首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The P1 plasmid partition system is responsible for segregation of daughter plasmids during division of the Escherichia coli host cell. The P1-encoded elements consist of two essential proteins, ParA and ParB, and the cis-acting incB region. The incB region determines partition-mediated incompatibility and contains the centromere-like site parS. We have isolated and purified the two proteins. ParB binds specifically to the incB region in vitro. DNase I footprinting assays place a strong binding site over the 35-bp parS sequence previously shown to be sufficient for partition when the Par proteins are supplied in trans. A weaker site lies within the incB region in sequences that are important for specifying incompatibility, but are not essential for partition. Gel band retardation assays show that a host factor binds specifically to the incB sequence. The factor strongly stimulates binding of ParB. Cutting the region at a site between the two ParB binding sites yields two fragments that can bind ParB but not host factor. Thus, information for host-factor binding lies in the region determining the specificity of plasmid incompatibility. The roles of parB and the host factor in partition and the specificity of plasmid incompatibility are discussed.  相似文献   

2.
The partition system of the P1 plasmid, P1 par consists of the ParA and ParB proteins and a cis -acting site, parS . It is responsible for the orderly segregation of plasmid copies to daughter cells. Plasmids with null mutations in parA or parB replicate normally, but missegregate. ParB binds specifically to the parS site, but the role of ParA and its ATPase activity in partition is unclear. We describe a novel class of parA mutants that cannot be established or maintained as plasmids unless complemented by the wild-type gene. One, parAM314I , is conditional: it can be maintained in cells in minimal medium but cannot be established in cells growing in L broth. The lack of plasmid propagation in L broth-grown cells was shown to be caused by a ParB-dependent activity of the mutant ParA protein that blocks plasmid propagation by an interaction at the parS site. Thus, ParA acts to modify the ParB– parS complex, probably by binding to it. Partition is thought to involve selection of pairs of plasmids before segregation, either by physical pairing of copies or by binding of copies to paired host sites. We suggest that ParA is involved in this reaction and that the mutant ParA protein forms paired complexes that cannot unpair.  相似文献   

3.
The P1 ParB protein is required for active partition and thus stable inheritance of the plasmid prophage. ParB and the Escherichia coli protein integration host factor (IHF) participate in the assembly of a partition complex at the centromere-like site parS. In this report the role of IHF in the formation of the partition complex has been explored. First, ParB protein was purified for these studies, which revealed that ParB forms a dimer in solution. Next, the IHF binding site was mapped to a 29-base pair region within parS, including the sequence TAACTGACTGTTT (which differs from the IHF consensus in two positions). IHF induced a strong bend in the DNA at its binding site. Versions of parS which have lost or damaged the IHF binding site bound ParB with greatly reduced affinity in vitro and in vivo. Measurements of binding constants showed that IHF increased ParB affinity for the wild-type parS site by about 10,000-fold. Finally, DNA supercoiling improved ParB binding in the presence of IHF but not in its absence. These observations led to the proposal that IHF and superhelicity assist ParB by promoting its precise positioning at parS, a spatial arrangement that results in a high affinity of ParB for parS.  相似文献   

4.
Assembly of P1 plasmid partition complexes at the partition site, parS, is nucleated by a dimer of P1 ParB and Escherichia coli integration host factor (IHF), which promotes loading of more ParB dimers and the pairing of plasmids during the cell cycle. ParB binds several copies of two distinct recognition motifs, known as A- and B-boxes, which flank a bend in parS created by IHF binding. The recent crystal structure of ParB bound to a partial parS site revealed two relatively independent DNA-binding domains and raised the question of how a dimer of ParB recognizes its complicated arrangement of recognition motifs when it loads onto the full parS site in the presence of IHF. In this study, we addressed this question by examining ParB binding activities to parS mutants containing different combinations of the A- and B-box motifs in parS. Binding was measured to linear and supercoiled DNA in electrophoretic and filter binding assays, respectively. ParB showed preferences for certain motifs that are dependent on position and on plasmid topology. In the simplest arrangement, one motif on either side of the bend was sufficient to form a complex, although affinity differed depending on the motifs. Therefore, a ParB dimer can load onto parS in different ways, so that the initial ParB-IHF-parS complex consists of a mixture of different orientations of ParB. This arrangement supports a model in which parS motifs are available for interas well as intramolecular parS recognition.  相似文献   

5.
L Radnedge  B Youngren  M Davis    S Austin 《The EMBO journal》1998,17(20):6076-6085
The P1 plasmid partition locus, P1 par, actively distributes plasmid copies to Escherichia coli daughter cells. It encodes two DNA sites and two proteins, ParA and ParB. Plasmid P7 uses a similar system, but the key macromolecular interactions are species specific. Homolog specificity scanning (HSS) exploits such specificities to map critical contact points between component macromolecules. The ParA protein contacts the par operon operator for operon autoregulation, and the ParB contacts the parS partition site during partition. Here, we refine the mapping of these contacts and extend the use of HSS to map protein-protein contacts. We found that ParB participates in autoregulation at the operator site by making a specific contact with ParA. Similarly, ParA acts in partition by making a specific contact with ParB bound at parS. Both these interactions involve contacts between a C-terminal region of ParA and the extreme N-terminus of ParB. As a single type of ParA-ParB complex appears to be involved in recognizing both DNA sites, the operator and the parS sites may both be occupied by a single protein complex during partition. The general HSS strategy may aid in solving the three-dimensional structures of large complexes of macromolecules.  相似文献   

6.
The P1, P7, and pMT1 par systems are members of the P1 par family of plasmid partition elements. Each has a ParA ATPase and a ParB protein that recognizes the parS partition site of its own plasmid type to promote the active segregation of the plasmid DNA to daughter cells. ParB contacts two parS motifs known as BoxA and BoxB, the latter of which determines species specificity. We found that the substitution of a single orthologous amino acid in ParB for that of a different species has major effects on the specificity of recognition. A single change in ParB can cause a complete switch in recognition specificity to that of another species or can abolish specificity. Specificity changes do not necessarily correlate with changes in the gross DNA binding properties of the protein. Molecular modeling suggests that species specificity is determined by the capacity to form a hydrogen bond between ParB residue 288 and the second base in the BoxB sequence. As changes in just one ParB residue and one BoxB base can alter species specificity, plasmids may use such simple changes to evolve new species rapidly.  相似文献   

7.
Localization of the P1 plasmid requires two proteins, ParA and ParB, which act on the plasmid partition site, parS. ParB is a site-specific DNA-binding protein and ParA is a Walker-type ATPase with non-specific DNA-binding activity. In vivo ParA binds the bacterial nucleoid and forms dynamic patterns that are governed by the ParB-parS partition complex on the plasmid. How these interactions drive plasmid movement and localization is not well understood. Here we have identified a large protein-DNA complex in vitro that requires ParA, ParB and ATP, and have characterized its assembly by sucrose gradient sedimentation and light scattering assays. ATP binding and hydrolysis mediated the assembly and disassembly of this complex, while ADP antagonized complex formation. The complex was not dependent on, but was stabilized by, parS. The properties indicate that ParA and ParB are binding and bridging multiple DNA molecules to create a large meshwork of protein-DNA molecules that involves both specific and non-specific DNA. We propose that this complex represents a dynamic adaptor complex between the plasmid and nucleoid, and further, that this interaction drives the redistribution of partition proteins and the plasmid over the nucleoid during partition.  相似文献   

8.
The partition system of the low-copy-number plasmid/prophage of bacteriophage P1 encodes two proteins, ParA and ParB, and contains a DNA site called parS. ParB and the Escherichia coli protein IHF bind to parS to form the partition complex, in which parS is wrapped around ParB and IHF in a precise three-dimensional conformation. Partition can be thought of as a positioning reaction; the plasmid-encoded components ensure that at least one copy of the plasmid is positioned within each new daughter cell. We have used an E. coli chromosomal partition mutant to test whether this positioning is mediated by direct plasmid-chromosomal attachment, for example, by pairing of the partition complex that forms at parS with a bacterial attachment site. The E. coli MukB protein is required for proper chromosomal positioning, so that mukB mutants generate some cells without chromosomes (anucleate cells) at each cell division. We analyzed the plasmid distribution in nucleate and anucleate mukB cells. We found that P1 plasmids are stable in mukB mutants and that they partition into both nucleate and anucleate cells. This indicates that the P1 partition complex is not used to pair plasmids with the host chromosome and that P1 plasmids must be responsible for their own proper cellular localization, presumably through host-plasmid protein-protein interactions.  相似文献   

9.
Stable maintenance of P1 plasmids in Escherichia coli is mediated by a high affinity nucleoprotein complex called the partition complex, which consists of ParB and the E. coli integration host factor (IHF) bound specifically to the P1 parS site. IHF strongly stimulates ParB binding to parS, and the minimal partition complex contains a single dimer of ParB. To examine the architecture of the partition complex, we have investigated the DNA binding activity of various ParB fragments. Gel mobility shift and DNase I protection assays showed that the first 141 residues of ParB are dispensable for the formation of the minimal, high affinity partition complex. A fragment missing only the last 16 amino acids of ParB bound specifically to parS, but binding was weak and was no longer stimulated by IHF. The ability of IHF to stimulate ParB binding to parS correlated with the ability of ParB to dimerize via its C terminus. Using full and partial parS sites, we show that two regions of ParB, one in the center and the other near the C terminus of the protein, interact with distinct sequences within parS. Based on these data, we have proposed a model of how the ParB dimer binds parS to form the minimal partition complex.  相似文献   

10.
The P1 ParA protein is an ATPase that recognizes the parA promoter region where it acts to autoregulate the P1 parA–parB operon. The ParB protein is essential for plasmid partition and recognizes the cis -acting partition site parS . The regulatory role of ParA is also essential because a controlled level of ParB protein is critical for partition. However, we show that this regulatory activity is not the only role for ParA in partition. Efficient partition can be achieved without autoregulation as long as Par protein levels are kept within a range of low values. The properties of ParA mutants in these conditions showed that ParA is essential for some critical step in the partition process that is independent of par operon regulation. The putative nucleotide-binding site for the ParA ATPase was identified and disrupted by mutation. The resulting mutant was substantially defective for autoregulation and completely inactive for partition in a system in which the need for autoregulation is abolished. Thus, the ParA nucleotide-binding site appears to be necessary both for the repressor activity of ParA and for some essential step in the partition process itself. We propose that the nucleotide-bound form of the enzyme adopts a configuration that favours binding to the operator, but that the ATPase activity of ParA is required for some energetic step in partition of the plasmid copies to daughter cells.  相似文献   

11.
Fine-structure analysis of the P7 plasmid partition site.   总被引:4,自引:1,他引:3       下载免费PDF全文
F Hayes  M A Davis    S J Austin 《Journal of bacteriology》1993,175(11):3443-3451
The par region of bacteriophage P7 is responsible for active partition of the P7 plasmid prophage into daughter cells. The cis-acting partition site was defined precisely as a 75-bp sequence that was necessary and sufficient to promote correct segregation of an unstable vector plasmid when the two P7 partition proteins, ParA and ParB, were supplied in trans. Roughly the same region was necessary to exert partition-mediated incompatibility. The minimal site contains an integration host factor (IHF) protein binding site bracketed by regions containing heptamer repeat sequences that individually bind ParB. An additional sequence forms the left boundary of the site. Site-directed mutations in the latter sequence, as well as the IHF motif and the rightmost ParB box, blocked site function. Although the P7 site shares 55% sequence identity with its counterpart in bacteriophage P1, functional interactions between the partition sites and the Par proteins of the two plasmids were entirely species specific in vivo. The P1 sequence has similar IHF and ParB binding motifs, but the left boundary sequence differs radically and may define a point of species-specific contact with the Par proteins. No evidence was found for the existence of a functional P7 analog of the P1 parS core, a small subregion of the P1 site that, in isolation, acts as an enfeebled partition site with modified incompatibility properties.  相似文献   

12.
The P1 plasmid prophage is faithfully partitioned by a high affinity nucleoprotein complex assembled at the centromere-like parS site. This partition complex is composed of P1 ParB and Escherichia coli integration host factor (IHF), bound specifically to parS. We have investigated the assembly of ParB at parS and its stoichiometry of binding. Measured by gel mobility shift assays, ParB and IHF bind tightly to parS and form a specific complex, called I + B1. We observed that as ParB concentration was increased, a second, larger complex (I + B2) formed, followed by the formation of larger complexes, indicating that additional ParB molecules joined the initial complex. Shift Western blotting experiments indicated that the I + B2 complex contained twice as much ParB as the I + B1 complex. Using mixtures of ParB and a larger polyhistidine-tagged version of ParB (His-ParB) in DNA binding assays, we determined that the initial I + B1 complex contains one dimer of ParB. Therefore, one dimer of ParB binds to its recognition sequences that span an IHF-directed bend in parS. Once this complex forms, a second dimer can join the complex, but this assembly requires much higher ParB concentrations.  相似文献   

13.
DNA segregation ensures the stable inheritance of genetic material prior to cell division. Many bacterial chromosomes and low‐copy plasmids, such as the plasmids P1 and F, employ a three‐component system to partition replicated genomes: a partition site on the DNA target, typically called parS, a partition site binding protein, typically called ParB, and a Walker‐type ATPase, typically called ParA, which also binds non‐specific DNA. In vivo, the ParA family of ATPases forms dynamic patterns over the nucleoid, but how ATP‐driven patterning is involved in partition is unknown. We reconstituted and visualized ParA‐mediated plasmid partition inside a DNA‐carpeted flowcell, which acts as an artificial nucleoid. ParA and ParB transiently bridged plasmid to the DNA carpet. ParB‐stimulated ATP hydrolysis by ParA resulted in ParA disassembly from the bridging complex and from the surrounding DNA carpet, which led to plasmid detachment. Our results support a diffusion‐ratchet model, where ParB on the plasmid chases and redistributes the ParA gradient on the nucleoid, which in turn mobilizes the plasmid.  相似文献   

14.
The segregational stability of bacterial, low-copy-number plasmids is promoted primarily by active partition. The plasmid-specified components of the prototypical P1 plasmid partition system consist of two proteins, ParA (44.3 kDa) and ParB (38.5 kDa), which, in conjunction with integration host factor, form a nucleoprotein complex at the plasmid partition site, parS. This complex is the probable substrate for the directed temporal and spatial intracellular movement of plasmids before cell division. The genetic organization of the partition cassette of the multidrug resistance plasmid TP228 differs markedly from that of the P1 paradigm. The TP228 system includes a novel member (ParF; 22.0 kDa) of the ParA superfamily of ATPases, of which the P1 ParA protein is the archetype. However, the ParF protein and its immediate relatives form a discrete subgroup of the ParA superfamily, which evolutionarily is more related to the MinD subgroup of cell division proteins than to ParA of P1. The TP228 and P1 partition modules differ further in that the former does not include a parB homologue, but does specify a protein (ParG; 8.6 kDa) unrelated to ParB. Homologues of the parF gene are widely disseminated on eubacterial genomes, suggesting that ParF-mediated partition may be a common mechanism by which plasmid segregational stability is achieved.  相似文献   

15.
The plasmid partition process is essential for plasmid propagation and is mediated by par systems, consisting of centromere-like sites and two proteins, ParA and ParB. In the first step of partition by the archetypical P1 system, ParB binds a complicated centromere-like site to form a large nucleoprotein segrosome. ParB is a dimeric DNA-binding protein that can bridge between both A-boxes and B-boxes located on the centromere. Its helix-turn-helix domains bind A-boxes and the dimer domain binds B-boxes. Binding of the first ParB dimer nucleates the remaining ParB molecules onto the centromere site, which somehow leads to the formation of a condensed segrosome superstructure. To further understand this unique DNA spreading capability of ParB, we crystallized and determined the structure of a 1:2 ParB-(142-333):A3-B2-box complex to 3.35A resolution. The structure reveals a remarkable four-way, protein-DNA bridged complex in which both ParB helix-turn-helix domains simultaneously bind adjacent A-boxes and the dimer domain bridges between two B-boxes. The multibridging capability and the novel dimer domain-B-box interaction, which juxtaposes the DNA sites close in space, suggests a mechanism for the formation of the wrapped solenoid-like segrosome superstructure. This multibridging capability of ParB is likely critical in its partition complex formation and pairing functions.  相似文献   

16.
ParB proteins are one of the three essential components of partition systems that actively segregate bacterial chromosomes and plasmids. In binding to centromere sequences, ParB assembles as nucleoprotein structures called partition complexes. These assemblies are the substrates for the partitioning process that ensures DNA molecules are segregated to both sides of the cell. We recently identified the sopC centromere nucleotides required for binding to the ParB homologue of plasmid F, SopB. This analysis also suggested a role in sopC binding for an arginine residue, R219, located outside the helix-turn-helix (HTH) DNA-binding motif previously shown to be the only determinant for sopC-specific binding. Here, we demonstrated that the R219 residue is critical for SopB binding to sopC during partition. Mutating R219 to alanine or lysine abolished partition by preventing partition complex assembly. Thus, specificity of SopB binding relies on two distinct motifs, an HTH and an arginine residue, which define a split DNA-binding domain larger than previously thought. Bioinformatic analysis over a broad range of chromosomal ParBs generalized our findings with the identification of a non-HTH positively charged residue essential for partition and centromere binding, present in a newly identified highly conserved motif. We propose that ParB proteins possess two DNA-binding motifs that form an extended centromere-binding domain, providing high specificity.  相似文献   

17.
Bouet JY  Funnell BE 《The EMBO journal》1999,18(5):1415-1424
The partition system of P1 plasmids is composed of two proteins, ParA and ParB, and a cis-acting site parS. parS is wrapped around ParB and Escherichia coli IHF protein in a higher order nucleoprotein complex called the partition complex. ParA is an ATPase that autoregulates the expression of the par operon and has an essential but unknown function in the partition process. In this study we demonstrate a direct interaction between ParA and the P1 partition complex. The interaction was strictly dependent on ParB and ATP. The consequence of this interaction depended on the ParB concentration. At high ParB levels, ParA was recruited to the partition complex via a ParA-ParB interaction, but at low ParB levels, ParA removed or disassembled ParB from the partition complex. ADP could not support these interactions, but could promote the site-specific DNA binding activity of ParA to parOP, the operator of the par operon. Conversely, ATP could not support a stable interaction of ParA with parOP in this assay. Our data suggest that ParA-ADP is the repressor of the par operon, and ParA-ATP, by interacting with the partition complex, plays a direct role in partition. Therefore, one role of adenine nucleotide binding and hydrolysis by ParA is that of a molecular switch controlling entry into two separate pathways in which ParA plays different roles.  相似文献   

18.
Fine-structure analysis of the P1 plasmid partition site.   总被引:5,自引:3,他引:2       下载免费PDF全文
P1 plasmid partition requires two plasmid-encoded Par proteins and a cis-acting site. The site, parS, lies in a region consisting of a 13-bp palindrome and an adjacent AT-rich sequence. A series of point mutations were analyzed for their effects on partition site activity. The results indicated that only the left arm of the palindrome and some adjacent bases were needed. The limits of the functional site were further refined to a maximum of 22 bp, which includes binding sites for the P1 ParB protein. Mutations in the 22-bp site cause concomitant defects in partition and the ability to exert partition-mediated incompatibility. Like the region immediately to the left of the 22-bp region, the right arm of the palindrome is not essential for partition but does contain information that affects the specificity of incompatibility.  相似文献   

19.
20.
P1par family members promote the active segregation of a variety of plasmids and plasmid prophages in gram-negative bacteria. Each has genes for ParA and ParB proteins, followed by a parS partition site. The large virulence plasmid pWR100 of Shigella flexneri contains a new P1par family member: pWR100par. Although typical parA and parB genes are present, the putative pWR100parS site is atypical in sequence and organization. However, pWR100parS promoted accurate plasmid partition in Escherichia coli when the pWR100 Par proteins were supplied. Unique BoxB hexamer motifs within parS define species specificities among previously described family members. Although substantially different from P1parS from the P1 plasmid prophage of E. coli, pWR100parS has the same BoxB sequence. As predicted, the species specificity of the two types proved identical. They also shared partition-mediated incompatibility, consistent with the proposed mechanistic link between incompatibility and species specificity. Among several informative sequence differences between pWR100parS and P1parS is the presence of a 21-bp insert at the center of the pWR100parS site. Deletion of this insert left much of the parS activity intact. Tolerance of central inserts with integral numbers of helical DNA turns reflects the critical topology of these sites, which are bent by binding the host IHF protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号