共查询到20条相似文献,搜索用时 0 毫秒
1.
SWI3 subunits of putative SWI/SNF chromatin-remodeling complexes play distinct roles during Arabidopsis development
下载免费PDF全文

Sarnowski TJ Ríos G Jásik J Swiezewski S Kaczanowski S Li Y Kwiatkowska A Pawlikowska K Koźbiał M Koźbiał P Koncz C Jerzmanowski A 《The Plant cell》2005,17(9):2454-2472
SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin-remodeling complexes mediate ATP-dependent alterations of DNA-histone contacts. The minimal functional core of conserved SWI/SNF complexes consists of a SWI2/SNF2 ATPase, SNF5, SWP73, and a pair of SWI3 subunits. Because of early duplication of the SWI3 gene family in plants, Arabidopsis thaliana encodes four SWI3-like proteins that show remarkable functional diversification. Whereas ATSWI3A and ATSWI3B form homodimers and heterodimers and interact with BSH/SNF5, ATSWI3C, and the flowering regulator FCA, ATSWI3D can only bind ATSWI3B in yeast two-hybrid assays. Mutations of ATSWI3A and ATSWI3B arrest embryo development at the globular stage. By a possible imprinting effect, the atswi3b mutations result in death for approximately half of both macrospores and microspores. Mutations in ATSWI3C cause semidwarf stature, inhibition of root elongation, leaf curling, aberrant stamen development, and reduced fertility. Plants carrying atswi3d mutations display severe dwarfism, alterations in the number and development of flower organs, and complete male and female sterility. These data indicate that, by possible contribution to the combinatorial assembly of different SWI/SNF complexes, the ATSWI3 proteins perform nonredundant regulatory functions that affect embryogenesis and both the vegetative and reproductive phases of plant development. 相似文献
2.
3.
4.
5.
Germ cell development and gametogenesis require genome-wide transitions in epigenetic modifications and chromatin structure. These changes include covalent modifications to the DNA and histones as well as remodeling activities. Here, we explore the role of the mammalian SWI/SNF chromatin-remodeling complex during spermatogenesis using a conditional allele of the ATPase subunit, brahma-related gene 1 (Brg1, or Smarca4). Not only do BRG1 levels peak during the early stages of meiosis, genetic ablation of Brg1 in murine embryonic gonocytes results in arrest during prophase of meiosis I. Coincident with the timing of meiotic arrest, mutant spermatocytes accumulate unrepaired DNA and fail to complete synapsis. Furthermore, mutant spermatocytes show global alterations to histone modifications and chromatin structure indicative of a more heterochromatic genome. Together, these data demonstrate a requirement for BRG1 activity in spermatogenesis, and suggest a role for the mammalian SWI/SNF complex in programmed recombination and repair events that take place during meiosis. 相似文献
6.
Thomä NH Czyzewski BK Alexeev AA Mazin AV Kowalczykowski SC Pavletich NP 《Nature structural & molecular biology》2005,12(4):350-356
SWI2/SNF2 chromatin-remodeling proteins mediate the mobilization of nucleosomes and other DNA-associated proteins. SWI2/SNF2 proteins contain sequence motifs characteristic of SF2 helicases but do not have helicase activity. Instead, they couple ATP hydrolysis with the generation of superhelical torsion in DNA. The structure of the nucleosome-remodeling domain of zebrafish Rad54, a protein involved in Rad51-mediated homologous recombination, reveals that the core of the SWI2/SNF2 enzymes consist of two alpha/beta-lobes similar to SF2 helicases. The Rad54 helicase lobes contain insertions that form two helical domains, one within each lobe. These insertions contain SWI2/SNF2-specific sequence motifs likely to be central to SWI2/SNF2 function. A broad cleft formed by the two lobes and flanked by the helical insertions contains residues conserved in SWI2/SNF2 proteins and motifs implicated in DNA-binding by SF2 helicases. The Rad54 structure suggests that SWI2/SNF2 proteins use a mechanism analogous to helicases to translocate on dsDNA. 相似文献
7.
8.
9.
Requirement for SWI/SNF chromatin-remodeling complex in Tat-mediated activation of the HIV-1 promoter
下载免费PDF全文

Tréand C du Chéné I Brès V Kiernan R Benarous R Benkirane M Emiliani S 《The EMBO journal》2006,25(8):1690-1699
Activation of the human immunodeficiency virus type-1 (HIV-1) promoter in infected cells requires the sequential recruitment of several cellular factors to facilitate the formation of a processive elongation complex. The nucleosomal reorganization of the HIV-1 long terminal repeat (LTR) observed upon Tat stimulation suggests that chromatin-remodeling complexes could play a role during this process. Here, we reported that Tat interacts directly with Brm, a DNA-dependent ATPase subunit of the SWI/SNF chromatin-remodeling complex, to activate the HIV-1 LTR. Inhibition of Brm via small interfering RNAs impaired Tat-mediated transactivation of an integrated HIV-1 promoter. Furthermore, Brm is recruited in vivo to the HIV-1 LTR in a Tat-dependent manner. Interestingly, we found that Tat/Brm interaction is regulated by Tat lysine 50 acetylation. These data show the requirement of Tat-mediated recruitment of SWI/SNF chromatin-remodeling complex to HIV-1 promoter in the activation of the LTR. 相似文献
10.
11.
12.
The SWI/SNF chromatin-remodeling factor stimulates repair by human excision nuclease in the mononucleosome core particle 总被引:5,自引:0,他引:5
下载免费PDF全文

To investigate the role of chromatin remodeling in nucleotide excision repair, we prepared mononucleosomes with a 200-bp duplex containing an acetylaminofluorene-guanine (AAF-G) adduct at a single site. DNase I footprinting revealed a well-phased nucleosome structure with the AAF-G adduct near the center of twofold symmetry of the nucleosome core. This mononucleosome substrate was used to examine the effect of the SWI/SNF remodeling complex on the activity of human excision nuclease reconstituted from six purified excision repair factors. We found that the three repair factors implicated in damage recognition, RPA, XPA, and XPC, stimulate the remodeling activity of SWI/SNF, which in turn stimulates the removal of the AAF-G adduct from the nucleosome core by the excision nuclease. This is the first demonstration of the stimulation of nucleotide excision repair of a lesion in the nucleosome core by a chromatin-remodeling factor and contrasts with the ACF remodeling factor, which stimulates the removal of lesions from internucleosomal linker regions but not from the nucleosome core. 相似文献
13.
14.
《Epigenetics》2013,8(11):1219-1224
Heterozygous germline mutations in components of switch/sucrose nonfermenting (SWI/SNF) chromatin remodeling complexes were recently identified in patients with non-syndromic intellectual disability, Coffin-Siris syndrome and Nicolaides-Baraitser syndrome. The common denominator of the phenotype of these patients is severe intellectual disability and speech delay. Somatic and germline mutations in SWI/SNF components were previously implicated in tumor development. This raises the question whether patients with intellectual disability caused by SWI/SNF mutations in the germline are exposed to an increased risk of developing cancer. Here we compare the mutational spectrum of SWI/SNF components in intellectual disability syndromes and cancer, and discuss the implications of the results of this comparison for the patients. 相似文献
15.
16.
17.
18.
Zofall M Persinger J Kassabov SR Bartholomew B 《Nature structural & molecular biology》2006,13(4):339-346
Chromatin-remodeling complexes regulate access to nucleosomal DNA by mobilizing nucleosomes in an ATP-dependent manner. In this study, we find that chromatin remodeling by SWI/SNF and ISW2 involves DNA translocation inside nucleosomes two helical turns from the dyad axis at superhelical location-2. DNA translocation at this internal position does not require the propagation of a DNA twist from the site of translocation to the entry/exit sites for nucleosome movement. Nucleosomes are moved in 9- to 11- or approximately 50-base-pair increments by ISW2 or SWI/SNF, respectively, presumably through the formation of DNA loops on the nucleosome surface. Remodeling by ISW2 but not SWI/SNF requires DNA torsional strain near the site of translocation, which may work in conjunction with conformational changes of ISW2 to promote nucleosome movement on DNA. The difference in step size of nucleosome movement by SWI/SNF and ISW2 demonstrates how SWI/SNF may be more disruptive to nucleosome structure than ISW2. 相似文献
19.