a high fraction of unassembled, dimeric spectrin in the membrane (55 +/- 7%) and are, in addition, partially deficient in spectrin. In contrast, HE individuals and asymptomatic carriers have a moderate (33 +/- 11) or mild (24 +/- 9) increase in spectrin dimers (normals 5 +/- 4%) and they contain normal amounts of spectrin in their membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
T Kanda  M Inoue  M Akiyama 《Biochimie》1990,72(5):355-359
The ubiquitin-immuno-reactive protein with a molecular weight of 27,800 daltons, which is mainly present in the cap of young basidiocarp, was purified from the basidiomycete Coprinus cinereus. The molecular weight of the native protein was approximately 55,000 as determined by gel filtration chromatography. The isoelectric point of the protein was 4.4. The amino-terminal sequence of the protein was also determined.  相似文献   

7.
The anchorage of spectrin to biological membranes is mediated by protein and phosphoinositol phospholipid interactions. In epithelial cells, a nascent spectrin skeleton assembles in regions of cadherin-mediated cell-cell contact, and conversely, cytoskeletal assembly is required to complete the cell-adhesion process. The molecular interactions guiding these processes remain incompletely understood. We have examined the interaction of spectrin with alpha-catenin, a component of the adhesion complex. Spectrin (alphaIIbetaII) and alpha-catenin coprecipitate from extracts of confluent Madin-Darby canine kidney, HT29, and Clone A cells and from solutions of purified spectrin and alpha-catenin in vitro. By surface plasmon resonance and in vitro binding assays, we find that alpha-catenin binds alphaIIbetaII spectrin with an apparent K(d) of approximately 20-100 nm. By gel-overlay assay, alpha-catenin binds recombinant betaII-spectrin peptides that include the first 313 residues of spectrin but not to peptides that lack this region. Similarly, the binding activity of alpha-catenin is fully accounted for in recombinant peptides encompassing the NH(2)-terminal 228 amino acid region of alpha-catenin. An in vivo role for the interaction of spectrin with alpha-catenin is suggested by the impaired membrane assembly of spectrin and its enhanced detergent solubility in Clone A cells that harbor a defective alpha-catenin. Transfection of these cells with wild-type alpha-catenin reestablishes alpha-catenin at the plasma membrane and coincidentally recruits spectrin to the membrane. We propose that ankyrin-independent interactions of modest affinity between alpha-catenin and the amino-terminal domain of beta-spectrin augment the interaction between alpha-catenin and actin, and together they provide a polyvalent linkage directing the topographic assembly of a nascent spectrin-actin skeleton to membrane regions enriched in E-cadherin.  相似文献   

8.
M M Hosey  M Tao 《Biochemistry》1977,16(21):4578-4583
This report describes the substrate and phosphoryl donor specificities of solubilized erythrocyte membrane cyclic adenosine 3',5'-monophosphate (cAMP)-independent protein kinases toward human and rabbit erythrocyte membrane proteins. Three types of substrate preparations have been utilized: heat-inactivated ghosts, isolated spectrin, and 2,3-dimethylmaleic anhydride (DMMA)-extracted membranes. A 30 000-dalton protein kinase, extracted from either human or rabbit erythrocyte membranes, catalyzes the phosphorylation of heat-inactivated membranes in the presence of ATP. The resulting phosphorylation profile is analogous to that of the autophosphorylation of membranes with ATP (in the absence of cAMP). These kinases also phosphorylate band 2 of isolated spectrin and band 3, but not glycophorin, in the DMMA-extracted ghosts. The ability of the 30 000-dalton kinases to use GTP as a phosphoryl donor appears to be related to the substrate or some other membrane factor. A second kinase, which is 100 000 daltons and derived from rabbit erythrocyte membranes, uses ATP or GTP to phosphorylate membrane proteins 2, 2.1, 2.9-3 in heat-inactivated ghosts, band 2 in isolated spectrin, glycophorin, and to a lesser extent, band 3 in the DMMA-extracted ghosts.  相似文献   

9.
After treatment of intact human erythrocytes with SH-oxidizing agents (e.g. tetrathionate and diamide) phospholipase A2 cleaves approx. 30% of the phosphatidylserine and 50% of the phosphatidylethanolamine without causing hemolysis (Haest, C.W.M. and Deuticke, B. (1976) Biochim. Biophys. Acta 436, 353–365). These phospholipids are scarcely hydrolysed in fresh erythrocytes and are assumed to be located in the inner lipid layer of the membrane (Verkleij, A.J., Zwaal, R.F.A., Roelofsen, B., Comfurius, P., Kastelijn, D. and van Deenen, L.L.M. (1973) Biochim. Biophys. Acta 323, 178–193). The enhancement of the phospholipid cleavage is now shown to be accompanied by a 50% decrease of the membrane SH-groups and a cross-linking of spectrin, located at the inner surface of the membrane, to oligomers of < 106 dalton.Blocking approx. 10% of the membrane SH groups with N-ethylmaleimide suppresses both the polymerization of spectrin and the enhancement of the phospholipid cleavage. N-Ethylmaleimide, under these conditions, reacts with three SH groups per molecule of spectrin, 0.7 SH groups per major intrinsic 100 000 dalton protein (band 3) and 1.1 SH groups per molecule of an extrinsic protein of 72 000 daltons (band 4.2). Blocking studies with iodoacetamide demonstrate that the SH groups of the 100 000-dalton protein are not involved in the effects of the SH-oxidizing agents.It is suggested that a release of constraints imposed by spectrin enables phosphatidylserine and phosphatidylethanolamine to move from the inner to the outer lipid layer of the erythrocyte membrane and that spectrin, in the native erythrocyte, stabilizes the orientation of these phospholipids to the inner surface of the membrane.  相似文献   

10.
Structure of the spectrin-actin binding site of erythrocyte protein 4.1   总被引:9,自引:0,他引:9  
The complete primary structure of the functional site of erythrocyte protein 4.1 involved in spectrin-actin associations has been determined. The sequence of this domain, which contains 67 amino acids and has a molecular mass of 8045 daltons, has been obtained by NH2-terminal sequence analysis of an 8-kDa chymotryptic peptide, three endoproteinase lysine C-cleaved peptides and two peptides obtained by Staphylococcus aureus protease V8 cleavage. All peptides including the 8-kDa domain peptide were purified by reverse-phase high performance liquid chromatography. Antibodies against two different synthetic peptides of the 8-kDa domain are able to inhibit the association between protein 4.1, spectrin, and F-actin, corroborating that the 8-kDa domain is responsible for the formation of a ternary complex. A computer search of the 8-kDa sequence with the National Biomedical Research Foundation database did not detect any significant homologies to known sequences. Protein 4.1 is not related to any known proteins and may represent a new protein superfamily.  相似文献   

11.
Antiserum against the synthetic peptide Lys-Arg-Ser-Arg-His-Phe, corresponding to the carboxy terminus of polyoma virus medium tumor antigen (medium T antigen), immunoprecipitates a protein of 36,000 daltons from polyoma virus-infected and uninfected cell extracts treated with the sulfhydryl group reagent N-ethyl-maleimide. This protein appears to share an antigenic determinant with medium T antigen that is normally buried inside the protein or covered up by another protein or cellular structure. The two-dimensional tryptic fingerprints of the 36K protein and of medium T antigen are apparently unrelated to each other. Antiserum against the octapeptide Ac-Met-Asp-Lys-Val-Leu-Asn-Arg-Tyr, including the amino-terminal heptapeptide sequence of the simian virus 40 (SV40) large tumor (T) and small T antigens, cross-reacts with polyoma virus large T antigen, which has an identical amino-terminal heptapeptide sequence except that Lys is replaced by Arg and Asn by Ser. The problem of cross-reactivities of antipeptide sera is discussed.  相似文献   

12.
Mapping the domain structure of human erythrocyte adducin   总被引:6,自引:0,他引:6  
Adducin is a 200-kDa heterodimeric protein associated with the erythrocyte membrane skeleton which binds to Ca2+/calmodulin, promotes binding of spectrin to actin, and is a substrate for protein kinases C and A. Adducin polypeptides can be structurally and functionally divided into two distinct regions. The amino-terminal 39-kDa domain of each subunit is more basic and resistant to proteases than the C-terminal 60-64-kDa domain, which is very sensitive to proteolytic degradation. Two-dimensional peptide map analysis revealed that the 39-kDa protease-resistant domains represent a portion of adducin which is highly conserved between the alpha and beta subunits whereas the protease-sensitive regions are different in each subunit. Comparison of the structural and functional properties of purified 39-kDa domains with intact adducin showed that the 39-kDa domains were not phosphorylated by protein kinases C or A and did not bind to Ca2+/calmodulin or interact with spectrin and actin. This suggests that the protease-sensitive domains may perform the various functions of adducin since these activities were all lacking from the protease-resistant domains. It is also possible that the conserved and variable domains are both required for one or more activities of adducin or that the 39-kDa domains play a role in maintaining the oligomeric state of adducin necessary for interaction of the variable domains with spectrin-actin complexes.  相似文献   

13.
About 40% of human erythrocyte membrane protein is resistant to solubilization in 0.5% Triton X-114. These components comprise a structure called a Triton shell roughly similar in size and shape to the original erythrocyte and thus constitute a cytoskeleton. With increasing concentrations of Triton the lipid content of the Triton shell decreases dramatically, whereas the majority of the protein components remain constant. Exceptions to this rule include proteins contained in band 3, the presumed anion channel, and in band 4 which decrease with increasing Triton concentration. The Triton-insoluble complex includes spectrin (bands 1 and 2), actin (band 5), and bands 3′ and 7. Component 3′ has an apparent molecular weight of 88,000 daltons as does 3; but unlike 3, it is insensitive to protease treatment of the intact cell, has a low extinction coefficient at 280 nm, and is solubilized from the shells in alkaline water solutions. Component 7 also has a low extinction coefficient at 280 nm. Spectrin alone is solubilized from the Triton shells in isotonic media. The solubilized spectrin contains no bound Triton and coelectrophoreses with spectrin eluted in hypotonic solutions from ghosts. Electron micrographs of fixed Triton shells stained with uranyl acetate show the presence of numerous filaments which appear beaded and are 80–120 Å in diameter. The filaments cannot be composed mainly of actin, but enough spectrin is present to form the filaments. Triton shells may provide an excellent source of material useful in the investigation of the erythrocyte cytoskeleton.  相似文献   

14.
We have identified the gene for the yeast nucleolar protein p38 and deduced the primary structure of p38 from its sequence. We propose the name NOP1 (nucleolar protein 1) for this gene. NOP1 encodes a 327 amino acid protein of 34,470 daltons and is flanked by potential promoter and polyadenylation sequences. Blot analyses indicate that the mRNA transcribed from NOP1 is approximately 1.3 kilobases in size and that there is one NOP1 gene per haploid genome. The amino-terminal sequence of p38 is homologous with the 31 known amino-terminal residues of the autoimmune antigen fibrillarin, confirming the previously observed similarity between p38 and this mammalian nucleolar protein. Consistent with this, p38 cross-reacts with serum from a patient with the autoimmune disease scleroderma. A putative nuclear localization signal can be identified in p38. Interestingly, a repetitive amino acid sequence motif begins near the amino terminus of p38. This motif is approximately 80 residues long, is rich in glycine and arginine, and shows striking sequence homology to mammalian nucleolins and certain nucleic acid binding proteins.  相似文献   

15.
Polypeptides encoded by the mer operon.   总被引:4,自引:8,他引:4       下载免费PDF全文
HgCl2-induced polypeptides synthesized by Escherichia coli minicells containing recombinant or natural HgR plasmids were labeled with [35S]methionine and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. All plasmids examined encoded two heavily labeled, HgCl2-inducible polypeptides of 69,000 and 12,000 daltons. Most plasmids also encoded two additional HgCl2-inducible proteins in the 14,000- to 17,000-dalton range. Antiserum prepared against a purified mercuric ion reductase reacts with the 69,000-dalton polypeptide and a minor 66,000-dalton protein seen in several different HgR minicells. Recombinant plasmids constructed from portions of mer DNA from the IncFII plasmid NR1 were also analyzed in the minicell system. Five HgCl2-inducible polypeptides (69,000, 66,000, 15,100, 14,000, and 12,000 daltons) were synthesized in minicells carrying pRR130, a recombinant derivative containing the EcoRI-H and EcoRI-I restriction fragments of NR1. The EcoRI-H fragment of NR1 encodes the three small mer proteins of 15,100, 14,000, and 12,000 daltons and the amino-terminal 40,000 daltons of the mercuric ion reductase monomer.  相似文献   

16.
17.
The red cell membrane skeletal network is constructed from actin, spectrin and protein 4.1 in a molar ratio of actin subunits/spectrin heterodimer/protein 4.1 of 2:1:1. This represents saturation of the actin filaments, since incubation with extraneous spectrin and protein 4.1 leads to no binding of additional spectrin, either to the inner surface of ghost membranes or to lipid-free membrane cytoskeletons. Partial extraction of spectrin from the membrane is accompanied by release of actin under all conditions. Regardless of the proportion of spectrin extracted, the molar ratio of spectrin dimers/actin subunits is constant at 1:2. This is not the result of release or cooperative breakdown of whole lattice junctions from the network, for the number of actin filaments, judged by capacity to nucleate polymerisation of added G-actin, remains unchanged even when as much as 60% of the total spectrin has been lost. A similar 1:2:1 stoichiometry characterises the complex formed when G-actin is allowed to polymerise in the presence of varying amounts of spectrin and protein 4.1. When this complex is treated with the depolymerising agent, 1 M guanidine hydrochloride, it breaks down into smaller units of the same stoichiometry. After cross-linking these can be recovered from a gel-filtration column. Complexes prepared starting from G-actin appear to be much more stable than those formed when spectrin and protein 4.1 are bound to F-actin.  相似文献   

18.
G Wiederrecht  D Seto  C S Parker 《Cell》1988,54(6):841-853
  相似文献   

19.
Brain spectrin alpha and beta chains bind 45Ca2+, as shown by the calcium overlay method. Flow dialysis measurements revealed eight high affinity binding sites/tetramer that comprise two binding components (determined by nonlinear regression analysis). The first component has one or two sites (kd = 2-30 x 10(-8) M), depending on the ionic strength of the binding buffer, with the remaining high affinity sites in the second component (kd = 1-3 x 10(-6) M). In addition, there is a variable, low affinity binding component (n = 100-400, kd = 1-2 x 10(-4) M). Magnesium inhibits calcium binding to the low affinity sites with a K1 = 1.21 mM. Proteolytic fragments from trypsin or chymotrypsin digests of brain spectrin bind 45Ca2+ if they include alpha domain IV, alpha domain III, or the amino-terminal half of the beta chain (but more than 25 kDa from the amino-terminal). These data suggest that calcium ions bind with high affinity to the putative EF-hands in alpha domain IV and to one site in the amino-terminal half of the beta chain that is associated with alpha domain IV in the native dimer. The localization is consistent with a direct calcium modulation of the spectrin-actin-protein 4.1 interaction. In addition, there appears to be one high affinity site near the hypersensitive region of alpha brain spectrin. All four proposed binding sites occur near probable calmodulin-binding or calcium-dependent protease cleavage sites.  相似文献   

20.
Methionine aminopeptidase (MAP) catalyzes the removal of amino-terminal methionine from proteins. The Escherichia coli map gene encoding this enzyme was cloned; it consists of 264 codons and encodes a monomeric enzyme of 29,333 daltons. In vitro analyses with purified enzyme indicated that MAP is a metallo-oligopeptidase with absolute specificity for the amino-terminal methionine. The methionine residues from the amino-terminal end of the recombinant proteins interleukin-2 (Met-Ala-Pro-IL-2) and ricin A (Met-Ile-Phe-ricin A) could be removed either in vitro with purified MAP enzyme or in vivo in MAP-hyperproducing strains of E. coli. In vitro analyses of the substrate preference of the E. coli MAP indicated that the residues adjacent to the initiation methionine could significantly influence the methionine cleavage process. This conclusion is consistent, in general, with the deduced specificity of the enzyme based on the analysis of known amino-terminal sequences of intracellular proteins (S. Tsunasawa, J. W. Stewart, and F. Sherman, J. Biol. Chem. 260:5382-5391, 1985).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号