首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteases regulate numerous biological processes with a degree of specificity often dictated by the amino acid sequence of the substrate cleavage site. To map protease/substrate interactions, a 722-member library of fluorogenic protease substrates of the general format Ac-Ala-X-X-(Arg/Lys)-coumarin was synthesized (X=all natural amino acids except cysteine) and microarrayed with fluorescent calibration standards in glycerol nanodroplets on glass slides. Specificities of 13 serine proteases (activated protein C, plasma kallikrein, factor VIIa, factor IXabeta, factor XIa and factor alpha XIIa, activated complement C1s, C1r, and D, tryptase, trypsin, subtilisin Carlsberg, and cathepsin G) and 11 papain-like cysteine proteases (cathepsin B, H, K, L, S, and V, rhodesain, papain, chymopapain, ficin, and stem bromelain) were obtained from 103,968 separate microarray fluorogenic reactions (722 substrates x 24 different proteases x 6 replicates). This is the first comprehensive study to report the substrate specificity of rhodesain, a papain-like cysteine protease expressed by Trypanasoma brucei rhodesiense, a parasitic protozoa responsible for causing sleeping sickness. Rhodesain displayed a strong P2 preference for Leu, Val, Phe, and Tyr in both the P1=Lys and Arg libraries. Solution-phase microarrays facilitate protease/substrate specificity profiling in a rapid manner with minimal peptide library or enzyme usage.  相似文献   

2.
Bacterial proteases play an important role in a broad spectrum of processes, including colonization, proliferation, and virulence. In this respect, bacterial proteases are potential biomarkers for bacterial diagnosis and targets for novel therapeutic protease inhibitors. To investigate these potential functions, the authors designed and used a protease substrate fluorescence resonance energy transfer (FRET) library comprising 115 short d- and l-amino-acid-containing fluorogenic substrates as a tool to generate proteolytic profiles for a wide range of bacteria. Bacterial specificity of the d-amino acid substrates was confirmed using enzymes isolated from both eukaryotic and prokaryotic organisms. Interestingly, bacterial proteases that are known to be involved in housekeeping and nutrition, but not in virulence, were able to degrade substrates in which a d-amino acid was present. Using our FRET peptide library and culture supernatants from a total of 60 different bacterial species revealed novel, bacteria-specific, proteolytic profiles, although in-species variation was observed for Pseudomonas aeruginosa, Porphyromonas gingivalis, and Staphylococcus aureus. Overall, the specific characteristic of our substrate peptide library makes it a rapid tool to high-throughput screen for novel substrates to detect bacterial proteolytic activity.  相似文献   

3.
Structural and biological characteristics of a recently described plasma serine protease, which displayed factor VII as well as pro-urokinase-activating properties in vitro, indicated a dual role for this factor VII-activating protease (FSAP) in hemostasis. Only the active protease (two-chain FSAP) has been isolated from plasma and from a prothrombin complex concentrate, whereas activators of the proenzyme have not been identified so far. After purification of the FSAP proenzyme from cryo-poor plasma by adsorption to an immobilized mAb and subsequent ion-exchange chromatography, activation to generate two-chain FSAP was followed by a direct chromogenic assay as well as by the ability of two-chain FSAP to activate pro-urokinase. Purified single-chain FSAP underwent autoactivation leading to the typical protease two-chain pattern and subsequent degradation products, as demonstrated by Western-blotting analysis using a site-specific mAb. This autoactivation was significantly enhanced in the presence of heparin, whereas Ca2+ ions stabilized single-chain FSAP (the proenzyme) resulting in slower autoactivation kinetics. Correspondingly, the heparin-augmented reaction, which was associated with autodegradation particularly of the protease domain, was slowed down by co-incubation with Ca2+. Of the other proteases and cofactors tested, only urokinase (uPA) was able to generate the typical two-chain FSAP pattern. Studies with different forms of uPA suggest that the catalytic activity of pro-urokinase/uPA is needed to activate single-chain FSAP, indicating that it is the only hemostatic protease that can act as a physiological activator of FSAP.  相似文献   

4.
We have developed a novel double-layer zymographic method for the detection of specific processing proteases of a target proprotease using a specific fluorescent substrate. The target processing proteases were separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the gel was subsequently incubated with the target proenzyme used as the substrate. A cellulose acetate membrane was immersed in 10% glycerol and then soaked in the fluorescent substrate solution. The slab gel of the processing protease was covered with the fluorescent substrate membrane, making a double layer. The double layer was incubated at 37 degrees C, and the released fluorescent band, in which the processing protease was located, was detected using UV light. The advantages of the double-layer fluorescent zymographic method are as follows: (i) the specific detection of target proprotease using a specific substrate, (ii) a relatively rapid and sensitive method, (iii) effective detection using small amounts of crude material, and (iv) wide applications that include the detection of processing proteases and activators for target proteases. Typical examples used for the detection of the processing proteases, such as plasminogen activator, chymotrypsinogen activator, procaspase-3 processing protease and caspase-3 activators, using this new method are described in this article.  相似文献   

5.
Boonacker E  Elferink S  Bardai A  Wormmeester J  Van Noorden CJ 《BioTechniques》2003,35(4):766-8, 770, 772 passim
Proteolysis is a regulatory step in many physiological processes, but which proteases in what cellular sites are involved in activation or degradation of which peptides is not well known. We developed a rapid assay consisting of living cells and fluorogenic protease substrates to determine which bioactive peptides are possible natural substrates of a specific protease with the multifunctional or moonlighting protein CD26/dipeptidyl peptidase IV (DPPIV) as a model. CD26/DPPIV catalyzes cleavage of peptides from the amino terminus of peptides with proline at the penultimate position. Many biologically active peptides, such as beta-casomorphin1-5, contain proline in the penultimate position. We incubated living Jurkat cells, which are T cells that lack CD26/DPPIV, and CD26/DPPIV-transfected Jurkat cells in the presence of the fluorogenic substrate [Ala-Pro]2-cresyl violet (Magic Red) and beta-casomorphin1-5. Fluorescent cresyl violet was generated by CD26/DPPIV-transfected Jurkat cells but not by wild-type Jurkat cells with a Km of 3.7 microM. beta-Casomorphin1-5 appeared to be a possible natural substrate of CD26/DPPIV, because it inhibited production of fluorescence competitively (Ki = 60 microM). The assay using living cells and a fluorogenic protease substrate is an efficient system to determine whether specific peptides are possible natural substrates of a particular protease.  相似文献   

6.
A novel microarray-based proteolytic profiling assay enabled the rapid determination of protease substrate specificities with minimal sample and enzyme usage. A 722-member library of fluorogenic protease substrates of the general format Ac-Ala-X-X-(Arg/Lys)-coumarin was synthesized and microarrayed, along with fluorescent calibration standards, in glycerol nanodroplets on microscope slides. The arrays were then activated by deposition of an aerosolized enzyme solution, followed by incubation and fluorometric scanning. The specificities of human blood serine proteases (human thrombin, factor Xa, plasmin, and urokinase plasminogen activator) were examined. The arrays provided complete maps of protease specificity for all of the substrates tested and allowed for detection of cooperative interactions between substrate subsites. The arrays were further utilized to explore the conservation of thrombin specificity across species by comparing the proteolytic fingerprints of human, bovine, and salmon thrombin. These enzymes share nearly identical specificity profiles despite approximately 390 million years of divergent evolution. Fluorogenic substrate microarrays provide a rapid way to determine protease substrate specificity information that can be used for the design of selective inhibitors and substrates, the study of evolutionary divergence, and potentially, for diagnostic applications.  相似文献   

7.
The synthesis of a new type of fluorogenic ester substrates is described. Prepared from fluorescein in three steps with common commercially available precursors, they all generate bright green fluorescence upon proteolysis. Their particular structure allows the same substrate be used to report enzymatic activity of various proteases from serine and cysteine superfamilies. The substrate cleavage is sensitive to specific protease inhibitors providing a tool for inhibitor screening.  相似文献   

8.
Papain-like cysteine proteases are important for the survival of the flagellated protozoa Trypanosoma cruzi, the causative agent of Chagas' Disease. The lysosomal cysteine protease designated as cruzipain or cruzain, is the archetype of a multigene family of related isoforms. We investigated the substrate specificity of the cruzipain 2 isoform using internally quenched fluorogenic substrates. We found that cruzipain 2 and cruzain differ substantially regarding the specificity in the S2, S'1 and S'2 pockets. Our study indicates that cruzipain 2 has a more restricted specificity than cruzain, suggesting that these isoforms might act on distinct natural substrates.  相似文献   

9.
The study of protease specificity provides information on active-site structure and function, protein-protein interaction, regulation of intracellular and extracellular pathways, and evolution of protease and substrate genes. Peptide libraries that include fluorogenic and binding tags are often generated by solid-phase synthesis. Even larger explorations of cleavage site preferences employ positional scanning libraries or phage display. Microarrays enable presentation of individual peptides to proteases, DNA sequences for capture of peptide nucleic acid encoded peptides, or nanodroplets containing soluble peptide sequences. These new methods continue to inform the design of chemical inhibitors and the identification of substrates of proteases.  相似文献   

10.
The ability to catalytically cleave protein substrates after synthesis is fundamental for all forms of life. Accordingly, site-specific proteolysis is one of the most important post-translational modifications. The key to understanding the physiological role of a protease is to identify its natural substrate(s). Knowledge of the substrate specificity of a protease can dramatically improve our ability to predict its target protein substrates, but this information must be utilized in an effective manner in order to efficiently identify protein substrates by in silico approaches. To address this problem, we present PROSPER, an integrated feature-based server for in silico identification of protease substrates and their cleavage sites for twenty-four different proteases. PROSPER utilizes established specificity information for these proteases (derived from the MEROPS database) with a machine learning approach to predict protease cleavage sites by using different, but complementary sequence and structure characteristics. Features used by PROSPER include local amino acid sequence profile, predicted secondary structure, solvent accessibility and predicted native disorder. Thus, for proteases with known amino acid specificity, PROSPER provides a convenient, pre-prepared tool for use in identifying protein substrates for the enzymes. Systematic prediction analysis for the twenty-four proteases thus far included in the database revealed that the features we have included in the tool strongly improve performance in terms of cleavage site prediction, as evidenced by their contribution to performance improvement in terms of identifying known cleavage sites in substrates for these enzymes. In comparison with two state-of-the-art prediction tools, PoPS and SitePrediction, PROSPER achieves greater accuracy and coverage. To our knowledge, PROSPER is the first comprehensive server capable of predicting cleavage sites of multiple proteases within a single substrate sequence using machine learning techniques. It is freely available at http://lightning.med.monash.edu.au/PROSPER/.  相似文献   

11.
We describe a generic method for the large-scale functional characterization of enzymes in a microarray. Poly-l-lysine and amine reactive slides were coated with fluorogenic substrates sensitive to proteases and phosphatases. Patterning enzymes on the slides by robotic printing produced spatially addressable, segregated droplets that were simultaneously exposed to the on-chip sensors. Multiple enzymes were profiled using this system that provided fluorescence readouts across temporal and stoichiometric dimensions concurrently on a single microarray substrate. This integrated microarray platform is applicable not only for the functional annotation of proteins, but also for the rapid agonist and antagonist discovery and in performing on-chip kinetics.  相似文献   

12.
A highly sensitive assay based on new internally quenched fluorogenic peptide substrates has been developed for monitoring protease activities. These novel substrates comprise an Edans (5-(2-aminoethylamino)-1-naphthalenesulfonic acid) group at the C terminus and a Dabsyl (4-(dimethylamino)azobenzene-4'-sulfonyl chloride) fluorophore at the N terminus of the peptide chains. The Edans fluorescence increases upon peptide hydrolysis by Pseudomonas aeruginosa proteases, and this increase is directly proportional to the amount of substrate cleaved, i.e., protease activity. The substrates Dabsyl-Ala-Ala-Phe-Ala-Edans and Dabsyl-Leu-Gly-Gly-Gly-Ala-Edans were used for testing the peptidasic activities of P. aeruginosa elastase and LasA protease, respectively. Elastase and LasA kinetic parameters were calculated and a sensitive assay was designed for the detection of P. aeruginosa proteases in bacterial supernatants. The sensitivity and the small sample requirements make the assay suitable for high-throughput screening of biological samples. Furthermore, this P. aeruginosa protease assay improves upon existing assays because it is simple, it requires only one step, and even more significantly it is enzyme specific.  相似文献   

13.
14.
Hemorrhagic shock (HS) is associated with high mortality. A severe decrease in blood pressure causes the intestine, a major site of digestive enzymes, to become permeable - possibly releasing those enzymes into the circulation and peritoneal space, where they may in turn activate other enzymes, e.g. matrix metalloproteinases (MMPs). If uncontrolled, these enzymes may result in pathophysiologic cleavage of receptors or plasma proteins. Our first objective was to determine, in compartments outside of the intestine (plasma, peritoneal fluid, brain, heart, liver, and lung) protease activities and select protease concentrations after hemorrhagic shock (2 hours ischemia, 2 hours reperfusion). Our second objective was to determine whether inhibition of proteases in the intestinal lumen with a serine protease inhibitor (ANGD), a process that improves survival after shock in rats, reduces the protease activities distant from the intestine. To determine the protease activity, plasma and peritoneal fluid were incubated with small peptide substrates for trypsin-, chymotrypsin-, and elastase-like activities or with casein, a substrate cleaved by multiple proteases. Gelatinase activities were determined by gelatin gel zymography and a specific MMP-9 substrate. Immunoblotting was used to confirm elevated pancreatic trypsin in plasma, peritoneal fluid, and lung and MMP-9 concentrations in all samples after hemorrhagic shock. Caseinolytic, trypsin-, chymotrypsin-, elastase-like, and MMP-9 activities were all significantly (p<0.05) upregulated after hemorrhagic shock regardless of enteral pretreatment with ANGD. Pancreatic trypsin was detected by immunoblot in the plasma, peritoneal space, and lungs after hemorrhagic shock. MMP-9 concentrations and activities were significantly upregulated after hemorrhagic shock in plasma, peritoneal fluid, heart, liver, and lung. These results indicate that protease activities, including that of trypsin, increase in sites distant from the intestine after hemorrhagic shock. Proteases, including pancreatic proteases, may be shock mediators and potential targets for therapy in shock.  相似文献   

15.
Atg4 cysteine proteases (autophagins) play crucial roles in autophagy by proteolytic activation of Atg8 paralogs for targeting to autophagic vesicles by lipid conjugation, as well as in subsequent deconjugation reactions. However, the means to measure the activity of autophagins is limited. Herein, we describe two novel substrates for autophagins suitable for a diversity of in vitro assays, including (i) fluorogenic tetrapeptide acetyl-Gly-L-Thr-L-Phe-Gly-AFC (Ac-GTFG-AFC) and (ii) a fusion protein comprised of the natural substrate LC3B appended to the N-terminus of phospholipase A2 (LC3B-PLA2), which upon cleavage releases active PLA2 for fluorogenic assay. To generate the synthetic tetrapeptide substrate, the preferred tetrapeptide sequence recognized by autophagin-1/Atg4B was determined using a positional scanning combinatorial fluorogenic tetrapeptide library. With the LC3B-PLA2 substrate, we show that mutation of the glycine proximal to the scissile bond in LC3B abolishes activity. Both substrates showed high specificity for recombinant purified autophagin-1/Atg4B compared to closely related proteases and the LC3B-PLA2 substrate afforded substantially higher catalytic rates (kcat/Km 5.26 × 105 M−1/sec−1) than Ac-GTFG-AFC peptide (0.92 M−1/sec−1), consistent with substrate-induced activation. Studies of autophagin-1 mutants were also performed, including the protease lacking a predicted autoinhibitory domain at residues 1 to 24 and lacking a regulatory loop at residues 259 to 262. The peptide and fusion protein substrates were also employed for measuring autophagin activity in cell lysates, showing a decrease in cells treated with autophagin-1/Atg4B siRNA or transfected with a plasmid encoding Atg4B (Cys74Ala) dominant-negative. Therefore, the synthetic substrates for autophagins reported here provide new research tools for studying autophagy.Key words: autophagin, fluorogenic assay, tetrapeptide, phospholipase A2, LC3  相似文献   

16.
《Autophagy》2013,9(7):936-947
Atg4 cysteine proteases (autophagins) play crucial roles in autophagy by proteolytic activation of Atg8 paralogs for targeting to autophagic vesicles by lipid conjugation, as well as in subsequent deconjugation reactions. However, the means to measure the activity of autophagins is limited. Herein, we describe two novel substrates for autophagins suitable for a diversity of in vitro assays, including (i) fluorogenic tetrapeptide acetyl-L-Gly-L-Thr-L-Phe-Gly-AFC (Ac-GTFG-AFC) and (ii) a fusion protein comprised of the natural substrate LC3B appended to the N-terminus of phospholipase A2 (LC3B-PLA2), which upon cleavage releases active PLA2 for fluorogenic assay. To generate the synthetic tetrapeptide substrate, the preferred tetrapeptide sequence recognized by autophagin-1/Atg4B was determined using a positional scanning combinatorial fluorogenic tetrapeptide library. With the LC3B-PLA2 substrate, we show that mutation of the glycine proximal to the scissile bond in LC3B abolishes activity. Both substrates showed high specificity for recombinant purified autophagin-1/Atg4B compared to closely related proteases, and the LC3B-PLA2 substrate afforded substantially higher catalytic rates (kcat/Km 5.26 x 105 M-1/sec-1) than Ac-GTFG-AFC peptide (0.92 M-1/sec-1), consistent with substrate induced activation. Studies of autophagin-1 mutants were also performed, including the protease lacking a predicted autoinhibitory domain at residues 1 to 24, and lacking a regulatory loop at residues 259 to 262. The peptide and fusion protein substrates were also employed for measuring autophagin activity in cell lysates, showing a decrease in cells treated with autophagin-1/Atg4B siRNA or transfected with a plasmid encoding Atg4B (Cys74Ala) dominant-negative. Therefore, the synthetic substrates for autophagins reported here provide new research tools for studying autophagy.  相似文献   

17.
Sequence logos are frequently used to illustrate substrate preferences and specificity of proteases. Here, we employed the compiled substrates of the MEROPS database to introduce a novel metric for comparison of protease substrate preferences. The constructed similarity matrix of 62 proteases can be used to intuitively visualize similarities in protease substrate readout via principal component analysis and construction of protease specificity trees. Since our new metric is solely based on substrate data, we can engraft the protease tree including proteolytic enzymes of different evolutionary origin. Thereby, our analyses confirm pronounced overlaps in substrate recognition not only between proteases closely related on sequence basis but also between proteolytic enzymes of different evolutionary origin and catalytic type. To illustrate the applicability of our approach we analyze the distribution of targets of small molecules from the ChEMBL database in our substrate-based protease specificity trees. We observe a striking clustering of annotated targets in tree branches even though these grouped targets do not necessarily share similarity on protein sequence level. This highlights the value and applicability of knowledge acquired from peptide substrates in drug design of small molecules, e.g., for the prediction of off-target effects or drug repurposing. Consequently, our similarity metric allows to map the degradome and its associated drug target network via comparison of known substrate peptides. The substrate-driven view of protein-protein interfaces is not limited to the field of proteases but can be applied to any target class where a sufficient amount of known substrate data is available.  相似文献   

18.
An assay using fluorogenic peptides based on the monomer/excimer fluorescence features of pyrene was developed to measure the proteolytic activity of trypsin, a serine protease. Two pyrene moieties were incorporated into the respective N- and C-terminus of the peptides as (pyrene)-C-Xaa-C-(pyrene), where Xaa represents amino acid residues of 5-, 6-, 7-, or 8-mer containing the cleavage site of trypsin. The proteolytic cleavage of the substrates led to an increase in monomer fluorescence and a decrease in excimer fluorescence of pyrene. Kinetic parameters (k(cat) and K(m)) for the enzymatic hydrolysis of the substrates were successfully determined. The parameters are dependent on the chain length of the substrate and optimal catalytic activity was obtained with substrates that consisted of 9 or 10 amino acid residues. The present assay system is sensitive and the preparation of the substrate is very simple. We suggest that this method may be suitable for high-throughput screening and also applicable to the characterization of other proteases.  相似文献   

19.

Background

The filamentous fungus Aspergillus fumigatus (AF) can cause devastating infections in immunocompromised individuals. Early diagnosis improves patient outcomes but remains challenging because of the limitations of current methods. To augment the clinician''s toolkit for rapid diagnosis of AF infections, we are investigating AF secreted proteases as novel diagnostic targets. The AF genome encodes up to 100 secreted proteases, but fewer than 15 of these enzymes have been characterized thus far. Given the large number of proteases in the genome, studies focused on individual enzymes may overlook potential diagnostic biomarkers.

Methodology and Principal Findings

As an alternative, we employed a combinatorial library of internally quenched fluorogenic probes (IQFPs) to profile the global proteolytic secretome of an AF clinical isolate in vitro. Comparative protease activity profiling revealed 212 substrate sequences that were cleaved by AF secreted proteases but not by normal human serum. A central finding was that isoleucine, leucine, phenylalanine, and tyrosine predominated at each of the three variable positions of the library (44.1%, 59.1%, and 57.0%, respectively) among substrate sequences cleaved by AF secreted proteases. In contrast, fewer than 10% of the residues at each position of cleaved sequences were cationic or anionic. Consensus substrate motifs were cleaved by thermostable serine proteases that retained activity up to 50°C. Precise proteolytic cleavage sites were reliably determined by a simple, rapid mass spectrometry-based method, revealing predominantly non-prime side specificity. A comparison of the secreted protease activities of three AF clinical isolates revealed consistent protease substrate specificity fingerprints. However, secreted proteases of A. flavus, A. nidulans, and A. terreus strains exhibited striking differences in their proteolytic signatures.

Conclusions

This report provides proof-of-principle for the use of protease substrate specificity profiling to define the proteolytic secretome of Aspergillus fumigatus. Expansion of this technique to protease secretion during infection could lead to development of novel approaches to fungal diagnosis.  相似文献   

20.
Klingler D  Hardt M 《Proteomics》2012,12(4-5):587-596
Proteases play prominent roles in many physiological processes and the pathogenesis of various diseases, which makes them interesting drug targets. To fully understand the functional role of proteases in these processes, it is necessary to characterize the target specificity of the enzymes, identify endogenous substrates and cleavage products as well as protease activators and inhibitors. The complexity of these proteolytic networks presents a considerable analytic challenge. To comprehensively characterize these systems, quantitative methods that capture the spatial and temporal distributions of the network members are needed. Recently, activity-based workflows have come to the forefront to tackle the dynamic aspects of proteolytic processing networks in vitro, ex vivo and in vivo. In this review, we will discuss how mass spectrometry-based approaches can be used to gain new insights into protease biology by determining substrate specificities, profiling the activity-states of proteases, monitoring proteolysis in vivo, measuring reaction kinetics and defining in vitro and in vivo proteolytic events. In addition, examples of future aspects of protease research that go beyond mass spectrometry-based applications are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号